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1 Ideas of existential quanti�cation

I would appreciate some help with the details behind these historical comments, especially in the
opening paragraphs and the second order (Russell??) de�nition of ∃ from ∀.

The existential quanti�er ∃x. p(x) has been given many di�erent syntactic and semantic mean-
ings in mathematics, logic and category theory.

Perhaps the most natural meaning is the constructive one, in which we must exhibit a witness
a and a proof of p(a) in order to assert that ∃x. p(x) [best ref? Brouwer?]. At �rst sight, this
quanti�er seems to have very little force, merely concealing the identity of a. However, with the
formalisation of intuitionistic logics in proof theory came the existence theorem that

from any given explicit proof of ∃x. p(x),
we may derive a term a and a proof of p(a).

[Who �rst proved this? Gentzen? Gödel?]
The constructive de�nition stood in opposition to the classical one, which said that a mathe-

matical object always exists so long as it is �free from contradition�. Formally, this seems to mean
that ∃ ≡ ¬∀¬. [Is there a better explanation than this?]

While logicians debate the properties of formulae like ∃x. p(x) containing a bound variable x,
ordinary mathematicians work with an idiom of discourse in which the witness x is apparently
an actual object. The phrase �there exists x such that φx� means not only the formal statement
∃x. φx but also that we may proceed to use an object x that has this property.

David Hilbert proposed a calculus [ref?] in which the operator ε applied to a predicate p
yields a particular witness a ≡ εp for p(a). Boubaki subsequently began the �rst volume [ref] of
Eléments de Mathématiques with this idea, using � instead of ε. On the face of it, the meaning
of the existential quanti�er therefore relies on the Axiom of Choice.

However, no choice of witness is actually needed. Notice, in particular, that we are not
permitted to make any analysis of the value a. So it is not a term. The symbol a must therefore
be a variable.

Indeed, the idiom may be reconciled with intuitionistic sequent calculus without making any
additional assumption whatever. The part of the idiomatic argument during which we �pretend�
that we have a witness a actually provides the formal proof of the premise (top line) of the rule

Γ, a, p(a) ` q

Γ, ∃x. p(x) ` q.

Then the consequent (bottom line) asserts that the proposition q follows from the unwitnessed
hypothesis ∃x. p(x).
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There is something more here than a proof of q from the witness a of p(a), just as there is
something more in a proof by induction than its base case and induction step. However, the extra
ingredient is not the axiom of choice but half of the de�nition of the existential quanti�er. The
proof rule above is found in any account of the sequent calculus [ref, P+T will do], where it is
known as the left rule for ∃. The corresponding idea in natural deduction is called the elimination
rule.

The vernacular of mathematics therefore agrees with standard formal logic. This correspon-
dence is discussed in more detail in Section 5 and [?, �1.6].

The rule is, however, subject to the priviso that the conclusion q must not export the identity
of a. Indeed, if theorem with a parameter y : Y were to do this, it would exactly be asserting
Choice of the form

∀x:X. ∃y :Y . p(x, y) ` ∃f :X → Y . ∀x. p(x, fx).

The meaning that emerges from the idiom and rule for ∃ is that
knowing ∃x:X. p(x) gives us

the right to pretend that we have a witness a for p(a),
in order to prove conclusions q of a certain form.

In this paper we consider di�erent (tighter, more speci�c) restrictions on the syntactic form
of the conclusion q and thereby obtain a di�erent (weaker, more general) existential quanti�er.
This means that the class of permissible conclusions q is being subjected to study. The existential
quanti�er ∃x. p(x) is de�ned to have a certain property for all such q:

∃x:X. p(x) means ∀q.
(
∀x. q(x)⇒ q

)
⇒ q.

This way of de�ning the quanti�er using second order logic is due to [whom? Russell? ref?] and
is also found in [Prawitz?]. Under the Curry�Howard correspondence between propositions and
types, it also appears in Girard's System F [ref? P+T].

The purpose of this paper is to show that this syntactic idea of an existential quanti�er that is
de�ned in terms of the universal one agrees with the semantic notion of epimorphism in category
theory. Also, we shall not use second order logic or type theory but a new (weaker) �predicate
calculus� for which the category of sober topological spaces is a model (Section 2 and [equdcl]).

We introduce the categorical ideas by starting with elementary set theory. There the existential
quanti�er is embodied in the notion of a surjective function, writing

e : X � Y to mean ∀y :Y . ∃x:X. y = ex.

When we generalise this from functions between sets to morphisms between other kinds of math-
ematical objects, we �nd that the notion of surjectivity splits into several properties that are in
general inequivalent.

The morphism e : X � Y is epi if it has the cancellation property that, for any object Z and
any pair g, h : Y ⇒ Z of morphisms, if g · e = h · e then already g = h:

X
e -- Y

g -

h
- Z.

On the other hand, e : X � Y is regular epi if it is the coequaliser of some pair p, q : K ⇒ X:

K
p -

q
- X

e -- Y

Z

h
?

.........f -
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Being a coequaliser means that the composites e ·p = e · q are equal and, whenever the composites
f · p = f · q to another object Z are equal, there is a unique map h : Y → Z that makes the
triangle commute (f = h · e). In algebra, coequalisers are called quotients and the algebra K is
often given as a congruence. For groups, rings and vector spaces there are simpler representations
of congruences that are peculiar to these theories, namely normal subgroups, ideals and subspaces.

Plainly we may reverse the arrows in each of these three de�nitions to obtain di�erent notions
of inclusion. These di�erent forms of surjection and injection do not behave well in arbitrary
circumstances, for example regular monos do not compose in the category of additive monoids.
But in many mathematically important categories any morphism may be factorised as
• a regular epi followed by a mono, or

• an epi followed by a regular mono.
In the settings of particular algebraic theories, results of the �rst kind are often known as isomor-
phism theorems, saying that that image of a morphism is isomorphic to the quotient of its domain
by its kernel.

When we analyse this situation using category theory, we �nd that the force of these theorems
lies in the orthogonality property:

X
e -- I

J

f

?
- m -

h

�..
....
....
....
....
....
....
....
..

Y

g

?

This says that, whenever we have a commutative square (g · e = m · f) in which e has whichever
�surjectivity� property (regular or plain epi) we are considering and m has the �injectivity� one
(mono or regular mono) then there is a unique diagonal �ll-in h making the triangles commute
(h · e = f and m · h = g).

Applied to the category of sets, the factorisation theorems, and in particular the orthogonality
property, are directly related to the logical existential quanti�er:
• the epi e corresponds to the introduction rule, p(x) ` ∃x. p(x),
• the mono m corresponds to the conclusion q above, and

• the diagonal �ll-in h to the elimination rule.
This connection was established in a more general type-theoretic setting by Martin Hyland and
Andrew Pitts [ref] and discussed further in [prafm, �9.3].

However, there is still a piece of the categorical description missing. In symbolic logic, we may
substitute under the quanti�er:

[b/y]∗ ∃x. p(x, y) ⇐⇒ ∃x. [b/y]∗p(x, y) ≡ ∃x. p(x, b)

and the proof-theoretic analysis of this is called commutation.

X ′ ...................- X

Y ′

e′

??

...............
f - Y

e

??

In the categorical setting, the substitution [b/y]∗ is given by pullback or inverse image along a
function f (which is the reason for the star in the notation). For this formulation to agree with
the symbolic one, the pullback of an epi e as above must be another epi e′.
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We would like to take these ideas that came from logic, set theory and category theory and
apply them to general topology. In that subject, all of the notions of injectivity and surjectivity
that we have mentioned arise, together with others. A continuous function f : X → Y is
•mono i� it is a 1�1 function on points;

• regular mono i� it is mono and X carries the subspace topology inherited from Y ; or

• regular mono i� it is surjective on points and Y carries the quotient topology inherited from X.
However, the characterisation of epis is more delicate. It depends on the particular category

within which we are working, i.e. the generality of the spaces over which Z above ranges. (This
is analogous to considering di�erent classes of conclusions q.) Classically, a continuous function
f : X → Y is epi i�
• it is surjective on points, in the case where all topological spaces in the traditional sense found
in [Bourbaki] are admitted for Z;

• every point of Y may be expressed as a directed join of images of points of X with respect to
the specialisation order, when all sober topological spaces are allowed;

• it is surjective on points, when just Hausdor� spaces are allowed.
Since the �rst and third cases are the same as in set theory, it is the middle one that is

interesting. The basic example is the domain $ of ascending natural numbers. This has a point
called ∞ that is the directed join of the (�nite) natural numbers. Classically, its open subsets are
∅ and ↑n ≡ $ \ {0, . . . , n− 1} (but not {∞}).

∞...•
•
•
•

1
∞ - $

∅

6

- N

e

66

If we want to prove that two continuous functions g, h : $ ⇒ Z are equal, where Z is sober, it
is enough to show that g(n) = h(n) for all (�nite) n ∈ N, because then f(∞) = g(∞) follows
automatically. Indeed, most proofs in classical domain theory work by restricting attention to the
��nite� elements.

Therefore e : N→ $ is epi amongst sober topological spaces [?, Lemma II 1.11], even though
it is not surjective on points. Categorically, this means that the pullback above is the empty space
and does not preserve the epi.

This situation is very similar to the vernacular use of �there exists� in ordinary mathematics
that we described earlier:

In order to show g = h, that is, ∀x:$. gx = hx,
it is legitimate to pretend that x = en for some n ∈ N.

It is manifestly false that ∃n.∞ = en, so in order to avoid talking utter nonsense, the rules for
manipulating the new quanti�er must be weaker than those for the ordinary one. Indeed, when we
de�ne the new quanti�er and disjunction operation in Section 3, we shall �nd that there are severe
restrictions on the variables and contexts that may occur in the proof rules. In order to remind
ourselves of these restrictions whenever we use the new quanti�er, we shall use a new symbol for
it, writing the property above as

x : $ ` �n:N. x = en.

(The letter � is an e sound in the Russian alphabet, where E is pronounced ye.)
Section 6 sketches the category that is associated with the logic, for which the equivalence was

proved in the earlier paper. Then � corresponds to a class of epis that is closed under products
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but not pullbacks. However, it is still the case that every morphism factorises as an epi followed
by a regular mono and they obey the orthogonality property (Section 7). Sections 8�9 use these
ideas to show that the category has stable disjoint unions.

The �constructive� existential quanti�er with with we began this discussion is stronger than
the classical one because it requires the witness to be identi�ed. Our new quanti�er, on the other
hand, is much weaker because there need not be any witness at all. However, we have seen that
it neverthless has its roots in the constructive traditions of proof theory and category theory.

2 Equideductive logic

The setting in which we de�ne this new existential quanti�er is not second order logic but a
new calculus called equideductive logic. It is a �predicate calculus� whose object language is the
sober λ-calculus. The origins of this logic, its syntax, its topological semantics and the equivalent
category theory are fully explored in the paper Equideductive Categories and their Logic.

The following remarks were just put here as the targets of cross references in this paper since
it was put together from sections taken out of the one mentioned. This section will become a
summary of equideductive logic, at whatever level of formality turns out to be appropriate as the
programme develops.

Remark 2.1 We refer to the types of the object language as urtypes in a syntactic setting and
urspaces in a semantic one. In the leading classical model (sober topological spaces), the urspaces
may be either algebraic lattices with the Scott topology or locally compact spaces. The system of
urtypes must admit products and exponentials of the form Σ(−), so its urterms are formed using
the symbols ?, 〈 , 〉, π0, π0, λ, ev and focus.

Remark 2.2 Urtypes are sober . This means that for any term Γ ` P : ΣΣA

that is prime ,

Γ, Φ : Σ3A ` ΦP = P
(
λx. Φ(λφ. φx)

)
,

we may form

Γ ` focusP : A such that Γ, φ : ΣA ` φ(focusP ) = Pφ.

In particualr, for any Γ ` a : A, the term Γ ` P ≡ λφ. φa is prime.

Remark 2.3 Any exponential urtype ΣB is syntactically injective.

Remark 2.4 Equideductive predicates are formed from >, equations between urterms of type
Σ, conjunctions (&) and quanti�ed implications

∀~y. ~q(~y) ==. α~x~y = β~x~y

subject to the variable binding rule that any variable that appears on the left of =. must be
bound by the quanti�er ∀.

Several de�nitional extensions were made in the earlier paper (and others are added in this
and later ones) that allow predicates instead of just equations on the right of =.. However,
any predicate is nevertheless equivalent to one in normal form, i.e. a conjunction of quanti�ed
implications with equations on the right and similar normal forms on the left.

Remark 2.5 Equality between urterms is extended from Σ to a predicate on any urtype A by
the Leibnizian formula

a = b ≡ ∀φ:ΣA. φa = φb.
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In particular, equality for φ, ψ : ΣA satis�es

Γ, φ = ψ a` ∀x:A. φx = ψx (∗)

as well as the usual equality-transmitting and η-rules for the sober λ-calculus.
Any predciate respects equality in the sense that

Γ, p(a), a = b ` p(b).

Remark 2.6 Any proof of
x : A, y : B, p(x) ` q(x, y)

···
y : B, z : C, r(z) ` s(y, z)

may be translated into a proof of

y : B, ∀x′. p(x′) =. q(x′, y) ` ∀z. r(z) =. s(y, z)

or of y : B `
(
∀x′. p(x′) =. q(x′, y)

)
==.

(
∀z. r(z) =. s(y, z)

)
,

and vice versa.

3 Disjunction and existential quanti�cation

Now we are ready to de�ne the new existential quanti�er � and disjunction g and show that they
satisfy rules that are similar to those in the sequent calculus, albeit with severe restrictions on the
use of variables.

Notation 3.1 We want the new connectives ⊥, g and � to satisfy the rules

~x : ~A, ~s(~x), ⊥ ` r(~x)
~x : ~A, ~y : ~B, ~z : ~C, s(~z), p(~x, ~y) ` r(~x, ~z)
=======================================
~x : ~A, ~z : ~C, s(~z), �~y : ~B. p(~x, ~y) ` r(~x, ~z)

and ~x : ~A, ~z : ~C, s(~z), p(~x) ` r(~x, ~z) ~x : ~A, ~z : ~C, s(~z), q(~x) ` r(~x, ~z)
==========================================================

~x : ~A, ~z : ~C, s(~z), (pg q)(~x) ` r(~x, ~z)

We shall see that it is essential that ~A and ~B be urtypes and that there be no other predicates that
involve ~x or ~y. However, the predicate r(~x, ~z) on the right may depend on additional variables ~z
and on hypotheses s(~z), but the latter must not involve ~x or ~y. It is because of these issues with
free variables that we state them explictly in the predicates.

As we did when we introduced ∀=., we consider just equations on the right �rst and develop
the results for general predicates r(~x, ~z) from this simple case. We obtain the de�nitions of the
new symbols by applying the technique of Proposition 2.6 to the prospective rules above, with the
equation φ~x = ψ~x instead of r(~x, ~z) on the right.

Notation 3.2 In the context [~x : ~A], with no predicates on ~x, we de�ne

⊥ ≡ ∀στ :Σ. σ = τ

(pg q)(~x) ≡ ∀φψ :Σ ~A. (∀~x′. p(~x′) =. φ~x′ = ψ~x′)
& (∀~x′′. q(~x′′) =. φ~x′′ = ψ~x′′) ==. φ~x = ψ~x

�~y : ~B. p(~x, ~y) ≡ ∀φψ :Σ ~A. (∀~x′~y. p(~x′, ~y) =. φ~x′ = ψ~x′) ==. φ~x = ψ~x.
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For clarity, we drop the strings of variables, since they can be recovered using product urtypes.

Lemma 3.3 These connectives obey the following introduction rules:

x : A, p(x) ` (pg q)(x) x : A, q(x) ` (pg q)(x) gI0, gI1

x : A, y : B, p(x, y) ` �y. p(x, y). �I

Proof For (�I), ∀E gives

x : A, y : B, p(x, y), φ, ψ : ΣA, ∀x′y′. p(x′, y′) =. φx′ = ψx′ ` φx = ψx.

Hence ∀φψ.
(
∀x′y. p(x′, y) =. φx′ = ψx′)

)
==. φx = ψx, which is �y. p(x, y).

Similarly, for (gI0), by ∀E we have

x : A, p(x), φ, ψ : ΣA, ∀x′. p(x′) =. φx′ = ψx′ ` φx = ψx.

Weakening by ∀x′′. q(x′′) =. φx′′ = ψx′′ and using ∀I then give the de�nition of (pg q)(x). �

Lemma 3.4 Conversely, the connectives also obey the simple elimination rules, with just equations
on the right:

x : A, φ, ψ : ΣA, s′(φ, ψ) ` φx = ψx

x : A, φ, ψ : ΣA, s′(φ, ψ), p(x) ` φx = ψx x : A, φ, ψ : ΣA, s′(φ, ψ), q(x) ` φx = ψx

x : A, φ, ψ : ΣA, s′(φ, ψ), (pg q)(x) ` φx = ψx

and x′ : A, y : B, φ, ψ : ΣA, s′(φ, ψ), p(x′, y) ` φx′ = ψx′

x : A, φ, ψ : ΣA, s′(φ, ψ), �y. p(x, y) ` φx = ψx

Proof For ⊥E, use ∀E with σ ≡ φx and τ ≡ ψx.
By ∀I, the �rst premise of the rule for disjunction gives

φ, ψ : ΣA, s′(φ, ψ) ` ∀x′. p(x′) ==. φx′ = ψx′,

in which s′(φ, ψ) must not depend on x′, and the second premise provides the same for q. Applying
∀E to the de�nition of (pg q) and these two formulae gives φx = ψx.

Similarly, the premise of the rule for � gives

φ, ψ : ΣA, s′(φ, ψ) ` ∀x′y. p(x′, y) ==. φx′ = ψx′,

in which s′(φ, ψ) must not depend on x′ or y. Applying ∀E to the de�nition of � with this gives
φx = ψx, as required. �

Theorem 3.5 The connectives ⊥, g and � obey the general elimination rules in Notation 3.1.

Proof Suppose �rst that r(x, z) is the equation αxz = βxz. Then the three general rules follow
from the corresponding simple elimination rules with the substitutions

φ ≡ λx. αxz, ψ ≡ λx. βxz and s′(φ, ψ) ≡ s(z).

The case of a quanti�ed implication,

r(x, z) ≡ ∀z. s(z) =. αxz = βxz,

follows from that of an equation by ∀I. When r is a conjunction we consider the conjuncts
separately, whilst the case r ≡ > is trivial. By Remark 2.4, these cases exhaust the possibilities
for r. �
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4 Properties of the new symbols

These connectives have many familiar properties that can be proved easily from the introduction
and elimination rules.

Lemma 4.1 Disjunction and quanti�cation are covariant:

x : A, p(x) ` p′(x) x : A, q(x) ` q′(x)

x : A, (pg q)(x) ` (p′ g q′)(x)

x : A, y : B, p(x, y) ` p′(x, y)

x : A, �y. p(x, y) ` �y. p′(x, y)
�

Lemma 4.2 Disjunction is idempotent, absorptive, unital,

p a` pg p a` p & (pg q) a` pg (p & q) a` pg⊥,

absorbed by >, commutative and associative,

pg> a` > pg q a` qg p pg (qg r) a` (pg q)g r

where p and q may depend on any variables of urtype but not on any predicates as hypotheses.�

We �nd that the distributive law (for & over g) and its analogue for � (which is known
in categorical logic as the Frobenius law) can only be proved when the extra conjunct has no
arguments in common with the disjunction:

Proposition 4.3 The weak distributive and Frobenius laws hold:

x : A, z : C, (pg q)(x) & s(z) a`
(
(p & r)g (q & s)

)
(x, z),

x : A, z : C,
(
�y. p(x, y)

)
& s(z) a` �y.

(
p(x, y) & s(z)

)
,

in which the variables x and z must be distinct (or, in the case of strings ~x and ~z of variables,
disjoint). For ⊥, there is no di�culty regarding variables; it is strict because

⊥(x) & s(y) a` (⊥& s)(x, y) a` ⊥(x, y) a` ⊥. �

Lemma 4.4 The quanti�ers satisfy the de Morgan laws

y : B, ∀x.
(
p(x) =. r(y)

)
a`

(
�x. p(x)

)
=. r(y)

and y : B, (p =. r(y)) & (q =. r(y)) a` (pg q) =. r(y). �

Corollary 4.5 Successive quanti�ers commute and are the same as multiple ones.

Proof
�zy. p(x, y, z) ≡ ∀φψ.

(
∀x′z′. ∀y′. p(x′, y′, z′) =. φx′ = ψx′

)
=. φx = ψx

a` ∀φψ.
(
∀x′z′. (�y′. p(x′, y′, z′)) =. φx′ = ψx′

)
=. φx = ψx

≡ �z.
(
�y. p(x, y, z)

)
. �

Whereas the double quanti�er is a single one over the product of the urtypes, the nullary
version quanti�es over 1. This is a kind of double negation .

Lemma 4.6 x : A, p(x) a` �y :1. p(x), which is

∀φψ. (∀x′. p(x′) =. φx′ = ψx′) ==. φx = ψx. �
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It would be a useful exercise to prove that
(
�y. p(x)

)
` p(x) in the case where p(x) ≡

∀y. q(y) =. αxy = βxy, in order to see that this can only be done if q does not depend on x.
Instead of �y : 1 we could quantify a variable y of any urtype where y does not actually occur

in p. This is the counit of the adjunction between � and weakening:

Corollary 4.7 x : A, �y :1. p(x, y) a` �y :1. p(x, ?) a` p>(x, λφ. φ?) a` p(x, ?). �

Corollary 4.8 Γ, x : A, p(x) a` �y :A.
(
p(y) & (x = y)

)
. �

This �double negation� formula will turn up again all over the place. In a slightly more
complicated form, it will also be used in the construction of exponential spaces in the following
paper.

Notation 4.9 For F : ΣΣA

, p̄(F ) ≡ ∀φψ. (∀x. p(x) =. φx = ψx) ==. Fφ = Fψ.

Section 7 explains what � means in terms of epi�mono factorisation and in Section 8 we use
algebraic inconsistency (⊥) to de�ne the initial object, and g and � for the coproducts.

5 Idioms of reasoning

This section will become an explanation of how the new existential quanti�er could be incorporated
into natural dededuction and the idioms of the vernacular of mathematics as described in my book.
At the moment it just consists of a collection of relevant fragments of text that were originally
written in other contexts.

For the purpose of presenting the calculus, it is clearer to use judgements (sequents), in which
the contexts are stated in full in each step. However, when we use the rules to develop ordinary
mathematics, we would like to adopt a Natural Deduction style, in which the contexts remain the
same from one step to the next unless we explicitly make or discharge assumptions and variables.
Since these must obey last-in �rst-out scoping rules, one way of formalising them is by means of
boxes that delimit the scopes; this style is described in [prafm, �1.5].

The relationship between the formal rules for the ordinary quanti�er ∃ and mathematical idiom
is explained in [prafm, �1.6]. As with ∀, the �rst step is to translate the sequent style into boxes
that delimit the scope of the witnesses. Then we observe that it doesn't matter when the box is
closed (discharging the hypothetical witness), because everything that follows the end of it can be
brought inside instead. That is, so long as
(a) we do not export the identity of the witness from the box; and

(b) it is closed before the next enclosing one.
The box is therefore redundant, and we may instead �pretend� that we have a witness, just as
ordinary mathematicians do when they say that �there exists� something satisfying the predicate.

How can we adapt these ideas to the new quanti�er and disjunction operator? Whereas there
were restrictions on the introduction of λ, focus and =., we now have to be careful about how we
use the elimination rules for g and �.

The necessary additional precautions are that
(c) substitution for x into �y. p(x, y) is not allowed; and
(d) elimination of �y. p(x, y) is only allowed when the context contains no other predicates that

have x as a free variable.
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Since we cannot deduce anything from �y. p(x, y) if it violates this restriction, it is useless (at
least, in any role for which � is an appropriate notation). So we may as well strengthen the
precaution (d) by putting it into the same pattern as those on λ and =., namely that
(e) we may only form �y. p(x, y) in a context in which x is of urtype, and not subject to any

other predicate.

This completes our account of the purely syntactic aspects of the logic. Section 7 explains
what � means in terms of epi�mono factorisation. In Section 8 we use algebraic inconsistency (⊥)
to de�ne the initial object, and g and � for the coproducts.

6 Equideductive categories

This section will give a brief sketch of the construction of the classifying category for equideductive
logic. The full version is in the paper Equideductive Categories and their Logic. Some of the
material in the Examples section of that paper may be moved here.

Remark 6.1 Recall that we used the name urtype in the sober λ-calculus that serves as the
object language of equideductive logic. The reason for this is that we de�ne a type to be an
urtype together with a predicate,

{x : A | p(x)},

using the familiar �comprehension� or �subset-formation� notation from elementary set theory.
Formally, these types behave in essentially the same way as contexts. We may also quantify over
them, writing

∀x:{x : A | p(x)}. q(x) for ∀x:A. p(x) ==. q(x)

�x:{x : A | p(x)}. q(x) for �x:A. p(x) & q(x).

These types provide the objects of the category of contexts and substititions for the logic.
Morphisms are represented by uterms,

{x : A | p(x)} .....- {y : B | q(y)}

A
?

?

f - B
?

?

where
x : A ` fx : B such that x : A, p(x) ` q(fx).

The same morphism may have many representing urterms, where

f = g if x : A, p(x) ` fx = gx : B,

the latter being understood as the Leibnizian equality in Remark 2.5.
However, this simple de�nition of morphisms is based on the assumption that the urtype B is

injective . For our purposes, it will be enough to take B ≡ ΣC , so targets of maps are wlog of the
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form {ΣC | r}.

Remark 6.2 In the category, quanti�ed implication is represented by a partial product , for
which see the main paper. Epis are orthogonal to partial product inclusions.

Remark 6.3 The functor Σ(−) : B → Bop re�ects invertibility.

Remark 6.4 The category Sob admits factorisation into epis (which are preserved by products)
and regular monos (inclusions with the subspace topology).

Remark 6.5 Any equaliser is a partial product, so any regmono is inM, and conversely in Sob.

Remark 6.6 However, in the term model the class of regular monos is properly contained inM.
Having a cokernel doesn't help.

We need an example for which the predicate

∀y. αy = βy ==. γxy = δxy

is not equivalent to ∀y. εxy = ζxy.

7 Factorisation

As our �rst application of the new quanti�er to category theory, we show in this section that it
agrees with the epis in the category, as we claimed in the Introduction. Epis are preserved by
products and provide one of the classes of a factorisation system.

Notation 7.1 Let E be the class of morphisms e : X ≡ {A | p} → Y ≡ {B | q} for which

x : A, p(x) ` q(ex) and y : B, q(y) ` �x.
(
p(x) & y = ex

)
,

where the �rst condition is just the de�nition of a morphism. We shall show that E is the class of
epis.

We also write M for the class of monos that arise from partial product diagrams. These are
isomorphic to canonical inclusions {A | p} � {A | q} with x : A, p(x) ` q(x). The class M is
therefore closed under composition.

All regular monos are inM but the converse need not be true.

Lemma 7.2 The second condition on E-maps is equivalent to

y : B, q(y) ` ∀φ, ψ :ΣB .
(
∀x:A. p(x) =. φ(ex) = ψ(ex)

)
==. φy = ψy.

Proof This is because

∀xy. p(x) & (y = ex) =. φy = ψy a` ∀x:A. p(x) =. φ(ex) = ψ(ex). �

Lemma 7.3 Product with any type Z ≡ {C | r} preserves the E-property.
Proof For any type Z ≡ {C | r}, Corollary 4.8 says that

z : C, r(z) ` �z′. r(z′) & (z = z′).

11



So, given e ∈ E as above, we use Proposition 4.3 twice and Corollary 4.5 to deduce

y : B, z : C, q(y), r(z) `
(
�x. p(x) & (y = ex)

)
&
(
�z′. r(z′) & (z = z′)

)
` �z′.

(
�x. p(x) & (y = ex)

)
& r(z′) & (z = z′)

` �z′.�x.
(
p(x) & (y = ex) & r(z′) & (z = z′)

)
` �xz′.

(
p(x) & r(z′) & 〈y, z〉 = 〈ex, z′〉

)
,

so the map (e× Z) : X × Z � Y × Z is also in E . �

Proposition 7.4 A map e : X → Y belongs to E i� it is epi :

X ≡ {A | p}
e -- Y ≡ {B | q}

φ -

ψ
- Z ≡ {ΣC | s}- - ΣC

that is, it has the cancellation property that, whenever φ · e = ψ · e, already φ = ψ.
Hence the class E contains all isomorphisms and is closed under composition.

Proof Suppose that e : X → Y is epi and let Z ≡ Σ. We may express the cancellation for this
case in equideductive logic as

` ∀φψ :ΣB .
(
∀x:A. p(x) =. φ(ex) = ψ(ex)

)
==.

(
∀y :B. q(y) =. φy = ψy

)
.

Using ∀E (Proposition 2.4) we may move ∀y :B. q(y) =. behind the ` to get

y : B, q(y) ` ∀φψ :ΣB .
(
∀x:A. p(x) =. φ(ex) = ψ(ex)

)
==. φy = ψy,

which is the E-property.
Conversely, suppose that e ∈ E , so e×C ∈ E too for any urtype C by the Lemma. By reversing

the previous argument, we have the cancellation property in the diagram

X × C
e× C-- Y × C

φ̃ -

ψ̃
- Σ.

The exponential transpose of this is the epi property in the case Z ≡ ΣC , but the general case
follows from this because any object Z has a mono Z ↪→ ΣC . �

Conversely, we may recover the existential quanti�er from the epis:

Proposition 7.5 Given any predicate y : B, z : C, s(y, z) ` q(y),

y,B, q(y) ` �z. s(y, z)

holds i� the map π0 : {y : B, z : C | s(y, z)} −→ {y : B | q(y)} is epi.

Proof By Corollary 4.8, the condition for π0 ∈ E is that (s ` r and)

y : B, q(y) ` �y′z. s(y′, z) & (y′ = y) a` �z. s(y, z). �

Proposition 7.6 Any map factorises as f = m · e with e ∈ E and m ∈M.

X ≡ {A | p}
e-- Y ≡ {B | r}-

m- Z ≡ {B | q}

A
?

?

f - B
?

?
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Proof Let the intermediate object Y be the image {B | r}, where

y : B ` r(y) ≡ �x:A. p(x) & (y = ex),

so we already the second condition for e ≡ f : X → Y to be an epi. The �rst, that it is a well
de�ned map, is

x : A, p(x) ` r(fx),

which is �I.
The inclusion m : Y � Z is also well de�ned because

y : B, r(y) ` q(y)

by �E, from the de�ning property of f : X → Y , which was x : A, p(x) ` q(fx). �

The universal property of this factorisation is expressed by

Proposition 7.7 The classes E andM are orthogonal , cf. Proposition 6.2.

A
e - B

X ≡ {A | p}
e ∈ E --

�

�
Y ≡ {B | q}-

-

U ≡ {C | r}

f

?
- m ∈M -

h

�.....
......

......
......

......
......

......
......

..

V ≡ {C | s}

g

?

C

f

?
==============================================�

�

C

g

?

-

-

in any commutative square like the one in the middle of this diagram, there is a unique map
h : Y → U that makes both triangles commute.

Proof Since the inner square commutes and m ∈M, by Lemma 2.5,

x : A, p(x) ` r(fx) and fx = g(ex), so r
(
g(ex)

)
.

so x : A, y : B, p(x), (y = ex) ` r(gy).

Since e ∈ E , y : B, q(y) ` �x. p(x) & (y = ex),

and then �E gives y : B, q(y) ` r(gy),

so (the given representative of) g also serves for h. �

Theorem 7.8 Any equideductive category has a factorisation system in which
(a) E consists of the epis and is stable under product; and

(b) M is the class of maps that arise from partial products. �

Corollary 7.9 In any particular context Γ, equideductive predicates form a lattice Sub(Γ), in
which ⊥, g and � are joins.

This lattice need not be distributive, or even modular. Logically, these symbols allow weakening
but not contraction or cut of variables. They only allow weakening by a hypothesis if it has no
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variable in common. Topologically, they are preserved by products but not by pullbacks or inverse
images.

Proof The foregoing results only apply to contexts consisting only of urtypes. A general context
[x : A, p(x)] is a subspace of an urtype A, and Sub([x : A, p(x)]) = Sub(A) ↓ p is still a lattice. �

Warning 7.10 Although our new connective � is very useful, it is not the same as the usual one
on points, and so we must be extremely careful in using it.

Example 7.11 Let f : N→ ΣN be fn ≡ λm. m < n. Its factorisation

N -- $ ≡ {θ : ΣN | �n. θ = λm. m < n}- - ΣN

de�nes the ascending natural number domain when this diagram is interpreted in Sob. However,

θ : $ ` �n. p(n, θ) but n : N, p(n,∞) ` ⊥,

where p(n, θ) ≡ (θ = fn) and ∞ ≡ λm.> =
∨
�n λm. m < n. �

Questions 7.12 (Giuseppe Rosolini)
(a) The variable rule for � is reminiscent of linear (rather, a�ne) logic; is there a monoidal

structure that would explain this?

(b) Does the counit of this structure (Corollary 4.7) throw light on the need for the variable-
binding rule in order to interpret �y : 1?

(c) Can one characterise the maps along which epis, � or the factorisation can be pulled back?
The class of such maps may provide the dependent types.

Remark 7.13 There is another existential quanti�er for maps with dense image:

�diy :B. p(x, y) ≡ ∀φ:ΣA.
(
∀x′y′. p(x′, y′) =. φ(x′) = ⊥

)
==. φx = ⊥.

8 Coproducts

In the second application of the new quanti�er and disjunction, we now show that the category
has �nite coproducts.

Proposition 8.1 The initial object is 0 ≡ {Σ | ⊥}.

0 ≡ {Σ | ⊥} ...........................- {ΣC | r}

Σ
?

?

κ : x 7→ λc. x- ΣC
?

?

Proof The dotted map is well formed because, by ⊥E,

x : Σ, ⊥ ≡ ∀στ. σ = τ ` r(λc. x).

It is unique because
x, y : Σ, ⊥ ` λc. x = λc. y. �
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Notation 8.2 The urtypes of the variables that we use are a : A, φ : ΣA, b : B, ψ : ΣB ,
H : Σ(ΣA×ΣB), Θ : Σ2(ΣA × ΣB), along with subscripts. Then de�ne

ν0a ≡ λφψ. φa ν1b ≡ λφψ. ψb

φΘ ≡ λa.Θ(ν0a) ψΘ ≡ λb.Θ(ν1b)
φ1

p∼ φ2 ≡ ∀x. p(x) =. φ1x = φ2x ψ1
q∼ ψ2 ≡ ∀y. q(y) =. ψ1y = ψ2y

X + Y ≡ {H | prime(H) & [p, q](H)} prime(H) ≡ ∀Θ.ΘH = HφΘψΘ

[p, q](H) ≡ ∀φ1φ2ψ1ψ2. (φ1
p∼ φ2) & (ψ1

q∼ ψ2) ==. Hφ1ψ1 = Hφ2ψ2.

Of course, X + Y is for now just an abbreviation: we have to prove that it has the universal
property of a coproduct, but �rst we explore the basic properties of this notation.

Lemma 8.3 This notation satis�es

φ
>∼ ψ a` φ = ψ [p, q](ν0x) a` p(x)

[>,>] a` > [p, q](ν1y) a` q(y).

Proof The �rst part is Axiom 2.1 and the second follows from this. For the third,

[p, q](ν0x) ≡ ∀φ1φ2ψ1ψ2. (φ1
p∼ φ2) & (ψ1

q∼ ψ2) ==. ν0xφ1ψ1 = ν0xφ2ψ2

a` ∀φ1φ2. (φ1
p∼ φ2) ==. φ1x = φ2x ≡ p>(x) a` p(x)

from Lemma 4.6, and the last one is similar. �

Lemma 8.4 The inclusion maps ν0 : X → X + Y and ν1 : Y → X + Y are well de�ned, mono
and natural.

Proof H ≡ ν0a ≡ λφψ. φa is prime because, for any Θ,

(ν0a)φΘψΘ ≡ (λφψ. φa)φΘψΘ ≡ φΘa ≡ Θ(ν0a).

We have already shown that if p(x) then [p, q](ν0x). The map ν0 is mono because

ν0a = ν0b ≡ λφψ. φa = λφψ. φb a` ∀φψ. φa = φb a` a = b

by Lemma 2.5 and De�nition 2.5.

A
ν0- ΣΣA×ΣB �ν1

B

C

f

? ν0- ΣΣC×ΣD

ΣΣf×Σg

?
�ν1

D

g

?

For naturality,
ΣΣf×Σg

(ν0a) = λθξ. ν0a(Σfθ)(Σgξ)
= λθξ. (Σfθ)a
= λθξ. θ(fa) = ν0(fa). �

The key step in showing that X + Y is the coproduct is that the ν0x for x ∈ {A | p} and ν1y
for y ∈ {B | q} �exhaust� X + Y , in an essentially familiar way, but using the new connectives g
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and � from Section 3. In traditional categorical language the inclusions X → X + Y ← Y are
jointly epi , so this is the dual of extensionality for products (Axiom 2.1).

Proposition 8.5 For H : ΣΣA×ΣB

,

prime(H), [p, q](H) a`
(
�x. p(x) &H = ν0x

)
g
(
�y. q(y) &H = ν1y

)
.

Proof Let Γ be the context
[
H, prime(H), [p, q](H)

]
on the left.

The backwards direction is the easy one. By Lemmas 2.2, 2.5 and 8.3,

H : ΣΣA×ΣA

, x : A, p(x), (H = ν0x) ` prime(H) & [p, q](H) ≡ Γ.

Then H : ΣΣA×ΣA

, �x. p(x) & (H = ν0x) ` Γ �E

and H : ΣΣA×ΣA

, RHS ` Γ. gE

Conversely, to prove the disjunction on the right (Notation 3.2), we consider Θ1,Θ2 : Σ2(ΣA×ΣB)
such that

∀H ′. (�x. p(x) &H ′ = ν0x) ==. Θ1H
′ = Θ2H

′ (∗)

and ∀H ′. (�y. q(y) &H ′ = ν1y) ==. Θ1H
′ = Θ2H

′, (†)

so we write ∆ ≡ [Θ1,Θ2, ∗, †] for this context. We must deduce that Γ,∆ ` Θ1H = Θ2H.

For x : A with p(x), H ′ ≡ ν0x ≡ λφψ. φx satis�es

x : A, p(x) ` �x′. p(x′) & (H ′ = ν0x
′)

by �I (Lemma 3.3), whence (∗) gives Θ1H
′ = Θ2H

′ in

∆, x : A, p(x) ` φ1x ≡ φΘ1x ≡ Θ1(ν0x) ≡ Θ1H
′ = Θ2H

′ ≡ φ2x,

where φΘ1 was de�ned in Notation 8.2.

Hence ∆ ` ∀x. p(x) =. φ1x = φ2x, which is φ1
p∼ φ2, and ψ1

q∼ ψ2 is similar. This means that
we may invoke [p, q](H) for the inner equality below, together with prime(H) for the outer ones:

Γ, ∆ ` Θ1H = H(φΘ1 , ψΘ1) ≡ Hφ1ψ1 = Hφ2ψ2 = Θ2H,

which is what was required to prove the disjunction. �

Theorem 8.6 X + Y is the coproduct.

X ≡ {A | p}
ν0- X + Y �

ν1 {B | q} ≡ Y

{ΣC | s} ≡ Z

f
-

...........h ....................-g -

A
?

?

ν0- ΣΣA×ΣB

?

?

�ν1
B
?

?

ΣC
?

?

f
-

.....................h .....................-g -

Proof By Proposition 6.1, without loss of generality the test object Z is a canonical type, i.e. a
subspace of some ΣC with C ∈ A. Given f : X → Z ≡ {ΣC | s} and g : Y → Z ≡ {ΣC | s}, so

x : A, p(x) ` s(fx) and y : B, q(y) ` s(gy),
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the mediator is necessarily the restriction of some h′ : Σ(ΣA×ΣB) → ΣC , by injectivity of ΣC

(Lemma 2.1). Indeed,
hH ≡ λc. H(λa. fac, λb. gbc)

makes the diagram commute from A or B to ΣC because

h(ν0a) = λc. fac = fa and h(ν1b) = λc. gbc = gb.

We must show that this h is a well de�ned map X+Y → Z and that it is the only one that makes
the triangles commute. These are both applications of the general elimination rules for � and g
in Section 3.

Since h(ν0x) = fx and s(fx), by Lemma 2.5,

H, x : A, p(x), H = ν0x ` s(hH)

H, �x. p(x) & (H = ν0x) ` s(hH) �E

H,
(
�x. p(x) & (H = ν0x)

)
g
(
�y. q(y) & (H = ν1y)

)
` s(hH) gE

H, prime(H), [p, q](H) ` s(hH)

by Proposition 8.5, so h is well de�ned. The uniqueness argument is similar:

H, x : A, p(x), H = ν0x ` h′H = fx = hH given

H, �x. p(x) & (H = ν0x) ` h′H = hH �E

and similarly with q(y) and H = ν1y, so

H,
(
�x. p(x) & (H = ν0x)

)
g
(
�y. q(y) & (H = νqy)

)
` h′H = hH gE

H, prime(H), [p, q](H) ` h′H = hH.

Hence h′ = h in the sense of De�nition 6.1. �

9 Extensivity

Finally we show that the coproducts that we constructed in the previous section are stable and dis-
joint, and the initial object is strict. We do this using the modern categorical notion of extensivity
[Cockett etc refs]:

De�nition 9.1 A category is called extensive if, in any diagram

X - Z � Y

1
? 0 - 2

k

?
� 1

1
?

the top row is a coproduct i� the two squares are pullbacks.
Give a brief introduction to extensivity and distributivity, showing that the former entails that

the initial object is strict and coproducts are stable and disjoint (Corollary ??).

We do, however, have to make a small additional assumption:

Lemma 9.2 If an equideductive category Q has disjoint coproducts then Σ has a point.
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Proof If coproducts are disjoint then 0 → 1 ⇒ 2 is an equaliser. Then injectivity of Σ with
respect to 0→ 1 provides a point 1→ Σ. �

Proposition 9.3 For any urtype A, the type 0 ≡ {A | ⊥} is a strict initial object, and

x : 0 ` p(x)

for any predicate p.

0 ≡ {A | ⊥}
h -

�.......
k
........ {Σ

C | s} ≡ Z

A
?

?

h -
�..............

k
.............. ΣC

?

?

Proof The judgement x : 0 ` p(x) is x : A, ⊥ ` p(x), which is ⊥E (Notation 3.1). The map
0→ Z is given by h ≡ λac. ?, and it is unique because x : 0 ` hx = h′x.

If there is a also map k : Z → 0 then we already have k · h = id0 by uniqueness of maps out
of 0. But also, z : Z ` ⊥(kz) ` h(kz) = z, so Z ∼= 0. �

Notation 9.4 2 ≡ 1 + 1 ≡ {ΣΣ×Σ | prime} with elements 0 ≡ λστ. σ and 1 ≡ λστ. τ .

Proposition 9.5 These satisfy
(a) H : ΣΣ×Σ, prime(H), σ : Σ ` σ = Hσσ;

(b) H : 2, prime(H) ≡ ∀Θ.ΘH = H(Θν0,Θν1) ` (H = 0)g (H = 1);
(c) the map 2� ΣΣ×Σ is mono;

(d) ∀x:2. p(x) a` p(0) & p(1); and
(e) �x:2. p(x) a` p(0)g p(1).
Proof Although [b] is an example of Proposition 8.5, the restriction on the use of g stops us
from substituting into it. This is why we prove [a] �rst, using Proposition 8.5, and [b] follows from
this. [c] This map is inM. [d,`] By ∀E. [d,a]

x : 2, p(0), p(1) ` (x = 0g x = 1) & p(0) & p(1)
` (x = 0 & p(0))g (x = 1 & p(1)) ` p(x)

by weak Frobenius (Proposition 4.3), Lemma 2.5 and gE. [e,a] By �I. [e,`] Using (d) and the
de�nitions of � and g,

�x:2. p(x) ≡ ∀στ. (∀x:2. p(x) =. σ = τ) =. σ = τ

` ∀στ.
(
(p(0) =. σ = τ) & (p(1) =. σ = τ)

)
=. σ = τ

≡ p(0)g p(1). �

The consequence of these properties of 2 is that any map Z → 2 gives rise to a partition

of Z. That is, we may use pullbacks to split Z into two parts, and recover the original object as
a coproduct.
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If the two squares in the de�nition of extensivity above are pullbacks then the top row is a
coproduct.

Lemma 9.6 Z ≡ {z : C | r(z)} ∼= {z : C | r(z) & kz = 0}+ {z : C | r(z) & kz = 1}.

Z ≡ {C | r}- - C

2

k

?
- - ΣΣ×Σ

k

?

Proof By sobriety, the two sides of the claimed isomorphism are

Z ≡ {C | r} ∼= {F : ΣΣC

| prime &r>} Lemma 6.1

W ≡ {C | r & k = 0}+ {C | r & k = 1} ≡ {H : ΣΣC×ΣC

| prime &[r & k = 0, r & k = 1]}.

We must therefore show that there is a bijection given by

F ≡ λθ. Hθθ and H ≡ λφψ. F
(
λz. kz(φz)(ψz)

)
.

[F 7→ H 7→ F ]: From Proposition 9.4(b) we have

θ : ΣΣ×Σ, prime(θ), σ : Σ ` σ = θσσ.

Combining this with the de�ning property of k : Z → 2� ΣΣ×Σ,

z : C, r(z) ` prime(kz)

gives z : C, r(z), φ : ΣC ` φz = kz(φz)(φz),

which means that φ : ΣC ` φ
r∼ λz. kz(φz)(φz). Hence

prime(F ), r>(F ) ` F = λφ. F
(
λz. kz(φz)(φz)

)
.

[H 7→ F 7→ H]: If H = ν0z with r(z) then F = ηz with prime(F ) and r>(F ), so by �E,

H, �z. r(z) & (H = ν0z) & (kz = 0) ` λφψ. F (λz. φz) = λφψ. φz ≡ ν0z = H.

By Proposition 8.5, prime(H), [r & k = 0, r & k = 1] `(
∃z. r(z) & kz = 0 &H = ν0z

)
g
(
∃z. r(z) & kz = 1 &H = ν1z

)
.

Since we can recover H in each case, H 7→ F 7→ H by gE. �

The converse of this is that the naturality squares for the coproduct inclusions are pullbacks.
If both rows are coproducts then the squares are pullbacks.

Lemma 9.7 The square on the left is a pullback:

X ≡ {A | p}
ν0- X + Y ≡ {ΣΣA×ΣB

| prime &[p, q]} - ΣΣA×ΣB

A

ν0

--

-

1
? 0 -�

2

k

?
- - ΣΣ×Σ

k

?
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Proof The downward maps called k both take H to λστ. H(λa. σ, λb. τ). Then both maps
from A to ΣΣ×Σ take a to λστ. σ, so the quadrilateral commutes. Also, 2 → ΣΣ×Σ is mono by
construction, so the left-hand square commutes too.

We need to de�ne a unique map

{H : ΣΣA×ΣB

| prime(H) & [p, q](H) & kH = 0} −→ {A | p},

so we let Γ be the context (object) on the left, in which

kH = 0 a` λστ. H(λa. σ, λb. τ) = λστ. σ.

First we exclude the possibility that

Γ, H = ν1y ` 0 = kH = 1 ` λστ. σ = λστ. τ a` ∀στ. σ = τ ≡ ⊥.

Since pg⊥ a` p (Lemma 4.2), Proposition 8.5 gives �x. p(x) & (H = ν0x).
Using �E, we deduce from this and

H ′ : ΣΣA×ΣB

, x : A, (H ′ = ν0x) ` H ′ = λφψ. H ′φ(λb. ?)

that H = λφψ. Hφ(λb. ?) = λφψ. Fφ where F ≡ λφ. Hφ(λb. ?) and �x. F = ηx.
Hence F is prime, so by sobriety (Axiom 2.2) we may introduce

Γ ` a ≡ focusF ≡ focus
(
λφ. Hφ(λb. ?)

)
: A,

with F = ηa, H = ν0a and [p, q](ν0a) ≡ p(a)

by Lemma 8.3. It is unique by Lemma 8.4. �

Theorem 9.8 The category is extensive. �

Corollary 9.9 Coproducts are stable and disjoint, the initial object is strict and product dis-
tributes over coproduct: the map

(X × Z) + (Y × Z)
[〈ν0·π0,π1〉,〈ν1·π0,π1〉]- (X + Y )× Z

is an isomorphism. �

Proposition 9.10 The coproduct of any list of urtypes exists and has an exponential that is itself
an urtype:

Σ0 ∼= 1, ΣA+B ∼= ΣA × ΣB , Σ
‘
Ai ∼=

∏
i

ΣAi .

Proof Using distributivity, there is a natural bijective correspondence amongst maps

(Γ×A) + (Γ×B) ∼= Γ× (A+B) −→ Σ
============================
(Γ×A)→ Σ
==========

Γ→ ΣA
(Γ×B)→ Σ
==========

Γ→ ΣB
======================

Γ −→ ΣA × ΣB

and similarly between the unique maps 0 ∼= Γ× 0→ Σ and Γ→ 1 ≡ Σ0. �
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10 Overt spaces

Depending on whether I decide to publish this paper separately from or alongside the others in the
equideductive programme, it may be appropriate to add a narrative section about how the logic
is developed into one for topology. In particular, an overt space is one for which the quanti�er
on predicates is represented by an urterm. Then something could be said about the role of overt
spaces in the connection between general topology and recursion theory.

11 Recursion

This section is just parked here temporarily. It will form the core of another paper about discrete
mathematics in equideductive topology.

Axiom 11.1 We express primitive recursion over the natural numbers in the restricted λ-
calculus by adding the base (ur)type N and the introduction rules

` 0 : N and n : N ` n+ 1 ≡ succn : N. NI

The NE-rule is the recursion scheme , which we formulate with active and passive parameters
as follows. For any urtype B and urterms

Γ ` z : B and Γ, n : N, b : B ` s(n, b) : B,

there is an urterm
Γ, n : N ` r(n) ≡ rec(n, z, s) : B

that has the property that

Γ ` r(0) = z : B and Γ, n : N ` r(n+ 1) = s
(
n, r(n)

)
: B. Nβ

The rec construction also respects equality (NE=) and the Nη-rule is rec(n, 0, succ) = n.

In order to use N in equideductive logic, we also need the

Axiom 11.2 The induction scheme for N says that, for any predicate r(n) on N (with no other
parameters),

r(0), ∀n:N. r(n) ==. r(n+ 1) ` ∀n:N. r(n).

Remark 11.3 For logical and programming purposes it is more convenient to de�ne combinatorial
structures using the urtype T of binary trees. These rename 0 as nil , and have a binary constructor
[− | −] instead of the unary succ. The recursion scheme is easily adapted from that for N, whilst
the induction scheme,

r( nil ), ∀xy :T. r(x) & r(y) ==. r([x | y]) ` ∀z :T. r(z),

obeys the variable-binding rule.
On the other hand, we cannot write

∀x.
(
∀y. y ≺ x =. r(y)

)
==. r(x) ` ∀z. r(z)

to de�ne a well founded relation ≺ because the variable-binding rule for x is violated in y ≺ x.

Lemma 11.4 N ∼= 1 + N (this is extensionality).
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Proof n : N ` (n = 0)g (�m. n = m+ 1) is

∀φψ :ΣN. (∀n′. n′ = 0 =. φn′ = ψn′) & (∀n. (�m. n = n+ 1) =. φn′ = ψn′) ==. φn = ψn,

which is an easy case of the induction scheme.

Theorem 11.5 In the category Cn∀L, N is a parametric natural numbers object.

Γ× N �
Γ× succ

Γ× N

Γ ∼= {A | p}
ζ -

Γ× 0
-

Y ≡ {ΣB | q}

R

?

................
� S

Γ× N× Y

〈id, R〉

?

.................

A
?

?

ζ - ΣB
?

?

� S
A× N× ΣB

?

?

Proof Categorically, the data are as shown above, and we have to �nd the map R. Symbolically,
we are given

x : A, p(x) ` ζx : ΣB , q(ζx) DZ

and x : A, p(x), n : N, φ : ΣB , q(φ) ` Sx(n, φ) : ΣB , q
(
Sx(n, φ)

)
. DS

By syntactic injectivity (Theorem 2.3), without loss of generality, formation of the urterms ζx and
Sx(n, φ) does not depend on the hypotheses. Therefore, by recursion in the restricted λ-calculus,
there is a unique urterm

x : A, n : N ` Rx(n) : ΣB

such that x : A ` Rx(0) = ζx : ΣB RZ

and x : A, n : N ` Rx(n+ 1) = Sx
(
n,Rx(n)

)
. RS

Now consider the equideductive predicate

n : N ` r(n) ≡ ∀x:A. p(x) ==. q
(
Rx(n)

)
.

By the hypotheses DZ and DS, the two equations RZ and RS for Rx(n) and ∀I, this satis�es

` r(0) ≡ ∀x:A. p(x) =. q(ζx)

and
r(n) ≡ ∀x:A. p(x) =. q

(
Rx(n)

)
` r(n+ 1) ≡ ∀x:A. p(x) =. q

(
Sx(n,Rx(n))

)
.

Therefore the induction scheme gives ` ∀n. r(n), which by ∀E is

n : N, x : A, p(x) ` q
(
Rx(n)

)
,

but this says that the morphism R : Γ× N→ Y is well de�ned. It makes the triangle and square
commute because it did for urterms. To show that it is unique we consider induction for the
predicate

r(n) ≡ ∀x. p(x) ==. R′x(n) = Rx(n). �
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