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Abstract

We introduce a new, two-level, logical calculus for open and general subspaces in computable

general topology. The leading model is the category of all sober topological spaces.

In [equdcl] the �external� logic was motivated by equalisers targeted at exponentials in an

enclosing cartesian closed category. It was developed into a �predicate calculus� with univer-

sally quanti�ed implications between equations between lambda terms. A kind of existential

quanti�er may also be de�ned.

Here we ask when the fundamental object of this category is a dominance and show how

this question leads to an �internal� logic of open subspaces. Discrete, compact, overt and

Hausdor� spaces are those form which the external (in)equality or quanti�er is represented

by a lambda term.

In particular, the category is a topos if this representation always exists, i.e. the external

and internal logics coincide.

www.Paul Taylor.EU/ASD/equideductive/

1 A language for topology

Equideductive topology is a new language for computable general topology. Whereas Abstract
Stone Duality provided an account of locally compact spaces, the leading model of the new theory is
the category of all sober topological spaces (in the traditional sense). See Equideductive Categories

and their Logic for a general introduction to the equideductive topology programme.
The programme is motivated by analogies with the way in which the notion of an elementary

topos captures set theory in categorical form. Recall that a topos has an object Ω with an internal

algebraic structure that classi�es subobjects and their logic in the category. In set theory there
is only one notion of subset, but in topology we have both open subspaces and general ones. As
is now well known, the properties of Ω in a topos may be adapted to describe open subspaces in
topology.

In order to provide a theory of general subspaces, we must re-examine the external logic of
subobjects in a category, following the situation in a topos but without relying on the internal
algebraic structure of Ω (here re-named Σ). This was done in [equdcl] by axiomatising equalisers
targeted at exponentials, E ↪→ X ⇒ ΣY , which led to a logic with ∀ and =. that was based
on equations between λ-terms of type Σ. Then it was shown in [existential] how an existential
quanti�er could be de�ned from the universal one. This agrees with the epis in the category but
only satis�es the usual logical rules with severe restrictions, for which reason it was written with
an unusual symbol, �.

There is also a cartesian closed extension. In fact, it was by asking what logic is needed to
perform Scott's construction of equilogical spaces that I was led to equideductive logic in the
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�rst place. Brie�y, an equideductive category is one that �lies nicely� within its cartesian closed
extension. This extension is therefore with us �in spirit�, even though we only consider the smaller
category explicitly here.

In this paper we add a single axiom to the basic logic, namely what is required to make the
object Σ a dominance, classifying �open� subobjects. This new axiom has the e�ect of adding
internal algebraic structure to Σ that is related to the external structure as follows:

external: > & ∀ =. ⊥ g �
internal: ? ∧ U 6 ⊥ ∨ ∃

By this we mean that, in some cases, the external logic is represented by terms of type Σ in the
internal one. In Section 9 we shall show that, if we do this in all cases, we recover set theory in
the sense that the category is a topos.

But by making this identi�cation in just some cases, we obtain a theory that has many of the
features of general topology and provides several of its de�nitions:
(a) an open subspace is one whose de�ning predicate is represented by a term of type Σ (Section 3);

(b) a discrete space is one whose (Leibnizian) equality between incoming morphisms is represented
by a term of type Σ (Section 4);

(c) a compact space is one for which the equideductive universal quanti�er ∀ for predicates is
represented by a term (Section 5);

(d) an overt space is one for which the equideductive existential quanti�er � for predicates is
represented by a term (Section 7).

2 Equideductive logic

See Equideductive Categories and their Logic for both the general introduction to the equideductive
topology programme and also the foundations of the logic.

Remark 2.1 Equideductive predicates are formed as conjunctions of quanti�ed implications of
the form

∀~y. ~q (~y) ==. (α~x~y = β~x~y),

where the ~q(~y) are in a similar form. The equations on the right are between λ-terms of type Σ.
Several de�nitional extensions were made in [equdcl] and [existential] and more will be added

in this paper, but any predicate may be rewritten in this normal form.
The symbols ∀, =. and & obey the usual rules, except that predicates must obey the variable-

binding rule : any variable that occurs on the left of =. must be bound by the quanti�er. This
rule arises from the categorical use of this notation for an equaliser targeted at an exponential. The
restriction is also essential to some of the results in the two logically preceding papers. However,
we shall �nd here that it can be relaxed to one level for antecedents of the form φx = > and to
arbitrary depth for variables of discrete type.
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3 Classifying open subspaces

In set theory, arbitrary subobjects (monos) U ↪→ X are classi�ed by (maps φ : X → Ω to) the
object Ω of an elementary topos that was introduced by Bill Lawvere and Myles Tierney [?, ?].

U - 1

X

i

?

∩

φ- Σ or Ω

>

?

Giuseppe Rosolini generalised this for topology and recursion theory by considering a class (�do-
minion�) of special (�open�) monos that must be closed under composition and inverse images.
Then Ω is replaced by an object (�dominance�) Σ that is to have the same classi�cation property
[?]. The key point is that not all monos need be expressible in this form in Rosolini's generalisation,
but if U ↪→ X is expressible then there is a unique φ : X → Σ that provides this pullback.

Lemma 3.1 Any dominance Σ carries a semilattice structure (>,∧), where > classi�es the whole
object and φ ∧ ψ classi�es the intersection (pullback) φ−1(>) ∩ ψ−1(>). Any semilattice carries
an order relation 6 such that

α 6 β ≡ α ∧ β = α

α ∧ β = > a` α = > & β = >
α = β a` α 6 β & β 6 α.

Proof See, e.g., [geohol,�2] for the diagrams and further introduction. �

Remark 3.2 The equations on the right of =. in the normal form for equideductive predicates
(Remark 2.1) are between terms of urtype Σ. Now that this object is a semilattice it is more
convenient to use inequalities like

∀~y. ~q (~y) ==. (α~x~y 6 β~x~y)

instead as the standard form for predicates. In fact, we shall see in this section that 6 is itself a
special case of =..

Remark 3.3 Conversely to Lemma 3.1, given a semilattice (Σ,>,∧) in a category with all �nite
limits, we may de�ne the �open� inclusions i : U ↪→ X to be exactly those that can be expressed
as pullbacks of > : 1 → Σ along maps φ : X → Σ. (Recall that an equideductive category has
all �nite limits.) Open inclusions therefore automatically have inverse images, where f−1(U) is
classi�ed by φ · f , whilst the inverse image of > : X → 1→ Σ is the entire subobject X ⊂ X.

However, we still also need
(a) (the isomorphism class of) U ↪→ X to determine φ uniquely (up to equality) and

(b) any composite V ↪→ U ↪→ X of open inclusions also to be expressible in this way.

It is more convenient to generalise the �rst property to a relationship between inclusions U ⊂ V
and inequalities φ 6 ψ:

Lemma 3.4 If (Σ,>,∧) is a dominance in an equideductive category then it also satis�es the rule

x : A, p(x), φx = > ` ψx = >
==============================

x : A, p(x) ` φx 6 ψx
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for any terms ` φ, ψ : ΣA without parameters, where p(x) is a predicate on the urtype A.

Proof Such terms de�ne parallel morphisms φ, ψ : X ⇒ Σ with pullbacks U, V ⊂ X as shown:

U ≡ {x : A | p(x) & φx = >} ...........- V ≡ {x : A | p(x) & ψx = >} - 1

X ≡ {x : A | p(x)}

i

?

∩

====== X ≡ {x : A | p(x)}

j

?

∩

ψ -

φ
- Σ

>

?

The premise of the rule says that the identity on the urtype A represents is a morphism U → V .
Hence U ∼= U ∩ V , where this intersection is classi�ed by φ ∧ ψ by Lemma 3.1. Then φ = φ ∧ ψ
since classi�ers are unique, so φ 6 ψ. �

Since this argument is reversible, we have the converse:

Remark 3.5 If Σ in an equideductive category is a semilattice and obeys this rule then the �open�
monos that it generates according to Remark 3.3 are uniquely classi�ed. However, in this we mean
that the morphism X ≡ {A | p} → Σ, rather than the term A → Σ that represents it, is unique.
Terms ` φ, ψ : ΣA represent the same morphism X → Σ and classify the same open inclusion
U ↪→ X if

x : A, p(x) ` φx = ψx : Σ. �

Finally, injectivity of Σ and its semilattice structure provide composition of open inclusions:

Lemma 3.6 If the object Σ in an equideductive category is a semilattice and satis�es the rule in
Lemma 3.4 then it is a dominance.

Proof It remains to show that if φ : V → Σ classi�es the inclusion U ↪→ V (top right) and
ψ : X → Σ classi�es V ↪→ U (bottom left) then the composite U ↪→ V ↪→ X also has a classi�er
(right-hand rectangle).

Γ ..........
u
- U ≡ {x : A | p(x) & φx = >& ψx = >}

!- 1

1 �
!

V ≡ {x : A | p(x) & ψx = >}

i

?

∩

φ-

v

...................................................-

Σ

>
?

Σ

>
?
� ψ

X ≡ {x : A | p(x)}

j

?

∩

................................
φ ∧ ψ

-

x

-

Σ

wwwwwwww
Using injectivity of Σ, which is one of the axioms of an equideductive category, the map φ : V → Σ
lifts to X → Σ. I claim that φ ∧ ψ : X → Σ classi�es U ⊂ X.

Let x : Γ→ U and ! : Γ→ 1 have equal composites as far as Σ, i.e.

Γ ` x : {A | p} with Γ ` p(x), φx ∧ ψx = >.

Then φx = > and ψx = > by Lemma 3.1. Since V is classi�ed by ψ, we have x = j · v for some
unique v : Γ→ V . Then φv = φx = >, so v = i · u for some unique u : Γ→ U since φ classi�es U .
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Hence x = j · i · u as required and u is unique since i and j are monos. The classi�er φ ∧ ψ is
unique by Lemma 3.4. �

Axiom 3.7 The open Gentzen rule is

Γ, α = > ` β 6 γ
===================

Γ ` α ∧ β 6 γ

for any terms Γ ` α, β, γ : Σ that may now contain parameters and depend on predicates.

Theorem 3.8 The fundamental object Σ of an equideductive category is a dominance i� it carries
a semilattice structure that satis�es the open Gentzen rule.

Proof The rule in Lemma 3.4 is the special case of the new one where φ ≡ α, β ≡ > and ψ ≡ γ,
so it remains to derive the Gentzen rule from the Lemma.

For de�niteness, and since equideductive logic has products of urtypes, let the context Γ be
[x : A, q(x)] and write the terms as αx, βx and γx. Then the judgements

x : A, q(x), αx = > ` βx 6 γx

x : A, q(x), αx = >, βx = > ` γx = >
x : A, q(x), αx = > & βx = > ` γx = >
x : A, q(x), (αx ∧ βx) = > ` γx = >
x : A, q(x) ` (αx ∧ βx) 6 γx

are equivalent: The �rst two lines are linked (upside down) by the version of the rule in Lemma 3.4
with p(x) ≡ q(x) & (αx = >), φ ≡ β and ψ ≡ γ. Similarly, the last two lines use it (the right way
up) with p ≡ q, φ ≡ α ∧ β and ψ ≡ γ. The middle three lines use Lemma 3.1 about & and ∧. �

Corollary 3.9 This rule entails the Euclidean principle ,

σ : Σ, F : ΣΣ ` σ ∧ Fσ = σ ∧ F>.

Proof By the equality-transmission law λE=1 we have σ = > ` Fσ = F>. From this we deduce
σ ∧ Fσ 6 F> and σ ∧ F> 6 Fσ by the open Gentzen rule. See [geohol, �3] for a diagrammatic
proof of this from Rosolini's notion of a dominance. �

Lemma 3.10 Then open inclusion i : U ↪→ X classi�ed by φ is Σ-split by (−) ∧ φ.
Proof According to the de�nition in [equdcl], we require

x : A, θ : ΣA, p(x), φx = > ` Iθ(ix) ≡ θx ∧ φx = θx

θ, θ′ : ΣA, ∀x. p(x) & (φx = >) =. θx = θ′x ` ∀x. p(x) =. φx ∧ θx = φx ∧ θ′x,

which follow from the open Gentzen rule. �

Recall that the variable-binding rule of equideductive logic (Remark 2.1) required all variables
on the left of =. to be bound by ∀. This would appear to limit the scope of this notation to closed
terms on the left of 6, but we �nd that this is not the case:

Proposition 3.11 Open antecedents are exempt from the variable-binding rule.
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Proof Using the Gentzen rule and those for ∀ =., the judgements

m(x), p(y), αxy = > ` ∀z. q(z) =. (βxyz 6 γxyz)
m(x), p(y), q(z), αxy = > ` βxyz 6 γxyz

m(x), p(y), q(z) ` (αxy ∧ βxyz) 6 γxyz

m(x) ` ∀yz. p(y) & q(z) =. (αxy ∧ βxyz) 6 γxyz

are equivalent. Hence we may make a de�nitional extension of equideductive logic in which the
right hand side of the last line de�nes

∀y. p(y) & αxy ==.
(
∀z. q(z) =. (βxyz 6 γxyz)

)
,

which is the key case in the recursive de�nition of a general implication from an open predicate
with a free variable x (Remark 3.2). �

Warning 3.12 This exemption only postpones binding the variable by one level. Since equide-
ductive predicates are built up from open ones (terms of type Σ) using the logical connectives,
relaxing the variable-binding rule for them at arbitrary levels would eliminate it altogether, but
then it would not be valid in the category of sober topological spaces.

Example 3.13 With B ≡ C ≡ 1, p ≡ q ≡ >, α ≡ φ, β ≡ > and γ ≡ ψ,

(φx = >) ==. (ψx = >) is de�ned as φx 6 ψx or φx = φx ∧ ψx.

It would be tempting to use this equivalence as the axiom that is the subject of this section.
However, without the Proposition, it would violate the variable-binding rule. Moreover, it is not
justi�ed â priori by Lemma 3.4 because the variables x above and below the line in the rule there
are quanti�ed separately.

Notation 3.14 The foregoing results justify identifying
(a) any term x : A ` φx : Σ with the predicate p(x) ≡ (φx = >) on A, in which case we call p(x)

an open predicate and {A | p} ⊂ A an open subspace ;

(b) in particular, the term > : Σ with the true equideductive predicate;

(c) the semilattice operation ∧ on Σ with (a special case of) equideductive conjunction &; and

(d) the order relation 6 on Σ with (a special case of) equideductive implication =..
So, for example, the equivalent judgements in the Theorem are all written Γ ` α&β =. γ and the
normal form for a predicate in Remark 3.2 becomes

p(~x) ≡ ∀~y. ~q ( ~y ) & α~x~y ==. β ~x ~y.

4 Discrete spaces

The next part of the external logic that we identify with an internal form is equality. Even as
a predicate, this is not primitive in equideductive logic for general urtypes: it is de�ned from
equality on Σ using the Leibnizian formula

x = y ≡ ∀φ. (φx = φy).

De�nition 4.1 A space N ≡ {x : A | p(x)} is discrete if this formula is represented by an term
ε : ΣA×A,

x, y : A, p(x), p(y) ` (εxy = >) /==. ∀φ. (φx = φy),
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which we call internal equality . In this paper we retain the ε for the internal equality for clarity,
but afterwards we will write x = y instead, even though this will make the notation ambiguous.

Lemma 4.2 The term ε is the internal equality for the discrete object N ≡ {x : A | p(x)} i� it
satis�es re�exivity and substitution:

x : A, p(x) ` εxx

x, y : A, φ : ΣA, p(x), p(y) ` εxy ∧ φx ==. φy.

In this case, ε is also symmetric and transitive:

x, y : A, p(x), p(y) ` εxy ==. εyx
x, y, z : A, p(x), p(y), p(z) ` εxy ∧ εyz ==. εxz.

Proof Re�exivity follows from the backward direction of the De�nition and substitution from
the forward one. We deduce symmetry from these using φ ≡ λw. εwx and transitivity using
φ ≡ λw. εwz. Substitution gives εxy =. ∀φ. φx =. φy and hence by symmetry the De�nition. �

Remark 4.3 More precisely, the Lemma is about representability of the Σ-order ,

x v y ≡ ∀φ. φx =. φy,

but the symmetry result shows that if this order is representable then it is discrete anyway.

Proposition 4.4 Any predicate respects internal equality:

x, y : A, p(x), p(y), r(x), εxy ` r(y).

Proof By Notation 3.14, it su�ces to consider

r(x) ≡ ∀z. s(z) & αzx ==. βzx.

Then, for x, y : A with p(x), p(y) and εxy and z with s(z), the second rule for ε gives

αzy ==. αzx ==. βzx ==. βzy,

so the result follows using ∀I and ∀E. �

Proposition 4.5 Variables of discrete type are exempt from the variable-binding rule, where

∀~y. r(x, ~y) =. s(x, ~y, ~z) is de�ned as ∀x′~y. p(x′, ~y) & r(x′) & εxx′ ==. s(x, ~y, ~z).

Unlike the case of open predicates, this exemption is valid to any depth, in any kind of sub-formula,
not just open ones.

Proof As in Proposition 3.11, we mean that there is a de�nitional extension of equideductive
logic. The judgements

~t(~z), p(x), r(x, ~y) ` s(x, ~y, ~z)
~t(~z), p(x), p(x′), εxx′, r(x, ~y) ` s(x, ~y, ~z)
~t(~z), p(x), p(x′), εxx′, r(x′, ~y) ` s(x, ~y, ~z)
~t(~z), p(x) ` ∀x′. p(x′) & r(x′, ~y) & εxx′ =. s(x, ~y, ~z)
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are equivalent, where the last formula is well formed by Proposition 3.11 because εxx′ is an
open predicate. The �rst line entails the second by weakening and conversely by contraction and
re�exivity of ε. The second and third lines are equivalent by the previous lemma. The last two
lines are equivalent by the rules for ∀ =.. �

Remark 4.6 This result could be the basis of a theory of dependent types in which the spaces
may have discrete (or Hausdor�) parameters.

Discreteness also has a categorical meaning:

Proposition 4.7 An object N of an equideductive category is discrete i� the diagonal N → N×N
is an open inclusion,

N ≡ {x : A | p(x)} - 1

N ×N
?

∩

ε - Σ.

>

?

classi�ed by the term ε.

Proof Discreteness is equivalent to the property

x, y : A, , p(x), p(y), εxy ` x = y.

This in turn is exactly what is required to make the diagonal and either of the projections into an
isomorphism

N ≡ {x : A | p(x)} ∼= {N ×N | ε} ≡ {x, y : A | p(x) & p(y) & εxy = >}. �

Corollary 4.8 The internal equality ε is unique in the sense of Remark 3.5. �

Lemma 4.9 Let M be a discrete space and f : N → M a morphism. If N is also discrete then
internal equality is preserved:

x, y : A, p(x), p(y) ` εNxy ==. εM (fx)(fy).

If f is mono then N is discrete, with εNxy ≡ εM (fx)(fy).
Proof In both parts, x = y ` fx = fy a` εM (fx)(fy) = >.
If N is discrete, let φ ≡ λw. εM (fx)(fw) in Lemma 4.2. If f is mono, the �rst ` is a`, so
εM (fx)(fy) serves for εNxy. �

Examples 4.10

(a) 1 is discrete, with ε1 ≡ λxx′.>;
(b) if N and M are discrete then so is M ×M , with εN×M 〈x, y〉〈x′, y′〉 ≡ εNxx′ ∧ εMyy′;
(c) for 0 and sums we require the lattice structure on Σ (Section 6);

(d) Σ is discrete i� it is an internal Heyting algebra (Proposition 9.8).

Remark 4.11 Points and the diagonal of a discrete space are open, but arbitrary subspaces are
not.
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5 Compact spaces

Next we consider those objects for which the equideductive quanti�er ∀ for predicates is represented
by an term.

De�nition 5.1 The type K ≡ {A | p} is compact if there is an term ` � : ΣΣA such that

φ : ΣA `
(
∀x:A. p(x) =. (φx = >)

)
/==. (�φ) = >.

We call the term � a necessity operator but later we shall write Ux:K. φx for �φ.

Lemma 5.2 The necessity operator � for a compact space is unique.

Proof Compactness says that the subspace {φ : ΣA | ∀x. p(x) =. φx} ↪→ ΣA is open and that

� classi�es it. However, unlike in Remark 3.5, the term is unique up to λ-equality, without an
equivalence relation. [geohol, 7.11]. �

Lemma 5.3 The De�nition is equivalent to the more general form

φ : ΣA, σ : Σ `
(
∀x:A. p(x) =. (σ 6 φx)

)
/==. (σ 6 �φ),

so in this sense �φ =
∧
{φx | p(x)}.

Proof We deduce the σ-form from its special case with σ ≡ > by

σ = >,
(
∀x. p(x) =. σ 6 φx

)
` ∀x. p(x) =. > 6 φx ` �φ = >

σ 6 �φ, p(x), σ ` �φ, p(x) ` φx = >

together with the ∀- and open Gentzen rules. �

Corollary 5.4 The term � makes K ≡ {A | p} compact i�

for Γ ` φ : ΣA and Γ ` σ : Σ,
Γ, x : A, p(x) ` σ 6 φx
======================

Γ ` σ 6 �φ

The forward direction of the De�nition gives the introduction rule for � considered as a quanti�er,

φ : ΣA, ∀x. p(x) ==. φx ` �φ

and the backward direction gives the elimination rule:

x : A, φ : ΣA, p(x), �φ ` φx. �

Lemma 5.5 Necessity operators commute.

Proof Let K ≡ {A | p} and L ≡ {B | q} be compact spaces with necessity operators [p] and [q].
Using De�nition 5.1,

[p]
(
λx. [q](λy. θxy)

)
= > ⇐⇒ ∀x. p(x) =.

(
[q](λy. θxy) = >

)
⇐⇒ ∀x. p(x) =.

(
∀y. q(y) =. (θxy = >)

)
⇐⇒ ∀xy. p(x) & q(y) =. (θxy = >)

· · · ⇐⇒ [q]
(
λy. [p](λx. θxy)

)
= >
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using the de�nition of ∀x. p(x) =. (∀y. · · ·). Alternatively, using Lemma 5.3,

σ 6 [p]
(
λx. [q](λy. θxy)

)
⇐⇒ ∀x. p(x) =.

(
σ 6 [q](λy. θxy)

)
⇐⇒ ∀x. p(x) =.

(
∀y. q(y) =. (σ 6 θxy)

)
⇐⇒ ∀y. q(y) =.

(
∀x. p(x) =. (σ 6 θxy)

)
⇐⇒ σ 6 [q]

(
λy. [p](λx. θxy)

)
. �

Corollary 5.6 If K and L are compact then so is K × L.
Proof The formulae in the preceding proof are also equivalent to

∀xy. p(x) & q(y) ==. (σ 6 θxy),

so the double quanti�er provides that for the product. �

Lemma 5.7 �> = > and �(φ ∧ ψ) = �φ ∧�ψ.
Proof These are also corollaries of Lemma 5.5, with L ≡ 0 and L ≡ 2. Brie�y,

σ 6 �(φ ∧ ψ) a`
(
∀x. p(x) ==. (σ 6 φx)

)
&
(
∀x. p(x) ==. (σ 6 ψx)

)
a` σ 6 (�φ ∧�ψ). �

Proposition 5.8 If K ≡ {A | p} and L ≡ {B | q} are compact spaces with necessity operators [p]
and [q] then K + L is also compact. Its necessity operator is given by

� θ ≡ [p](θ · ν0) ∧ [q](θ · ν1).

Proof By the properties of coproducts in the � paper,

∀z :K + L. σ 6 θz a` ∀x. p(x) =. σ 6 θ(ν0x) & ∀y. q(y) =. σ 6 θ(ν1y)
a` σ 6 [p](θ · ν0) & σ 6 [q](θ · ν1)
a` σ 6 [p](θ · ν0) ∧ [q](θ · ν1). �

Example 5.9 The types 0, 1 and 2 are compact, with

[0] ≡ >, [1]φ ≡ (φ?) and [2]φ ≡ (φ0 ∧ φ1). �

Lemma 5.10 The term � : ΣΣA satis�es p̄(�).
Proof Let φ, ψ : ΣA satisfy ∀x. p(x) =. (φx = ψx). Then

�ψ 6 �ψ ` ∀x. p(x) ==. �ψ 6 ψx
` ∀x. p(x) ==. �ψ 6 φx ` �ψ 6 �φ

and similarly �ψ 6 �ψ so �φ = �ψ. �

Notation 5.11 Conversely, for any term ` � : ΣΣA , de�ne

k(x) ≡ ∀φ:ΣA. �φ⇒ φx and K ≡ {x : A | k(x)}.
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Lemma 5.12 If � is the necessity operator for {x : A | p(x)} then p ` k and � is also the necessity
operator for {x : A | k(x)}, which is called the saturation of the given space.

Proof Covariance of the rules. �

Lemma 5.13 The term ` � : ΣΣA is the necessity operator for some space i�

φ : ΣA, ∀x. (∀ψ. �ψ =. ψx) =. φx ` �φ.

In this, since �ψ is an open sub-formula, � need not be bound with ∀ψ, but it does have to be
bound with ∀x. That is, it can only have discrete or Hausdor� parameters, cf. Remark 4.6. This
condition is idempotent. Note, however, that � occurs covariantly on the left. �

6 Lattice structure

Next we identify equideductive falsity and disjunction with the least element and lattice disjunction
operation on Σ. Note that the results in this section are still valid in any topos.

Axiom 6.1 The object Σ is a distributive lattice.

Remark 6.2 Coproducts of discrete spaces.

7 Overt spaces

Just as Section 5 de�ned a compact space to be one for which the equideductive universal quanti-
�er ∀ is represented by a term �, so an overt space has a term ♦ that represents the equideductive
existential quanti�er �. However, we saw in [exiqt] that working with � is extremely delicate
because it does not obey all of the usual rules. Indeed, representability of � appears to be weaker
than the property that ♦ is a join that is dual to Lemma 5.3.

De�nition 7.1 A space N ≡ {A | p} is overt if there is an term ` ♦ : ΣΣA , called a possibility
operator , such that

φ : ΣA, σ : Σ ` (♦φ 6 σ) /==.
(
∀x:A. p(x) =. (φx 6 σ)

)
,

so in this sense ♦φ =
∨
{φx | p(x)}. Later we shall write ∃x:N. φx for ♦φ.

Lemma 7.2 The space N ≡ {A | p} is overt with possibility operator ♦ i�

for terms Γ ` φ : ΣX and Γ ` σ : Σ,
Γ, x : A, p(x) ` φx 6 σ
======================

Γ ` ♦φ 6 σ

In particular, p(x) & φx ==. ♦φ.
Proof The top line is Γ ` ∀x. p(x) =. φx 6 σ. We obtain the Lemma from the De�nition using
cuts to substitute formulae for the variables σ and φ in this. Conversely, we use Γ ≡ [σ : Σ, φ :
ΣA, s(σ, φ)] where s is one side or the other of the De�nition. �

This generalises from an open predicate σ ≡ > on the right to a general one q that may depend
on the free variables in the context Γ but not on x : A:

Lemma 7.3 The space N ≡ {A | p} is overt with possibility operator ♦ i�

for any term Γ ` φ : ΣX ,
Γ, x : A, p(x), φx ` q
=====================

Γ, ♦φ ` q

11



Proof For de�niteness, let Γ ≡ [w : D, s(w)] and q(w) ≡ ∀y :B. r(y) & αyw =. βyw, using
Notation 3.14 for the normal form of a predicate. Then the following are equivalent,

w : D, s(w), x : A, p(x), φx ` ∀y. r(y) & αyw =. βyw
w : D, s(w), y : B, r(y), αyw, x : A, p(x), φx ` βyw

w : D, s(w), y : B, r(y), αyw, x : A, p(x) ` φx 6 βyw

w : D, s(w), y : B, r(y), αyw ` ♦φ 6 βyw

w : D, s(w), y : B, r(y), ♦φ ` αyw 6 βyw

w : D, s(w), ♦φ ` ∀y. r(y) & αyw =. βyw,

using the previous lemma with Γ ≡ [w : D, s(w), y : B, r(y), αyw] and σ ≡ βyw for the middle
lines and the ∀ and open Gentzen rules elsewhere. �

Proposition 7.4 If the space N ≡ {A | p} is overt then its possibility operator ♦ represents �:

φ : ΣA `
(
�x:A. p(x) & (φx = >)

)
/==. (♦φ) = >.

Proof The previous result is more general than the rules for �, in which we must have (w ≡ φ
and) s(w) ≡ >. �

Corollary 7.5 The possibility operator ♦ for an overt space is unique.

Proof It classi�es the open subspace {φ : ΣA | �x. p(x) & φx} ↪→ ΣA. �

Proposition 7.6 The so-called Frobenius law holds:

φ : ΣA, τ : Σ ` ♦(τ ∧ φ) = τ ∧ ♦φ.

Proof From ∀x. p(x) =. φx 6 ♦φ we deduce ∀x. p(x) =. τ ∧ φx 6 τ ∧ ♦φ and so ♦(τ ∧ φ) 6
τ ∧ ♦φ. The other inequality follows from

φ : ΣA, τ : Σ, τ = > ` ♦φ 6 ♦(τ ∧ φ)

and the open Gentzen rule, or from the Euclidean principle (Corollary 3.9). �

Proposition 7.7 Any open subspace of an overt space is overt.

Proof Let the space be {A | p} with possibility operator ♦ and let the subspace be classi�ed
by θ. Then by De�nition 7.1 for ♦ and the open Gentzen rule,

∀x. p(x) & θx =. φx 6 σ a` ♦(φ ∧ θ) 6 σ,

so the possibility operator for the subspace is �φ ≡ ♦(φ ∧ θ). �

Lemma 7.8 Possibility operators commute:

[p]
(
λx. [q](λy. θxy)

)
= [q]

(
λy. [p](λx. θxy)

)
.

Proof This follows from De�nition 7.1, reversing the order in the proof of Lemma 5.5. �

Corollary 7.9 If N and M are overt then so is N ×M .
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Proof The doubly quanti�ed formulae in the preceding proof provides the possibility operator
for the product because they are 6 σ i� ∀xy. p(x) & q(y) ==. (θxy 6 σ). �

Lemma 7.10 ♦⊥ = ⊥ and ♦(φ ∨ ψ) = ♦φ ∨ ♦ψ.
Proof The dual of Lemma 5.7. �

Proposition 7.11 If N ≡ {A | p} and M ≡ {B | q} are overt spaces with possibility operators
〈p〉 and 〈q〉 then K + L is also overt. Its possibility operator is given by

♦ θ ≡ 〈p〉(θ · ν0) ∨ 〈q〉(θ · ν1).

Proof The dual of Proposition 5.8. �

Example 7.12 The types 0, 1 and 2 are overt, with

〈0〉 ≡ ⊥, 〈1〉φ ≡ (φ?) and 〈2〉φ ≡ (φ0 ∨ φ1). �

Lemma 7.13 The term ♦ : ΣΣA satis�es p̄(♦), cf. Lemma 5.10. �

Notation 7.14 For any term ` ♦ : ΣΣA , de�ne

e(x) ≡ ∀φ:ΣA. φx =. ♦φ and N ≡ {x : A | e(x)}.

Lemma 7.15 If ♦ is the possibility operator for {x : A | p(x)} then p ` e and ♦ is also the
possibility operator for {x : A | e(x)}. This is called the weak closure or saturation of {A | p}.
Proof Covariance of the rules. �

Lemma 7.16 A term ` ♦ : ΣΣA is the possibility operator for some space i�

φ : ΣA, ♦φ ` �x. (∀ψ. ψx =. ♦ψ) & φx.

In this, ♦ can only have discrete or Hausdor� parameters (Propositions 4.5 and 10.9). Note,
however, that ♦ occurs covariantly on the right. This condition is idempotent and is a coclosure
condition on ♦.

8 Overt discrete spaces

Lemma 8.1 In any overt discrete space {A | p},

x : A, p(x) ` > = εxx = ♦(λy. εxy)
x : A, p(x), φ : ΣA ` φx = ♦(λy. φy ∧ εxy).

Proof Lemmas 4.2 and 7.2 give the �rst. By these and the Frobenius law (Proposition 7.6,

♦(λy. φy ∧ εxy) = ♦(λy. φx ∧ εxy) = φx ∧ ♦(λy. εxy) = φx. �

Proposition 8.2 Any mono from an overt space to a discrete one is an open inclusion.
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Proof Let X ≡ {A | p} be overt with possibility operator ♦ : ΣΣA and let Y ≡ {B | r} be
discrete with internal equality δ : B × B → Σ. If the morphism f : X � Y is mono then X is
also discrete, by Lemma 4.9, with internal equality

εxx′ ≡ δ(fx)(fx′).

De�ning F : ΣA → ΣB by Fφ ≡ λy. ♦
(
λx. φx ∧ δ(fx)y

)
, if p(x) then

Fφ(fx) ≡ ♦
(
λx′. φx′ ∧ δ(fx′)(fx)

)
≡ ♦

(
λx′. φx′ ∧ εx′x

)
= φx

by Lemma 8.1. Hence f : X � Y is Σ-split, with nucleus

E ≡ F · Σf ≡ λψy. F
(
λx. ψ(fx)

)
y

≡ λψy. ♦
(
λx. ψ(fx) ∧ δ(fx)y

)
= λψy. ♦

(
λx. ψy ∧ δ(fx)y

)
= λψy. ψy ∧ ♦

(
λx. δ(fx)y

)
≡ λψ. ψ ∧ θ

where θ ≡ λy. ♦
(
λx. δ(fx)y

)
, by Lemma 4.2 and the Frobenius law. Since ∀ψ. Eψx ≡ ψx∧ θx =

ψx i� θx, the subspace is open and classi�ed by θ:

X ′ ≡ {y : B | r(y) & θy = >} ↪→ {B | r} ≡ Y.

Then X ∼= X ′ by [equdcl]. �

Corollary 8.3 In any overt discrete space, a subspace is open i� it is overt. �
Notice that in equideductive logic there is a general (	a priori) notion of subspace that can be

open or overt as a secondary property. In ASD, on the other hand, these two kinds of subspace
were de�ned separately and then had to be shown to be isomorphic [lamcra].

Theorem 8.4 Any overt discrete space N is exponentiable and N is a Σ-split subspace of ΣN .
Proof We begin with the second part because it provides the idea for the �rst. Let

i : N � ΣN by ix ≡ λy. εxy and I : ΣN � ΣΣN by Iφ ≡ λξ. ♦(λy. φy ∧ ξy),

so ix ≡ {x} is the singleton open subspace. Then by Lemma 8.1,

x : N, φ : ΣN ` Iφ(ix) ≡ ♦(λy. φy ∧ εxy) = φx,

so N is a Σ-split subspace of ΣN , which in turn is a retract of ΣΣN .

If N ≡ {A | p} then the object {ΣΣA | p̄} serves for ΣΣN , where

p̄(F ) ≡ ∀φψ.
(
∀x. p(x) =. φx = ψx

)
==. Fφ = Fψ.

We therefore de�ne

S ≡ {F : ΣΣA | p̄(F ) & s(F )} where s(F ) ≡ ∀ξ. Fξ = ♦
(
λx. ξx ∧ F (λy. εxy)

)
and claim that there is a natural bijection between morphisms

F : Γ ≡ {w : D | q(w)} → S and θ : Γ×N ≡ {〈w, x〉 : D ×A | q(w) & p(x)} → Σ.
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Given F , which satis�es q(w) ` p̄(Fw) & s(Fw), de�ne θFwx ≡ Fw(λy. εxy).
The term F represents the same morphism as G if ∀w. ∀ξ. q(w) ==. Fwξ = Gwξ,
from which we deduce ∀wx. p(x) & q(w) ==. θFwx = θGwx,
which is the condition for θF to represent the same morphism as θG.

Conversely, given θ, de�ne Fθwξ ≡ ♦(λx. ξx ∧ θwx).
Then, for σ : Σ and ξ, ξ′ : ΣA with ∀x. p(x) =. ξx = ξ′x,

Fθwξ 6 σ ≡ ♦(λx. ξx ∧ θwx) 6 σ
⇐⇒ ∀x. p(x) ==. ξx ∧ θwx 6 σ
⇐⇒ ∀x. p(x) ==. ξ′x ∧ θwx 6 σ
⇐⇒ Fθwξ

′ 6 σ,

whence p̄(Fθw). Also, by Lemma 8.1,

∀x. p(x) ==. θwx = ♦(λy. εxy ∧ θwy),

so by Lemma 7.13,
Fθwξ ≡ ♦(λx. ξx ∧ θwx)

= ♦
(
λx. ξx ∧ ♦(λy. εxy ∧ θwy)

)
≡ ♦

(
λx. ξx ∧ Fθw(λy. εxy)

)
so s(Fθw). If θ and θ′ agree as above then for σ : Σ and w : D with q(w),

Fθwξ 6 σ ≡ ♦(λx. ξx ∧ θwx) 6 σ
⇐⇒ ∀x. p(x) ==. ξx ∧ θwx 6 σ
⇐⇒ ∀x. p(x) ==. ξx ∧ θ′wx 6 σ
⇐⇒ Fθ′wξ 6 σ,

so Fθ and Fθ′ represent the same morphism.
Passing from θ to F and back recovers θ because, by Lemma 8.1, if p(x) then

θFθwx ≡ ♦(λy. εxy ∧ θwy) = θwx.

Passing from F to θ and back recovers F because, since s(Fw),

FθFwξ ≡ ♦
(
λx. ξx ∧ Fw(λy. εxy)

)
= Fwξ.

The transformations θ 7→ Fθ and F 7→ θF are natural because they admit substitution for the
variable w. Hence S has the universal property of the exponential ΣN .

The singleton map ix ≡ λy. εxy is an example of this transformation with Γ ≡ N and θ ≡ ε.
It gives

Fwξ ≡ ♦(λx. ξx ∧ εwx) = ξw,

so i ≡ F ≡ ηA : A→ ΣΣA . �

9 When do we have a topos?

The characterisation of a topos appears to be a tautology in this setting because many of the ideas
that lie behind the constructions of elementary topos theory have been incorporated into the more
general calculus of equideductive topology. The fundamental results ar those of Section 3.

De�nition 9.1 A topos is an equideductive category in which every object is exponentiable and
Σ ≡ Ω is a dominance, classifying arbitrary subobjects.

Proposition 9.2 Every object of a topos is overt.
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Proof Since any object X of a topos is exponentiable we may form the subobject

{φ : ΣX | �x. φx} ↪→ ΣX ,

where � is the equideductive existential quanti�er. Since Ω classi�es all monos, there is a term

♦ : ΣΣX that satis�es Proposition 7.4. �

Proposition 9.3 Every object of a topos is discrete.

Proof The diagonal subobject X ↪→ X ×X is classi�ed by ε. �

Theorem 9.4 If the fundamental object Σ of an equideductive category is a dominance and every
object is both overt and discrete then the category is a topos.

Proof An equideductive category has all �nite limits by de�nition. Every object is exponentiable
by Theorem 8.4 and every mono is open by Proposition 8.2.

We can adapt this result to the situation where the overt discrete objects do not exhaust the
category but form a core�ective subcategory. This is the situation for sets considered as objects
with the discrete order or topology as a subcategory of Pos or Sob, where the right adjoint to
the inclusion is known as the underlying set functor.

Theorem 9.5 If the full subcategory of overt discrete objects is core�ective then it forms a topos.

Proof Any mono U ↪→ X between overt discrete objects is open and so classi�ed by a map
X → Σ. However, Σ is not overt discrete, but UΣ is and any map X → Σ factors through it.
Hence Ω ≡ UΣ is the subobject classi�er. �

There is another characterisation of the topos situation using compactness (the universal quan-
ti�er) instead of overtness.

Proposition 9.6 Every object of a topos is compact.

Proof As in the case of overtness, we may form the subobject

{φ : ΣX | ∀x. φx} ↪→ ΣX ,

where ∀ is the equideductive quanti�er. Since Ω classi�es all monos, there is a term � : ΣΣX that
satis�es De�nition 5.1. �

It is tempting to think that compactness is enough on its own since De�nition 5.1 apparently
says that any equideductive predicate in normal form (Notation 3.14) is represented by a term �.
However, this is not so:

Example 9.7 The category Pos is equideductive, Σ ≡ Ω is a dominance classifying upper sub-
objects and every object is both overt and compact, but not discrete. �

The problem with the de�nition of compactness is that it only allows the operator � to have
discrete parameters (Lemma 5.13). We therefore need to consider discreteness too.

Proposition 9.8 The object Σ of an equideductive category is discrete i� its external Heyting
implication (Notation 3.14(d)) is represented by a term, which we call (→):

σ =. τ ≡ (σ = >) ==. (τ = >) a` (σ→ τ) = >.

for σ, τ : Σ.
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Proof We use Lemma 3.1 and Example 3.13. If Σ is discrete then by De�nition 4.1 there is a
term ε : Σ× Σ→ Σ such that

x = y a` εxy = >.
Then (x→ y) ≡ εx(x ∧ y) represents implication because

x =. y ≡ x 6 y ≡ x = x ∧ y a` εx(x ∧ y) = >.

Conversely, εxy ≡ (x→ y) ∧ (y→ x) satis�es

x = y a` x 6 y & y 6 x a` (x =. y) & (y =. x)
a` (x→ y) = > & (y→ x) = > a` εxy = >. �

Although it follows that all powers of Σ are Heyting algebras, (εX) : ΣX × ΣX → ΣX has the
wrong type to be the equality predicate.

Lemma 9.9 If Σ is discrete and ΣX is compact then ΣΣX is also discrete.

Proof F =
ΣΣX G i� ∀φ:ΣX . Fφ =Σ Gφ. �

Lemma 9.10 If ΣΣX is discrete then so is X.

Proof By Lemma 4.9, since ηX : X → ΣΣX is mono because all exponentiable objects of an
equideductive category are sober. �

Lemma 9.11 If Σ is discrete and both Σ and X are compact then X is overt.

Proof Proposition 7.4. �

Theorem 9.12 An equideductive category is a topos i� Σ is a dominance and every object is
both compact and discrete. �

10 Classifying closed subspaces

In Section 3 we investigated the situation where the top element of Σ classi�es some class of monos.
The four examples of this are: all subobjects in a topos, open subspaces in general topology, upper
subsets in order theory and recursively enumerable ones in computability. However, it is also the
case the bottom element classi�es closed subspaces in intuitionistic topology and co-RE subsets in
computability. Assuming excluded middle, ⊥ ∈ 2 also classi�es arbitrary subsets of sets and lower
subsets of posets.

In this section, therefore, we repeat the results that we have already proved, but in the lattice
dual notation, starting with those in Section 3.

Axiom 10.1 The closed Gentzen rule is

Γ, α = ⊥ ` β 6 γ
===================

Γ ` β 6 α ∨ γ

for any terms Γ ` α, β, γ : Σ that may contain parameters and depend on predicates.

Proposition 10.2 The fundamental object Σ is a dominance i� it carries a semilattice structure
(Σ,⊥,∨) that satis�es the closed Gentzen rule, cf. Theorem 3.8. �

De�nition 10.3 The inverse image of ⊥ along φ : X → Σ, which is {x : A | φx = ⊥}, is called a
closed subspace . We also call φx = ⊥ a closed predicate and write ¬φx for it, but beware that
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we mean �closed� in the topological sense, not the syntactic one that there are no free variables.
Another way of writing the closed Gentzen rule is therefore

¬α & β ==. γ a` β ==. α ∨ γ.

Proposition 10.4 Closed antecedents are exempt from the variable-binding rule, to one level,
cf. Proposition 3.11. �

Proposition 10.5 The closed Gentzen rule entails the dual Euclidean principle , cf. Corol-
lary 3.9:

σ : Σ, F : ΣΣ ` σ ∨ Fσ = σ ∨ F⊥. �

Lemma 10.6 The closed subspace co-classi�ed by φ is Σ-split by (−) ∨ φ, cf. Lemma 3.10. �

Next we consider the dual of discreteness from Section 4.

De�nition 10.7 Dually to De�nition 4.1, a space H ≡ {x : A | p(x)} is Hausdor� if equality is
represented negatively by an term (6=) : ΣA×A,

x, y : A, p(x), p(y) ` (x 6= y) = ⊥ /==. ∀φ. (φx = φy),

which we call internal inequality . This is equivalent to saying that the diagonal H � H ×H is
a closed subspace coclassi�ed by 6=, cf. Proposition 4.7, so 6= is unique in the sense of Remark 3.5.
Hausdor�ness may also be characterised in a dual way to Lemma 4.2:

Lemma 10.8 The term (6=) is the internal inequality for the Hausdor� object H ≡ {x : A | p(x)}
i� it is irre�exive and cosubstitutive:

x : A, p(x) ` (x 6= x) = ⊥
x, y : A, φ : ΣA, p(x), p(y) ` φx ==. (x 6= y) ∨ φy.

In this case, 6= is also symmetric and cotransitive:

x, y : A, p(x), p(y) ` (x 6= y) ==. (y 6= x)
x, y, z : A, p(x), p(y), p(z) ` (x 6= z) ==. (x 6= y) ∨ (y 6= z). �

Proposition 10.9 Variables of Hausdor� type are exempt from the variable-binding rule, cf. Propo-
sition 4.5. �

Lemma 10.10 Any predicate respects internal inequality, cf. Proposition 4.4:

x, y : A, p(x), p(y), r(x), (x 6= y) = ⊥ ` r(y).

Lemma 10.11 Let K be a Hausdor� space and f : H → K a morphism. If H is also Hausdor�
then f re�ects inequality:

x, y : A, p(x), p(y) ` (fx) 6=K (fy) ==. x 6=H y.
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If f is mono then H is Hausdor�, with (x 6=H y) ≡ (fx) 6=K (fy), cf. Lemma 4.9. �

Examples 10.12

(a) 0 is Hausdor�, with x 6=1 y ≡ ⊥;
(b) 1 is Hausdor�, with x 6=1 y ≡ ⊥;
(c) 2 is Hausdor�, with (0 6= 1) = (1 6= 0) = > and (0 6= 0) = (1 6= 1) = ⊥;
(d) if H andK are Hausdor� then so is H×K, with 〈x, y〉 6=N×M 〈x′, y′〉 ≡ (x 6=N x′)∨(y 6=M y′);
(e) if H and K are Hausdor� then so is H +K. �

Remark 10.13 Discrete spaces need not be Hausdor�. Discuss decidable equality.

The duals of the results in Sections 7 and 8 about overt spaces tell us more about compact
ones. Beware that, whilst this interchanges the internal quanti�ers U and ∃, the external ones ∀
and � stay the same.

Lemma 10.14 The space K ≡ {A | p} is compact i� there is an term ` � : ΣΣA such that such
that

φ : ΣA `
(
�x:A. p(x) & (φx = ⊥)

)
/==. (�φ) = ⊥. �

Lemma 10.15 The (dual) Frobenius law : �(λx. σ ∨ φx) ⇐⇒ σ ∨�φ.

Lemma 10.16 Any closed subspace of a compact space is compact. �

Lemma 10.17 In any compact Hausdor� space,

x : A, p(x) ` ⊥ = x 6= x = �(λy. x 6= y)
x : A, p(x), φ : ΣA ` φx = �(λy. φy ∨ x 6= y). �

Proposition 10.18 Any mono from a compact space to a Hausdor� one is a closed inclusion. �

Corollary 10.19 In a compact Hausdor� space, a subspace is closed i� it is compact. �

Theorem 10.20 Any compact Hausdor� space K is exponentiable and K is a Σ-split subspace
of ΣK . �

Conversely, the results in Section 5 about compact spaces are also applicable to overt ones.
The notable point is that these negative statements are su�cient.

Proposition 10.21 If a space N ≡ {A | p} has an term ` ♦ : ΣΣA such that either

φ : ΣA `
(
∀x. p(x) =. (φx = ⊥)

)
/==. (♦φ) = ⊥

or φ : ΣA `
(
(�x. p(x) & φx)) ==. ⊥

)
/==. (♦φ) = ⊥

then N is overt, with possibility operator ♦.

Proof The �rst is the special case σ ≡ ⊥ of De�nition 7.1, but it is equivalent to the general
one by the dual of Lemma 5.3. We deduce the second using the de Morgan law. �
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11 The Phoa principle

Add monotonicity to the open and closed Gentzen rules.

My plan with this paper is to add things to it and develop it in parallel with editing the original
ASD papers.

The middle level of ASD, i.e. the development of topology using the (�nitary) Phoa principle
but not the (in�nitary) Scott principle, was rather badly written up. This was because [geohol]
was published long before I had the whole picture of the re-axiomatisation of topology and [nonagr]
was premature. On the other hand, when I obtained the characterisation of computably based
locally compact spaces I then moved straight on to real analysis without �lling in the earlier parts.
Besides this, numerous lemmas and idioms have arisen that ought to be collected into a single
development.

Therefore, besides introducing a new foundation to replace that of ASD, this paper is intended
to provide better documentation of topology with the Phoa principle. This means that the text
is likely to undergo repeated structural changes before it is completed.
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