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Abstract
Abstract Stone Duality is a revolutionary paradigm for general topology that describes com-
putable continuous functions directly, without using set theory, infinitary lattice theory or a
prior theory of discrete computation. Every expression in the calculus denotes both a con-
tinuous function and a program, and the reasoning looks remarkably like a sanitised form of
that in classical topology. This is an introduction to ASD for the general mathematician,
with application to elementary real analysis.

This language is applied to the Intermediate Value Theorem: the solution of equations for
continuous functions on the real line. As is well known from both numerical and constructive
considerations, the equation cannot be solved if the function “hovers” near 0, whilst tangential
solutions will never be found.

In ASD, both of these failures and the general method of finding solutions of the equation
when they exist are explained by the new concept of overtness. The zeroes are captured, not
as a set, but by higher-type modal operators. Unlike the Brouwer degree, these are defined
and (Scott) continuous across singularities of a parametric equation.

Expressing topology in terms of continuous functions rather than sets of points leads to
treatments of open and closed concepts that are very closely lattice- (or de Morgan-) dual,
without the double negations that are found in intuitionistic approaches. In this, the dual of
compactness is overtness. Whereas meets and joins in locale theory are asymmetrically finite
and infinite, they have overt and compact indices in ASD.

Overtness replaces metrical properties such as total boundedness, and cardinality condi-
tions such as having a countable dense subset. It is also related to locatedness in constructive
analysis and recursive enumerability in recursion theory.
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Introduction

This paper introduces a new calculus for constructive general topology, and in particular for
analysis on the (Dedekind) real line. When using this calculus, there is no need to prove that
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functions are continuous, because, from the start, the types are intrinsically topological spaces,
not sets with imposed structure, and all terms are automatically continuous with respect to the
topology of the types. They also have a computational interpretation, at least in principle. Some
basic facts about analysis, such as the Heine-Borel theorem (compactness of [0, 1] in the “finite
open sub-cover” sense) are also built in to the language. It enjoys a very strong open—closed
duality, in contrast to the usual asymmetry between finite intersections and infinite unions, whilst
avoiding the double negations that are a conspicuous feature of Intuitionistic schools such as those
of Brouwer and Bishop.

As a first step towards testing whether our new language is suitable for real analysis, we prove
the intermediate value theorem and more generally study connectedness. This in turn depends on
finding the mazimum value in a non-empty compact subspace. These topics relate to questions
that have been studied at length in the literature on constructive analysis, which we review in
Section [I} but we believe that we have a new perspective on them.

As well as our new language, we also introduce a new topological concept, namely overt sub-
spaces. This property is completely invisible in classical topology, because there every subspace
is overt. In Bishop’s constructive analysis, its role is played by locatedness and total boundedness
(Remark , but these are defined metrically, using lots of s and s, which we almost entirely
avoid.

By analogy with the view that the important thing about a compact subspace is which open
sets cover it, rather than what points it contains, we define overt subspaces by whether open
subspaces touch them (intersect them non-trivially). In this way, compact and overt subspaces
define logical operators [J and ¢ that satisfy the rules of modal logic. Our motivating example of
this is the collection of solutions that interval-halving (and other) computational methods actually
find for real-valued equations.

In order to give some impression of what overtness means, and why the usual language is
inadequate to describe it, Section [2] provides a translation into the usual set-theoretic language of
the way in which we shall study the intermediate value theorem in our new language towards the
end of this paper.

The modal operators [] and ¢ are continuous functions, not on the space R itself, but on its
topology (lattice of open subspaces). This means that we have to equip topologies with topologies.
The one that we choose is due to Dana Scott and is related to local compactness. It appears in
the background of analysis in the guise of semicontinuity and the ascending and descending real
numbers, which will themselves play an important part in this paper. However, there seems to
be no appropriate introduction to Scott continuity and continuous lattices that is intended for
analysts, so Section [3| outlines the ideas from topological lattice theory and theoretical computer
science that lie behind our calculus.

Even in the classical language, the [J and { operators give a new way of looking at the singular
case, i.e. the way in which the zeroes of a function (such as a polynomial) vary, merge and vanish
as its parameters change. Whilst the set of zeroes changes discontinuously, [J and ) remain Scott-
continuous across the singularity; the only thing that breaks is one of the equations that relate
them. The abstract formulation in ASD makes the construction of 00 and ¢ from the function
an entirely symbolic one, interprets these operators as subspaces and offers a general (at least
conceptual) structure in which to compute the zeroes.

Sections [IH3 are therefore not representative of either the paper or the new calculus: for a
“sample” please look at Sections[10, and[1]] instead. It is the calculus that it our main purpose,
so if you are only interested in this and not connectedness you may start with Section [3| or
The underlying ideas come from foundational disciplines, not analysis; indeed, my observations
about the intermediate value theorem are made as an outsider to even the dominant theory of
constructive analysis.



In Section [4] we start to introduce the new calculus, in a relatively informal way, developing the
intuition that < y and x # y are properties of real numbers that we can observe computationally,
whereas x > y and z = y are not. Section [5| sets out the restricted form of predicate logic that
we use, including the existential quantifier and an important principle that underlies our dual
treatment of open and closed subspaces. We use this fragment of the calculus to discuss Dedekind
and Cauchy completeness in Section [6] adopting the former as an axiom and proving the latter
from it.

In topology there is a distinction between open and general subspaces. Section [7] describes
the A-calculus that we use to define the former and our quasi-set-theoretic notation for the latter.
Recall that Ax. ¢x is a notation for functions that formalises “z — ¢(x)”, and so makes them first
class citizens of the mathematical world.

This formalism enables us to define compact subspaces as [J-operators in Section [8] developing
the familiar results about closed or compact subspaces and direct images. The equivalence with
closed and bounded subspaces of R depends on further Scott- or semicontinuity properties that
we formulate idiomatically as a “uniformity” principle in Section [9}

The calculus begins to look like real analysis in Section where we show that every function
R — R is continuous in the e—§ sense, indeed uniformly so when the domain is compact. Although
we do not study differential and integral calculus in this paper, we also indicate how these can be
expressed in our language.

Section [T] gives the formal account of overtness using ¢ operators, closely following that of
compactness in Section |8} However, since we mainly consider Hausdorff spaces in this paper, we
only give half of the picture, so let’s say a little bit here about overt discrete spaces.

Even in elementary real analysis, there are many combinatorial methods, such as integration
(Remark, where which we need at least some notion of a finite “collection”. ASD rejects the
claim that all mathematical objects are in the first instance collections: it makes no recourse what-
ever to set theory or to its usual categorical or type-theoretic alternatives. It seeks to axiomatise
topology directly and there is nothing else in its world besides spaces.

We therefore have to select some of the spaces to play the role of sets. Overt discrete objects
do this, because the full subcategory of them has exactly the properties that we require for doing
discrete mathematics: Products, equalisers and stable disjoint sums of overt discrete spaces are
again overt discrete, as are stable effective quotients by open equivalence relations [C] and finite
powersets (free semilattices) [E]. Unfortunately, the relevant constructions in ASD take as much
space as those for simple analysis, and are not yet available in a suitable form for the intended
audience of this paper. We explain why these things are topologically non-trivial in Remark
and only rely on these methods in Section

These examples illustrate the way in which overtness captures the existence of an underlying
combinatorial structure, but in a topological way that is free of explicit coding. It is also related
to recursive enumerability (Remark and to other ideas that have arisen in constructive,
computable and even classical analysis, such as the Bolzano—Weierstrass theorem and having a
countable dense subspace.

Overtness therefore puts a common name to numerous aspects of the foundations of mathe-
matics that have hitherto gone unremarked. Even the (currently very small number of) people
who have so far encountered the idea in various constructive disciplines are well aware that it can
only be appreciated very gradually, and not as a result of seeing the definition for the first time.

The combination of compactness and overtness is very powerful, and we begin to study it in
Section A feature of the lattice-dual topological axiomatisation is that there is an axiom-by-
axiom translation from modal logic into the Dedekind cut for its maximum. The idea is similar
to the constructive least upper bound principle (Definition .



In Section this duality also leads to two definitions of connectedness, each yielding an
approximate version of the intermediate value theorem. The overt one agrees with the definition
that is already known in constructive analysis. The classical proof of connectedness of the interval
and the line is valid in our calculus. We also characterise open and compact connected subspaces
of R as intervals and show that any open subspace is a disjoint union of intervals.

Section accomplishes our main goal, the intermediate value theorem. For a function that
has no tangent to the axis, the zero-set is closed, overt and (in any bounded interval) compact. In
the singular case, the {) operator provides a zero-finding program, and we present this result in a
new way that takes a constructive attitude to the classical theorem and hints at the generalisation
to R™.

In Section [I5] we extend the traditional constructive definitions of connectedness from pairs to
arbitrary families of open subsets, which is the notion that is used in category theory. We also show
that the decomposition of open subspaces of R into disjoint unions of intervals (Theorem is
unique and that compact intervals with non-Euclidean endpoints are compact connected. These
results rely on the Heine—Borel property and so fail in Bishop’s theory. Since the central argument
is combinatorial, it depends on ASD’s use of overt discrete spaces in the role of sets.

Finally, Section [16] tests the boundaries of our ideas with some counterexamples, emphasising
the role of overtness.

This calculus is called Abstract Stone Duality because it was inspired by Marshall Stone’s
results on the duality of algebra and topology [Sto37] and his maxim that one should “always
topologize” [Sto38]. The algebra that corresponds to traditional topology is captured in the disci-
pline of locale theory by the notion of frame: a lattice with infinite joins, over which finite meets
distribute. However, a frame is still a set with imposed algebraic structure. ASD “topologises
the topology” by saying that the carriers for the algebra are themselves spaces of the kind being
defined. Algebras with non-set-theoretic carriers can be formulated using the notion of monad in
category theory.

Several lengthy papers were needed to turn this idea into a theory of topology. These culmi-
nated in the characterisation of computably based locally compact spaces [G] and the construction
of the Dedekind reals [I]. As direct consequence of the monadic assumption from category theory,
we have a recursive model of analysis that satisfies the Heine—Borel property. This result is strik-
ing because it contrasts with the received wisdom from Russian Recursive Analysis and Bishop’s
theory [BR&T7], as [I, Section 15] explains.

This paper is parallel to [I] in that they provide introductions to similar material for different
audiences. This one, however, presents a slightly simplified version of ASD that relies solely on
the basic intuitions and knowledge of a general mathematician, treating R axiomatically instead
of constructing it. The category theory has gone, and we give a “need to know” tutorial for most
of the other foundational techniques that we shall use.

Since I am not an analyst, a point—set topologist or a homotopy theorist, I cannot say whether
ideas such as straddling intervals have been used elsewhere to consider the intermediate value
theorem. However, these are only vehicles for the main cargo of this paper, which is the language
of ASD. Since I have not come to real analysis from the usual direction, I may well have made
errors and misconceptions, but they are not the usual errors. I therefore hope that you will read
what is actually written here, and come to appreciate the beauty and symmetry of a logic that
reasons directly about topology and analysis.



1 The constructive intermediate value theorem

When we have described our new A-calculus for general topology, we shall apply it to the inter-
mediate value theorem, which solves equations that involve continuous functions R — R.

The usual constructive form of this result puts an additional condition on the continuous
function, where the classical one has greater generality. Also, the constructive argument is based
on an interval-halving method that apparently gives just one extra bit of the solution for each
iteration, whereas the well known Newton algorithm doubles the precision (number of bits) each
time.

Whilst it is widely appreciated that constructivism emphasises similar issues to those that
arise in computational practice [Dav05], classical analysts sometimes feel that their constructive
colleagues want to rob them of their theorems, without replacing them with algorithms that are
any better than those that numerical analysts already know.

When we look more closely into these complaints, we find that the two sides are talking at
cross-purposes and even the traditionalists are conflating two different theorems of their own.
Some mathematicians consider the “generality” of classical results to be more important than
their applications. On the other hand, anyone who is genuinely interested in solving an equation,
i.e. in finding a number, will probably already have some algorithm (such as Newton’s) in mind,
and will be willing to accept the pre-conditions that this imposes. We find, on examination, that
these imply the extra property that constructivists require, which is in fact very mild: it is satisfied
by any example in which you might reasonably expect to be able to compute a zero. Topologically,
these conditions are weaker forms of openness, whilst the “general” theorem is about continuous
functions.

Turning to the classical Newton algorithm, it is not always as good as it claims: on the large
scale it can run eway from a nearby zero and sometimes behaves chaotically. In fact, it only
exhibits its rapid convergence after we have first separated the zeroes, which we must do by
some discrete method such as interval-division. Ramon Moore’s interval Newton method [Moo66
Chapter 7], which exploits Lipschitz conditions instead of differentiability (cf. Definition ,
behaves at small scales like its traditional form, but at larger ones like interval halving, so it
finds the initial approximation to the zero in a systematic way. Andrej Bauer has begun to
demonstrate that computation may indeed be performed efficiently in the ASD calculus using
these methods [Bau0g].

Constructive mathematics is about proving theorems just as much as classical analysis is.
What we gain from looking at the intermediate value theorem constructively is a more subtle
understanding of the space of solutions in the singular and non-singular situations. In this paper,
this will take the form of a new topological property of the space Sy of “stable” zeroes, which
are essentially those that can be found computationally. Nevertheless, the space Z¢ of all zeroes
(stable or otherwise) still plays an equally important role: we shall study the two together, in a
way that is an example of the open—closed duality in topology.

Let us begin, therefore, with the form in which the (classical) intermediate value theorem is
taught to mathematics undergraduates:

Theorem 1.1 Let f: 1= [0,1] — R be a continuous function with f(0) <0 < f(1). Then there
is some z € I for which f(z) = 0.

Proof There are two well known proofs of this.

(a) Putx = sup{y € 1| fy <0} and suppose that 0 < ¢ < f(x), so since f(0) < 0 we have z > 0.
Then, by e—d-continuity, there is some interval (z +§) = (x — d,2 + J) on which f(y) > 0, so
x was not, after all, the least upper bound of its defining set. A similar argument excludes
f(z) < 0, which leaves f(x) = 0. This proof was given by Bernhard Bolzano in [Bol17, §15.3].



(b) The other proof uses interval halving. Let dy = 0 and uy = 1. By recursion, consider

dp, xpn if f(zn) >0

=1 =
I = 2(dn+un)7 and put dn-‘rl; Un+1 = { Ty Up  if f(xn) <o,

so by induction f(d,) <0 < f(u,). But d, and u, are respectively (non-strictly) increasing
and decreasing sequences, whose differences tend to 0, so they converge to a common value z.
Using e—d-continuity in the last step again, f(z) = 0. Augustin-Louis Cauchy gave this proof
in [Cau21l Note III]. O

These methods are not suitable as they stand for numerical solution of equations:
Example 1.2 Consider this parametric function, which hovers around 0:
for —1<s<+1 and 0<z<3, let fs(x) = min (x— 1, max (s, x — 2))

The graph of fi(z) against = for s ~ 0 is shown on the left. The diagram on the right shows how
fs(x) depends qualitatively on s and z, where the two regions are open, and the thick lines denote
fsz = 0. In particular, f(1) =0iff s >0, f(2) =0iff s <0 and f(3) =0iff s =0.
+1 1t fsx +11s
m—— —ve positive

0 ‘ .
1 V ~1

0 1 2 3 0 1 2 3

negative +ve

Neither the classical theorem nor any numerical algorithm has much to say about analysis in
this example. However, if any of them does yield a zero of fs, as a side-effect it will decide a
question of logic, namely how s stands in relation to 0.

Remark 1.3 As L.E.J. Brouwer observed in his revolutionary work in 1907 [Bro75, [Hey56], for

an arbitrary numerical expression s, we may not know whether s < 0, s =0 or s > 0. There are

many different ways in which such indeterminate values may arise, depending on whether your

reasons for using analysis come from experimental science, engineering, numerical computation or

logic. So s may be

(a) a parameter that we intend to vary;

(b) an experimental measurement that we can make only to a certain precision;

(c) the result of a numerical computation of which we have (so far) only found so many digits;

(d) a constant defined in terms of some mathematical question that has (so far) resisted solution,
such as the Riemann Hypothesis or the Goldbach Conjecture (Brouwer used patterns in the
digits of m = 3.14159 - - - for this); or

(e) a constant defined in terms of some logical question that is provably unanswerable, such as
§=>.00 027" gn, where g, is the primitive recursive sequence

_ | 1 if n encodes a proof that (-0 =1)
gn 0 otherwise,

so s = 0 iff the calculus is consistent, which, as Kurt Gédel demonstrated [G6d31], it is unable
to prove for itself.



We see that the issue is one of logic rather than geometry and the definitive answer only came
in the 1930s. Whether Bolzano, Cauchy or the other 19th century analysts and geometers would
have intended the intermediate value theorem to apply to Brouwer’s example is a question that
needs extremely careful historical investigation. Other errors were made because the notion of
uniformity was lacking (Remark , for example, so the fair conclusion is that those who
believed the general result were relying on decidable equality of real numbers, and as such were
mistaken in this too.

Since the Example is a monster from logic and not analysis, we bar it [Lak63]. It is also
sometimes more convenient to suppose that the function is defined on the whole line.

Definition 1.4 We say that f: R — R doesn’t hover if,
for any e < t, Jr.(e<z<t) AN (fz#0),

so the open non-zero set Wy = {xz | fx # 0} is dense. A similar property, that f is “locally
non-constant”, is used in other constructive accounts such as [BR&7].

Example 1.5 Any non-zero polynomial of degree n doesn’t hover, x being one of any given n + 1
distinct points in the interval (d, u). O

Remark 1.6 For Newton’s algorithm to be applicable to solving the equation f(z) = 0, we must
assume that the derivative f’ exists, and preferably that it is continuous. Also, since we intend
to divide by f’(z), this should be non-zero, although it is enough that f’ doesn’t hover. So let
d < 2’ < uwith f/(2’) # 0. Then, by manipulating the inequalities in the e definition of f’(z’),
c¢f. Definition there must be some d < & < u with f(z) # 0. This argument may be adapted
to exploit any higher derivative that is non-zero instead. O

So this condition is very mild when taken in the context of its practical applications. Using it,
here is the usual (exact) constructive intermediate value theorem (there is also an “approximate”

one, cf. Proposition |13.4)).

Theorem 1.7 Suppose that f : R — R is continuous, has f(0) < 0 < f(1) and doesn’t hover.
Then it has a zero.

Proof In the interval-halving algorithm (Theorem [L.I(D)]), we may have f(z,) = 0. This can
be avoided by relaxing the choice of z,, to the = provided by Definition [T to which we supply,
say, e = £(2d,, + uy) and t = £(d,, + 2u,). Then we only have to test whether f(z,) < 0 or > 0,
which is allowed, both constructively and numerically [TvD88, Theorem 6.1.5]. O

This proof is better computationally than the previous one, in that it doesn’t involve a test
for equality. But it introduces a new problem: the meaning of 3, to which we shall return many
times. Here we characterise the solutions that this algorithm actually finds.

Definition 1.8 We call € R a stable zero of f if, for any d < z < u,
Jet. (d<e<t<u) A (fe<0< ftV fe>0> ft),

leaving you to check that a stable zero of a continuous function really is a zero. Stable zeroes are
elsewhere called transversal.



On the other hand, even in such a nice situation as solving a polynomial equation, not all
zeroes need be stable — in particular, double ones (where the graph of f touches the axis without
crossing it) are unstable. As Example shows, if f hovers, there need not be any stable zeroes.

Example 1.9 Consider fox = sz?—sx+1fors>0and 0 <z <1, s0 f,0 = fs1 =1. There are
two stable zeroes when s > 4, a single unstable one at % when s = 4, but no zeroes at all when
s < 4. O

This discussion may perhaps suggest that unstable zeroes are a bad thing. However, the
computational results are only one side of what we have to say in this paper: our treatment of
topology will consider both stable and arbitrary (i.e. either stable or unstable) zeroes. In fact, it
is also possible to compute unstable zeroes, if they are isolated and we know that they’re there,
but this is a distraction from our story.

We conclude this section with a couple of remarks concerning the choice of name and formu-
lation of stable zeroes.

Remark 1.10 Earlier drafts of this paper required e < x < t in Definition Suppose we have
e <t < z, where fe and ft have opposite signs, and f doesn’t hover in the interval (z,u). Then
fy < 0or fy > 0 for some z < y < u, so we may replace either e or ¢t with y to obtain the stronger
property. Similarly, if there are stable zeroes arbitrarily close on both sides of a point then it is a
stable zero in the stronger sense.

Example 1.11 The hovering function f(x) = sin(n/x) if x > 0 and 0 if z < 0 has stable zeroes
in the stronger sense at % but only in the weaker one at 0. O

Remark 1.12 (Andrej Bauer) We call such zeroes stable because, classically, z is a stable zero iff
every nearby function (in the sup or £, norm) has a nearby zero:

V6>0.3e>0.Vg. (|f—gl<e=Ty. gy=0 A |y—a|<9).

However, the V§, Vg and = in this formula mean that it is not a well formed predicate in the
calculus that we shall introduce in this paper, although the Vg may be allowed in a later version.

2 Stable zeroes and straddling intervals

In this section we look at the topological properties of the subspaces Sy C Zy C R of stable and
arbitrary zeroes of a function f: R — R.

Remark 2.1 We know, of course, that Z; is closed, and therefore compact if we choose to bound
the domain of the function, with f : T — R.

We have Sy = Z; for non-singular values of the parameters (which may, for example, be the
coeflicients of a polynomial), but in certain singular situations, S is smaller than Z;. The set
Sy is G5 (a countable intersection of open subsets).

But the interesting thing for us is that Sy is overt. As we shall see, it is not possible to define
overtness in terms of classical sets of points: we use logic instead. In this section we show how
the notions of zero and stable zero for a function give rise to “modal” predicates [J and ¢ that
may or may not be satisfied by open subspaces. Since such subspaces are themselves predicates on



points, the result of this discussion will be to represent compact and overt subspaces as predicates
on predicates.

Proposition 2.2 If an open subspace U C R touches Sy, that is, it contains a stable zero
x € UN Sy, then U contains (the whole of) a straddling interval,

[e,t] CU with fe<O0< ft or fe>0> ft,

and conversely if f doesn’t hover.

Proof By Definition [1.8] a point is a stable zero iff every open neighbourhood of it contains a
straddling interval. [=] Since the point x itself is in the interior of U, some interval d < x < u
is also contained in U. By Definition this interval contains one that straddles. [«<] The
straddling interval is an intermediate value problem in miniature, for which Theorem finds a
stable zero. O

Remark 2.3 If an interval [e, ¢] straddles with respect to f then it also does so with respect to
any nearby function g, i.e. with |f — g| < e, where € = min(|fe|, | ft|), ¢f. Remark [I.12] Since the
definition only refers to the endpoints, it is also invariant with respect to homotopies that fix the
values there, in contrast to Example O

Notation 2.4 We write { U if the open subspace U contains a straddling interval.

The hypothesis of the intermediate value theorem makes { Uy true when Uy D I, whilst ¢ is
obviously false. Since ¢ requires the whole of the interval [e,t] to be contained in the open set,
not just its endpoints, ¢ W is also false, where Wy = {z | fx # 0}. This relies on connectedness
of [e, t].

Theorem 2.5 If f doesn’t hover then the ¢ operator preserves joins in the sense that

0(JUy) <= Fiel oU;
jed

In particular, O(Uy UUs) = Q Uy V O Us.

The hovering Example fails this property for U; = (0, 1%) and Us = (1%, 3).
Proof Suppose that I = [d,u] C UjeJ U; with fd < 0 < fu, and consider the open subspaces
(with > for VT and < for V™)

VE = {z:R|3j:J. Iy:R. (z <y) A (fy 2 0)Alz,y] C U;}.

For each x € I, there are j € J and e,t € I such that x € (e,t) C [e,t] C Uj, but since f doesn’t
hover in (x,t) there’s some z < y < ¢ with fy # 0 and [z,y] C U;. Thenz € V*t orz € V—,
according to the sign of fy. Hence I C VT UV ~, whilst d € V~ and u € V' by hypothesis.
Now, since I is connected, V¥ NV~ is non-empty, so it contains some open interval, in which
f doesn’t hover, so fx # 0 for some z € VT NV ™. If fx < 0 then (since z € V1) there is a
straddling interval [z,y] C U; with fy > 0; similarly if fz > 0 we have z € V~ and fy < 0. See
Theorem for another proof of this. O

Remark 2.6 Some extra condition is necessary to prove this Theorem in R, but Example
satisfies it despite hovering. Also, the classical mathematician may appreciate the improved con-
structive proof, whilst objecting that its pre-condition is unnecessary, because either 1 or 2 is a
zero in Example Besides, the constantly zero function hovers.



In higher dimensions, it is customary to study fixed points (f(z) = z) instead of zeroes
(f(x) = 0). In his alter ego as a (non-constructive) geometric topologist, Brouwer showed that
any continuous endofunction of the cube I™ has a fixed point. In this case, the disagreement
between the classical and constructive situations cannot be brushed under the carpet: There is a
computable function f : I? — I2? with no computable fixed points, in the strong sense that none
of the classical fixed points can be defined by a program [Bai85, [Pot07].

Remark 2.7 If we want to apply Newton’s method, the derivative of the function has to be
continuous and non-zero near the required solution. A similar pre-condition is needed for the
usual definition of the Brouwer degree, which is a numerical analogue of our logical operator
that takes disjoint unions to sums of integers [DGO3, L1o78| Mil97]. In these non-singular settings,
all zeroes are stable, so the space of them is overt and closed, and we shall see that many classical
arguments remain constructively valid.

In these cases, locally, we have an open map, i.e. one for which the direct image of any open
subspace is open. Open maps also arise if we look for the zeroes of an analytic function in C
instead of R, whilst our notion of overtness came from asking when the map X — {x} is open
[Joh84! [JT84]. For any open map f : X — Y and element 0 € Y, it is easy to see that the operator
defined by ¢ U = (0 € fU) has the property of Theorem

If we look more closely at how this property is achieved, we can extend it to the singular case,
using overtness of the stable zeroes even when there are unstable zeroes around. When X is locally
compact (Deﬁnition, 0 € fU iff there is a compact subspace K C U with0 € V C fK, where
V is open. Specialising further to f : R® — R™, we may take K to be an enclosing polyhedron:
one for which f is non-zero on the faces but zero somewhere inside, c¢f. Remark

However, it is not the purpose of this paper to consider this interesting geometrical problem,
but instead to study the logical consequences of the join-preserving property, which will become
the definition of overtness. We will only consider the non-hovering condition again when we return
to the intermediate value theorem in ASD in Section [14l

We do, however, note a theme in this discussion that will recur in both the abstract development
of the paper and the intermediate value theorem. There are two essentially different theorems, for
the non-singular and singular cases. The former includes Bolzano’s argument and the Brouwer
degree, requiring that f be (locally) open, whilst the latter uses interval bisection and only assumes
the non-hovering condition or something similar.

We might imagine an overt subspace or the Brouwer degree as like radioactivity, or lions in
the Sahara Desert (!) [Pét53], which cannot be seen themselves, but their presence in any region,
however small, can be detected. Using the bisection argument yet again, such properties have a
computational interpretation:

Theorem 2.8 Let { be a property of open subspaces of R that takes unions to disjunctions
and satisfies {(0,1). Then ¢ has an accumulation point x € (0,1), by which we mean one of
which every open neighbourhood x € U C R satisfies Q U. If () arises from the intermediate value
problem for a non-hovering function, any such x is a stable zero.

Proof Let dy =0, up = 1 and, by recursion, e = %(an +uy,) and t = %(dn + 2uy,), so
T O(dnaun) =90 ((dnat) U (e;un)) <~ O(dnvt) \/<>(67un)§

then at least one of the disjuncts is true, so let (dny1, unt1) be either (d,,t) or (e, up).

Since the property (d,u) is only semi-decidable, this argument uses dependent choice. Com-
putationally, we may interleave the execution of the tests, and choose whichever of them terminates
first [N]: since this choice is made on contingent practical grounds rather than mathematical ones,
it is said to be non-deterministic.
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The sequences d,, and u,, converge to a common limit xz, respectively from below and above. If
x € U then z € (dy,uy,) C (x+e) C U for some € > 0 and n, but O(d,, uy,) is true by construction,
so ¢ U also holds, since ¢ takes C to =. O

Remark 2.9 Although we describe the interval-division algorithm on paper in a way that sug-
gests precise bi- or tri-section, when we come to implement it we may find much better ways of
calculating the division point. This could be far from the middle, and based on other information
about the situation, possibly using some approximation to the derivative or Lipschitz condition.
Then if we know that OQ(U U V) but =OU (e.g. if f # 0 on U), where U is a large part of the
union, we are left with a small part that still satisfies ¢ V.

The operator ¢ therefore seems to capture these algorithms, albeit as parallel non-deterministic
processes. Let’s see whether classical point-set topology has anything to say about it.

Exercise 2.10 Classically, let QU = (UNS #0) = Jz e S.(x € U), for any subset S C R
whatever. Show that the operator () has the property in Theorem O

Examples 2.11

(a) The existential quantifier to which we drew attention following the proof of Theorem is
defined by QU = Jz € S. (x € U), where S is the open subspace {z | fz # 0}.

(b) The accumulation points (in the traditional sense) of any sequence or net S are those of ¢ in
the sense of Theorem 2.8
Apparently, ¢ is merely a roundabout way of defining a closed subspace, or the closure of an

arbitrary subspace:

Proposition 2.12 Let ¢ be an operator for which ¢, ; U; iff Ji. ¢ U;, and define

iel
S ={reR|forallopen UCR, ze€U=QU}.
Then WER\S:U{UOpen|ﬁ<>U}

is open (making S closed) and has = W by preservation of unions. Since ¢ takes C to =, ¢ U
holds iff U ¢ W iff UNS # 0. If { had been derived from some S’ as in Exercise then S = 5/,
its closure, since QU <= (U NS’ #0). O

Remark 2.13 We learn from this that

(a) since Q-like properties are defined, like compactness (which we are about to consider), in terms
of unions of open subspaces, they deserve to be called general topology, and we shall see that
the analogy goes much deeper than this;

(b) the proof of Theorem that the subspace of stable zeroes has such a ¢ in a useful way, uses
an idea from geometric topology (connectedness) in the case of R1;

(c) the operator ¢ is the bounded ezistential quantifier: QU =3z € S. (x € U);
(d) there are long-standing arguments in analysis and

(e) general algorithms that use these operators (abstracted from the original question) to solve
many kinds of problem in a uniform way; so

(f) ¢-like properties stand exactly at the gateway between the mathematical and computational
aspects of topology; but

(g) classical point—set topology is too clumsy to take advantage of this.

When we come to study overtness in ASD, in Section we shall find that the problem lies more
with the sets of points than with classical logic.
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Whereas stable zeroes are characterised by ¢, there is another operator [J that describes the
subspace Zy C I of all zeroes. (The symbol [J is read “necessarily” and ¢ is called “possibly”.)

Notation 2.14 Let Z be any compact subspace. For any open subspace U, we write QU if U
contains or covers Z (where () was about touching). If Z is the complement of an open subspace
W C X of a compact Hausdorff space then

Ou iff (UUW)=X.

The “finite open sub-cover” definition of compactness says exactly that OJ,c; U; it OU,cp Ui
for some finite F* C I. This is similar to the defining property of ¢, except that in that case F
consisted of a single index {i} C I.

We shall consider this common infinitary lattice-theoretic property of 0 and ¢ in the next
section. Here we look at their contrasting finitary properties:

Proposition 2.15 Let W C X be an open subspace of a Hausdorff space X, and let [J and ¢ be
operators defined as above, i.e.

OU=(UUW=X) and OV =(VgW)

for any open subspaces U,V C X. Then
(a) the operator O preserves finite intersections,

OXistrue and QU AQOV =0OUNV),
(b) whereas ¢ preserve finite unions (Theorem [2.5)),
O0is false and QU UV)= QU V{OV.

(¢) The corresponding closed subspace X \ W is non-empty iff (0 is false
iff O X is true,
(d) and it is a singleton iff O preserves unions, iff ¢ preserves intersections.
(e) Both operators are Scott-continuous, as we shall explain in the next section. O

Now recall the situation in which [] was defined in terms of the compact subspace Z; of all
zeroes, and ¢ using the overt subspace Sy of stable zeroes of a non-hovering continuous function
R — R. In the non-singular situation these coincide, but for singular cases of the parameters, S
is properly contained in Z.

Proposition 2.16 If O and ¢ arise from subspaces S C Z of a Hausdorff space X, with Z =
(X \ W) compact, then they satisfy the modal laws: for all open U,V C X,

OUAOV = o(UNV), 0OU < (UUW=X) and —OW,

whilst OUuV)=0gUvVvoV and OV <= (VgW)
hold iff S is dense in Z. O
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Example 2.17 If fz = (2 —1)*(z+2) = 23— 32+ 2 then Z; = {1,—2} and Sy = {—2}. The
last two laws fail for the intervals U = (—3,—1) and V = (0, 2). O

Remark 2.18 Therefore, whilst the subsets Sy and Z; agree in the non-singular situation, they
provide a rather unsatisfactory description of the way in which the zeroes of a function (or even
of a polynomial) depend on its parameters, because they change abruptly at singularities. Notice
also that they do so on opposite sides of the singularity and that the Brouwer degree is not defined
there at all.

Whatever description or algorithm we use to solve equations, something has to break at sin-
gularities. Nevertheless, our operators ¢ and [J are defined from the function in a uniform way
throughout the parameter space, indeed, even when it hovers. The only things that go wrong are
(some of) the modal laws that relate them.

Although we shall not discuss computation explicitly in this paper, Theorem [2.8] and Re-
mark [6.6] indicate what the computational meaning of the calculus is intended to be. They pro-
vide a general method of finding stable zeroes, even in the singular case, but this is necessarily
non-deterministic.

We intend to introduce an abstract calculus in which all operations are regarded as continuous
functions. Since ¢ and [J are applied to open subspaces of R, and not to its points, we first have
to explain in a concrete way how the topology (lattice of open subspaces) of a space carries its
own topology.

3 The Scott topology

The topology that we shall impose on the topology of a space exploits the fact that the operators [(J
and ¢ preserve directed joins. It is now well known in theoretical computer science and topological
lattice theory, so, if you are already familiar with either of these subjects, you may safely omit
this section, as it just collects the basic facts of which you should be aware in order to follow the
rest of the paper. Indeed, it serves as background and not an introduction, as our calculus will
abstract from these ideas, rather than assume them.

In more traditional mathematical disciplines, on the other hand, the Scott topology is not
as well known as it deserves, especially considering that it appears in real analysis in the guise
of semicontinuity. The reason why it is absent from the curriculum is probably that it is not
Hausdorff. Whilst there is a compact Hausdorff topology (the Lawson topology) that one can put
on lattices of open sets, this does not have the properties that we require. The canonical textbook
about these topologies and the continuous lattices on which they are particularly well behaved is
IGHK™80]; its six authors represent the various disciplines in which these ideas arose.

Definition 3.1 Let £ be any complete lattice. A subset U C L is called Scott-open if
(a) it is upper: if V> U € U then V € U; and
(b) any subset S C L for which \/ S € U already has some finite F C S with \/ F € U.
The Scott-open subsets form a topology on £. That is, ), L C L are Scott-open, if 4,V C L are
Scott-open then so is Y NV C L, and any union of Scott-open subsets is Scott-open.
It is crucial that you grasp the following point:

Exercise 3.2 Let £ be the lattice of open subspaces of a locally compact space X. Re-stating the
usual “finite open sub-cover” definition (Notation [2.14)), show that a subset K C X is compact iff
the family Ux = {U € L | K C U} of open neighbourhoods of K is a Scott-open subset of £. O

The compact—open topology on the set of continuous functions X — Y was introduced by
Ralph Fox in 1945 [Fox45]. Our topology is the much simpler special case in which Y is the
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Sierpinski space (Definition , but Dana Scott identified it as the crucial one in the study of
topologies on function spaces [Sco72]. It had already become clear by then that the neighbourhoods
of a compact subspace (which our [0 and Uy capture) are more important than its points [Wil70].

There are some other examples of the Scott topology that are useful in analysis and will play
a major role in this paper. (In fact, they too can be seen as special cases of the topology on a
topology on a space.)

Definition 3.3 The space R of ascending reals consists,
(a) classically, of R together with +o0o, ordered arithmetically; or,

(b) constructively, of the rounded lower subsets D C Q, i.e. for those which
deD < Fe:Q.d<ee D,

ordered by inclusion (we get an isomorphic result if we replace Q by R in this);
and is endowed with the Scott topology that is defined by this order. The descending reals R
are defined in a similar way, but using the reverse arithmetical order, so U C Q is rounded upper
ifueU<« 3t:Q.u>te D. Arithmetic negation (—) takes descending reals to ascending ones
and vice versa, indeed making R = R, but it is not continuous as an endofunction of either space.

The significance of (this topology on) the space R in traditional analysis is

Proposition 3.4 A function f : X — R is lower semicontinuous by definition if the inverse
image of any open upper interval (d, 4+oc] is open in X. This happens iff f is continuous with
respect to the Scott topology. O

So, when we say that all functions are continuous in our calculus, we are not precluding the
consideration of semicontinuous functions: they just have to be seen as valued in R or R instead
of in R.

Example 3.5 The lower-semicontinuous step function f:R — R C P(Q)
3

2
1 — o
0

may be defined by

fo = 1d (d<lrz<1j) vV (@d<2Al<z<23) |
V(d<3A2<x<3)V (d<0)

Notice that it takes the lower value at the steps.

Remark 3.6 Constructively, the spaces R and R are not obtained by re-topologising the extended
set of reals. On the contrary, an ordinary Fuclidean real number is defined by a pair (called
a Dedekind cut, cf. Definition consisting of an ascending real (the set of its rational lower
bounds) and a descending one (the upper bounds) that are compatible. In the computable setting,
there are descending reals that have no ascending partner, and vice versa (Example .

The analysis of the ascending reals is very simple. In particular, any set of ascending reals
has a supremum, given by union, and this is the limit of the set, so there is no difficulty with
interchanging ascending limits, unlike two-sided ones.

14



These spaces offer two ways of forming the supremum of any set of Euclidean reals:
(a) as the intersection of their upper bounds, yielding a descending real; or
(b) as the union of their lower bounds, the result of this being an ascending real.
In our calculus, we will be able to form these two suprema when the set is compact or overt,
respectively (Propositions and .

Why should these two suprema be the same? Constructively, we need an additional condition
on the set in order to ensure that the two parts define a Dedekind cut:

Definition 3.7 A subset K C R obeys the constructive least upper bound principle if
(a) it is inhabited and bounded above, and

(b) for any two real numbers z, z with z < z,

either z is an upper bound for all of K, or there is some k € K with = < k.
This condition, which is probably due to L.E.J. Brouwer, is necessary to form y = sup K because
of the locatedness property (Axiom of y with respect to (z < z), that is, it must satisfy
either # < y or y < z. We shall find in Section [I2] that this follows from the mixed modal laws
(¢f. Proposition and is sufficient to define a Dedekind cut, and therefore a Euclidean real
number.

You may perhaps think that this “constructive” situation is rather complicated, and could
be simplified by adding some extra axioms. However, it is not difficult to adapt the arguments
of Sections [I| and to show that any such axiom would provide an oracle that could solve
unreasonable computational and logical problems like those in Remark We shall come to
see that these anomalous situations are just as natural as singularities in polynomial equations,
and are indeed closely related to them. When we recognise that ascending and descending reals
occasionally lead their own separate lives, we come to appreciate the symmetries that real analysis
enjoys, instead of its pathological counterexamples.

Definition 3.8 Our last example of the Scott topology is the Sierpiriski space, which we call
Y. We define it as the lattice of open subspaces of the singleton. Classically, therefore,

52 looks like (Q), not like 2= (® ©),

[ ]
having two points and three open sets. We shall call these points T and L, the former being open
and the latter closed. Since ¥ is a lattice, it also has A and V.

The space 2 is both discrete and Hausdorff, but ¥ is neither. Whilst there is a continuous
function that takes the two points of 2 to those of ¥, any continuous function ¥ — 2 is constant.
Hence ¥ is connected, at least in the classical sense, and indeed in the constructive ones that we
shall consider in Section The map [0,1] — X by z +— (z > 0) even makes it path-connected.

This means that > has “more than” two points — there is something in between | and T
that “connects” them. From a constructive point of view, this is because we defined the points
of ¥ as the open subsets of the singleton. There are more of these than just the decidable or
complemented ones | =) and T = {x}.

The Sierpiniski space was treated with derision in classical topology, but it is the spider in
the middle of the web in our subject, being even more important than Proposition [3.4] for the
ascending reals.

Proposition 3.9 For any space X, there is a bijective correspondence amongst
(a) open subspaces U C X,

(b) continuous functions ¢ : X — ¥ and

(c) closed subspaces C C X,
where we shall say that ¢ classifies U = ¢~ !(T) and co-classifies C = ¢~ ().
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In particular, either U or C uniquely determines ¢. (]

Notice, therefore, that the correspondence between U and C' is given by their common rela-
tionship to ¢ and not by set-theoretic complementation. This is how we avoid the double negations
that appear frequently in work in the Brouwer and Bishop schools. Nevertheless, it is convenient
to retain the word complementary for this relationship.

Remark 3.10 In the case where X = X, continuous functions ¥ — ¥ correspond to open subsets
of 3. Three of these are definable: the identity and the constant functions with values 1 and T,
corresponding to the singleton, empty and entire open subspaces respectively. Just as there was
no arithmetical negation for the ascending reals (Definition , there is mo continuous function
(“logical negation”, =) that interchanges L and T.

More generally, Scott-continuous functions respect the order on the lattice. Indeed, any topo-

logical space X has a specialisation order, defined by
x <y if every neighbourhood of = also contains y.

This is antisymmetric iff the space is Tg, discrete iff it is T; and (classically) it agrees with the
order on the underlying lattice when that is given the Scott topology. Notice that we distinguish
this order relation < from < in real and integer arithmetic; they agree in the case of the ascending
reals, but < is > or = for the descending or Euclidean reals respectively. The key difference is
that the order < is intrinsic, i.e. every continuous function f : X — Y preserves it, whilst < is
tmposed on N, Q and R, in the sense that continuous functions may in general preserve, reverse
or ignore it.

Scott continuity is stronger than just preserving order, but instead of talking about arbitrary
joins and finite sub-joins, it is convenient to introduce a new definition.

Definition 3.11 A poset (partially ordered set) (Z,<) is directed if it is inhabited (has an
element) and, for any ,j € Z, there is some k € Z with ¢ < k > j. When we form a join or union
indexed by 7 (taking < to <), we use an arrow to indicate that it is directed: \! or |}.

Examples 3.12 The following ordered sets are directed:
(a) any total order (or chain); in particular

(b) N, Qor {¢: Q| ¢ < a} with the arithmetical order, where a is any (ascending) real number;
and

(¢) Qor {q: Q| qg>a} with the reverse arithmetical order, if a is a (descending) real number;
also,

(d) the set of finite subsets of any set, with the inclusion order.

The Scott topology may be reformulated using directedness: U C L is open iff it is upper
and, whenever \/‘xl € U, already x; € U for some i € I. Hence this topology may be defined on
any dcpo (directed-complete partial order), i.e. a poset in which every directed subset but not
necessarily every finite subset has a join.

Proposition 3.13 A function F' : £1 — L2 between complete lattices (or dcpos) is Scott-
continuous, i.e. F~1(V) is Scott-open in £; whenever V C L5 is Scott-open in Lo, iff F preserves

directed joins, i.e.
icl icl
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for all directed (z;);e; C £1. Hence a function that is Scott-continuous in each of several variables
is jointly continuous in them [Sco72, Props. 2.5&6]. O

Examples 3.14 Our operators (] and ¢ are Scott-continuous functions from the lattice of open
subspaces of X to X, since they preserve directed joins (Notation .

Moreover, if they are defined in terms of some (function f with) parameters, they are jointly
continuous with respect to both those parameters and to open subspaces of X, throughout the
parameter space. By contrast, the Brouwer degree cannot be continuous at singularities, because
of the fact that it takes values in Z.

Remark 3.15 The use of directed covers of compact spaces instead of general ones simplifies the
idioms of analysis, because covers are often naturally indexed by the rationals or reals.

Suppose, for example, that we want to find an upper bound for a function f : K — R. The
subsets U, = {k € K | fk < u} indexed by candidate bounds u € Q are open and cover K, so
only finitely many of them are needed. Now, u ranges over a (totally ordered and so) directed
poset Q, and we have u < v = U, C U,. Therefore the finite open sub-cover need only have one
member, named by the greatest u in the finite set, and we have K C U, for a single u. In other
words, there is a uniform bound.

More abstractly, a directed family (U,) that respects the order on u € Q corresponds to an
upper semicontinuous function f: K — R, and to a directed relation 6, by

(keU,) = 60ku) = (fk<u).

When we need to state Scott continuity in our abstract calculus, in Section [0} it will be most
convenient to formulate it using 8, which must satisfy

(u <v) A O(k,u) = 0(k,v).

This situation also arises with the opposite order. For example, in the definitions of continuity
and differentiability (Section we require > 0 with a certain property. Underlying this is a
lower semicontinuous function, a directed family of subsets with § < ¢ = Us D U,, or a relation
0 that satisfies

(6 <e) A b(k,e) = 0(k,0).

Now let’s think about Proposition [3.9] again.

Notation 3.16 Since open sets U C X correspond to continuous maps X — X, we write XX for
the lattice of them, equipped with the Scott topology. This correspondence also gives rise to the
notation

oa or oa < T for acU

for membership of this subspace.

Implicit in the expression “¢a” is a binary higher-type function, called evaluation or applica-
tion, so ev(¢,a) = ¢pa. We want this, like everything else, to be continuous, but this requirement
places a severe restriction on the compatibility of the ideas in this paper with those of traditional
topology:

Proposition 3.17 The function ev : ¥¥ x X — ¥ is jointly continuous (with respect to the

Tychonov product topology defined from the given topology on X and the Scott topology on XX
and X) iff X is locally compact |GHKT80, Thm. 1T 4.10], [Joh82, §VII 4]. O
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As we are dealing with non-Hausdorff spaces (in particular ¥*) here, we need to adjust the
traditional definition of local compactness [HMSI]:

Definition 3.18 A (not necessarily Hausdorff) space X is locally compact if, whenever x € U C
X with U open, there are compact K and open V withz € V C K C U.

This relation between open subsets, written V' < U and called way below, may be charac-
terised without mentioning the compact subspace K between them: if U C [} W; then already
V C W; for some 4. This is the point from which the theory of continuous lattices begins [GHK™80],
but we shall not need to make much use of it, beyond observing the ubiquitous alternating inclu-
sions of open and compact intervals in real analysis (Remark .

The result that justifies calling X a function-space is then

Theorem 3.19 Let X be locally compact and I' any space. Then ¥ is also locally compact and
there is a bijection between continuous functions

'x X — % and T — XX

that is given in the backward direction by composition with ev : X x X — ¥. This correspondence
is natural in the space T, i.e. it respects pre-composition with any continuous function A — T’
[Sco72l Section 3]. O

Remark 3.20 Dana Scott’s work grew into the two disciplines of domain theory and denotational
semantics in theoretical computer science, giving topological meanings to programs as continuous
functions. These ideas are particularly useful for functional programming languages, i.e. those in
which functions may be defined as first class objects, e.g. [Plo77]. Functions are interpreted using
A-abstraction, whilst recursive definitions that need not necessarily terminate or be well founded
are given a meaning in terms of directed joins.

Denotational semantics was founded on an intuition of the analogy between continuity and
computation that had earlier roots in recursion theory such as the Rice—Shapiro theorem [Rich6].
In particular, the recursively enumerable subsets of N provide something like a topology, in so
far as they admit all finite intersections and some infinite unions.

The connection can be put more simply than this, in terms of computation with real numbers.
We cannot make a positive (terminating) test for equality (cf. Remark , but we can do so
for #, > or <. More generally, we may observe membership of an open subspace, since that
is determined by some finite approximation to (essentially, finitely many decimal places of) the
number. Like open subsets, (parallel) observations admit finite intersections and (some) infinite
unions. Another basic intuition of Scott continuity is that the result of a computation depends on
only a finite part of the data.

We shall begin the axiomatisation of our calculus in the next section from these remarks, but
first we need to make some more foundational observations about general topology.

Remark 3.21 The Sierpinski space is particularly familiar in computation, because it provides
the type of values of a program that may terminate (T) or diverge (L) but generates no numerical
output or other side-effect. This type is called void in C and JAVA. An input of this type is a
signal that may or may not ever arrive.
Then a program F' of type ¥ — X, i.e. which takes a signal as input and then may terminate
(output another signal) or diverge, may behave in one of three ways:
(a) it may always diverge (L), whether it obtains an input signal or not;
(b) it may transmit the signal (id), i.e. wait for its input, do some internal processing and then
terminate; or

(¢c) it may always terminate (T ), without waiting for the input.
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The one thing that it cannot do is to negate its input (—), i.e. terminate iff its signal never
arrives; this is called the Halting problem [Tur3h]. The type ¥ is therefore quite different from
a two-element or Boolean type.

This situation is the same as that in Remark except that we are now able to see com-
putationally something that was perhaps a little ambiguous in constructive topology, namely the
general behaviour of any program F : ¥ — ¥ is determined by the specific cases FT and FL in
which it definitely does or does not receive the signal.

As in topology, we must have F 1 < F'T, i.e. if the program terminates without receiving the
input signal, it must also terminate if it does receive it (for example, the signal might arrive just
after F' has terminated).

Using the lattice structure on 3, we may use “linear interpolation” to define a function F' :
¥ — 3, from FT and F1. Because of the previous remark, this recovers the original F:

Definition 3.22 The Phoa principle (pronounced “Pwah”) [Hyl91] says that
forany F:¥— Y and z:X%, Fr < F1VzAFT.

It would be wise to pause for a moment’s reflection on the ways in which we have motivated
the Phoa principle in topology (Remark and computation. This is the key step in the
abstraction that we shall make in ASD, because it is exactly the condition that is required to
ensure the extensional correspondence amongst open and closed subspaces and terms of type X
in Proposition [C].

It will also provide the glue that gives our proofs their coherence. However, the rules of
inference in topology to which it leads (Axiom may appear to be classical, so we emphasise
that it was discovered as a result of investigations in several constructive disciplines.

One of these is locale theory, which is a formulation of general topology purely in terms of
lattices, without mentioning points; Peter Johnstone’s book [Joh82] is an outstanding account of
this and its relationship to many areas of mathematics, in particular analysis. The validity of our
principle for locales is shown in [OL §7.5], but it had been noticed independently as the so-called
Frobenius laws for open [JT84] and proper [Ver94] maps, cf. Propositions [11.2]and [8.2] respectively.

As for its connection with real analysis, the Phoa principle is similar to Markov’s principle,
but the historical links involve too many unrelated ideas along the way to give the bibliographical
trail.

Remark 3.23 There is a certain imprecision about the analogy between topology and recursion
theory, since the former traditionally requires arbitrary unions, but the latter only recursive ones.
In fact, the translation from programs to continuous functions is perfectl