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Abstract
A basis for a locally compact space is a family of pairs of subspaces, one open and the

other compact, where containment of the compact subspace indicates whether the open one

contributes to the union expressing a general open subspace. This is captured abstractly

by saying which finite sets of basic opens cover a basic compact subspace. We identify the

complete axiomatisation of this “way below” relation without assuming that the system is

closed under unions or intersections, so balls in a metric space provide an example. We show

how to reconstruct a space from an abstract basis in Point–Set Topology, locale theory, formal

topology and abstract Stone duality. We also characterise continuous functions by means of

relations called matrices that generalise the way-below relation. Hence our category defined

using relations is weakly equivalent to that of locally compact spaces in each of these four

formulations of topology, according to its appropriate logical foundations. Subsequent work

will develop abstract bases towards computation.

Note on the length of this paper:
The principal objective is to establish definitively the axioms for an abstract basis so that

future work can build on them. Everything up to Section 7 is needed to show that they are sound
and complete in Point–Set Topology, since it turns out to be necessary to go via locale theory
and formal topology. Sections 8–10 are about my own subject (ASD) and for me Section 10
contains the core result. For technical reasons, the next paper, which will show that bases and
matrices provide a model of ASD, must restrict to overt spaces (Section 12) with bases using
compact subspaces (Section 11). Finally, we need some examples (Section 13) and to sum up the
complicated argument as equivalences of categories (Section 14).

Arguably, however, I tend to include too much detail in my proofs, so I am open to opinions
that particular results are obvious.

1 Introduction

In the old debate about the nature of mathematical research, maybe we can say that isolated
definitions are human inventions, whereas it is a natural discovery when two or more different
concepts turn out to be equivalent. We shall see that the notion of local compactness (unlike more
general kinds of topology) has rather more than two formulations; moreover we can talk about
it using four different strengths of logical foundations. The weakest of these, which we shall call
an abstract basis, requires only relations between discrete sets and either lists or finite subsets,
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offering a way in which to do computation with locally compact spaces.
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Definition 1.1 A concrete basis for a (not necessarily locally compact) topological space X
indexed by a preorder (A,v) is a family of open subspaces Ua ⊂ X such that
(a) if a v b then Ua ⊂ Ub;

(b) if x ∈ Ua and x ∈ Ub then x ∈ Uc for some c ∈ A with a w c v b; and

(c) if x ∈ U ⊂ X with U open then ∃a. x ∈ Ua ⊂ U .

Definition 1.2 A space X is locally compact if it has the interpolation property that, given
x ∈ V ⊂ X with V open, there are x ∈ U ⊂ K ⊂ V ⊂ X with U open and K compact. This
definition is suitable for non-Hausdorff (but sober) spaces and was given by Karl Hofmann and
Michael Mislove [HM81].

When there are plenty of compact subspaces like this, they may be used like the dual basis
in linear algebra to specify which basic open subspaces Ua should contribute to the union in the
last axiom above:

Definition 1.3 A concrete basis using compact subspaces for a locally compact space X is
a family of pairs (Ua,Ka) of subspaces of X indexed by a preorder (A,v) such that
(a) each Ua is open and Ka is compact;

(b) if a v b then Ua ⊂ Ub and Kb ⊂ U ⇒ Ka ⊂ U for any open U ⊂ X;;

(c) x ∈ Ua ∧ x ∈ Ub =⇒ ∃c. x ∈ Uc ∧ (a w c v b) and

(d) x ∈ V ⇐⇒ ∃a. x ∈ Ua ∧ Ka ⊂ V ,

where the last part is called the basis expansion . The constructions in Section 8 show that
it is convenient not to require Ua ⊂ Ka, but if Ka ⊂ U with U open then Ua ⊂ U because it
contributes to the basis expansion.

From the point of view of the information content of the equivalences that are summarised
in the diagram above, we shall consider a locally compact space to be equipped with a specified
concrete basis, in particular the family (Ka) or its equivalents. On the other hand, Corollary 6.15
will introduce another property called continuity that depends only on the open subspaces and so
contains less information.

Remark 1.4 The elements of the set A are intended to be codes that we can use for computation,
such as the rational endpoints of real intervals or the centres and radii of balls in Euclidean space.

We choose to write the order relation v in the topological direction (as above and in Section 7)
rather than the domain-theoretic one (cf. Proposition 8.7), but exponentiation reverses it (Propo-
sition 8.3). Note, however, that we do not require Ua ⊂ Ub =⇒ a v b. Also, we may have both
a v b and b v a without requiring a = b. Lemma 3.6 shows that it can be eliminated altogether,
but we feel that there are conceptual reasons for keeping it.
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As an application of the traditional (“finite open sub-cover”) definition of compactness, we
may replace the point x in the interpolation property by a compact subspace L with L ⊂ V ,
obtaining L ⊂ U ⊂ K ⊂ V ⊂ X. The open subspace U can be then expressed as a union of basic
ones, which form an open cover of the compact space L, so finitely many of them suffice.

Notation 1.5 We therefore need to use unions of finite sets or lists ` of basic open–compact pairs.
Everything that we do will be consistent with interpreting such ` either as a list or as a subset of A
and there are computational advantages in maintaining this ambiguity. We adopt the convention
that the early letters (a, . . . , e) of the alphabet denote individual members of the indexing set A,
those (h, k, `) in the middle are lists or finite subsets of A and the later ones (p, . . . , w) are possibly
infinite subsets.

Then we write
U` ≡

⋃
a∈`

Ua and K` ≡
⋃
a∈`

Ka

and define the way-below relation

a ≺≺ ` as Ka ⊂ U` ≡
⋃
b∈`

Ub.

Our goal is the complete axiomatisation of this relation. Then the set A, the preorder v and way
below relation ≺≺ will be enough to describe a locally compact space.

Example 1.6 The real line R has a familiar basis consisting of open and closed intervals, whose
endpoints we may perhaps choose to be dyadic rationals. A typical instance of a ≺≺ ` in this
basis is

[d, u] ⊂ (e1, t1) ∪ · · · ∪ (en, tn).

We can characterise this arithmetically, without considering the intervals as sets or quantifying
over the real numbers inside them: up to permutation of the indices, the condition is

e1 < d ∧ e2 < t1 ∧ e3 < t2 ∧ · · · ∧ en < tn−1 ∧ u < tn.

Admittedly, this formula is awkward and its analogues for balls in Rn would be quite unwieldy,
but that is a fact of life in geometry. In practice, we get to choose how to divide up a region
for computation, so it might be better in later work to formulate systems that generate bases.
However, we are concerned here with establishing the axiomatisation, so we prefer to assume
closure under conditions such as transitivity of ≺≺.

Remark 1.7 Complete axiomatisations of the ≺≺ relation were given in [JS96] and [G]. However,
these accounts relied on using bases that are indexed by lattices, i.e. there are operations u and
t on indices such that

Uatb = Ua ∪ Ub Katb = Ka ∪Kb

Uaub = Ua ∩ Ub and (NB) Kaub ⊂ Ka ∩Kb,

where we also define U◦ ≡ K◦ ≡ ∅, U• ≡ X and (if X is compact) K• ≡ X. In [JS96] the lattice
structure is exploited to illustrate Lawson duality between the open subspaces of one stably locally
compact space and the compact saturated subspaces of another.

The innovation in the present work is to use “individual” basis elements, so that the basis
need not be closed under these lattice operations. Some of the most interesting features of our
new approach arise from making this distinction. It separates the notions of roundedness and
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locatedness and [future work] will show how this leads to some of the key features of interval
computation.

Our axioms are rather simpler than the earlier ones because they do not have to take account
of the lattice operations:

Definition 1.8 An abstract basis is a structure (A,v,≺≺) that satisfies the primary axioms

a v a reflexivity

a v b v c =⇒ a v c transitivity

a v b ≺≺ k v ` =⇒ a ≺≺ ` co- & contravariance

(a ≺≺ k ≺≺ `1) ∧ (k ≺≺ `2) =⇒ a ≺≺ `1 u `2 weak intersection

a ≺≺ ` =⇒ ∃k. a ≺≺ k ≺≺1 `, Wilker

where the additional symbols will be defined in Notation 1.12.

Remark 1.9 In the case of real intervals above, the Wilker property says that we may shrink the
(ei, ti) slightly but maintain the “way below” property amongst them. On the other hand, the
single interpolation rule below says that we may also enlarge [d, u].

The Wilker rule allows interpolation of some k between given a ≺≺ `. However, Wilker
is stronger because it says that each b ∈ k is covered by a single c with b ≺≺ c ∈ `, whereas
interpolation only says that the list ` covers collectively, b ≺≺ `.

Conversely, the special case of the weak intersection rule with `1 ≡ `2 is transitivity :

a ≺≺ k ≺≺ ` ≡ a ≺≺ k ∧ ∀b ∈ k. b ≺≺ ` =⇒ a ≺≺ `.

We motivate these primary axioms and prove that concrete bases obey them in the next
section. However, whilst they provide the complete axiomatisation for concrete bases in general,
when we come to use bases for applications such as computation (or even to characterise continuous
functions, cf. Lemma 4.3), we find ourselves wanting to assume that there are enough individual
basis elements for certain purposes, instead of using unions of them.

Definition 1.10 We will also assume that concrete bases satisfy the following (secondary or)
roundedness axioms:

Ka ⊂ U` =⇒ ∃b. Ka ⊂ Ub ∧ Kb ⊂ U`

(Kb1 ⊂ Ua) ∧ (Kb2 ⊂ Ua) =⇒ ∃b. (Kb1 ⊂ Ub) ∧ (Kb2 ⊂ Ub) ∧ (Kb ⊂ Ua)

∃b. Ka ⊂ Ub and ∃b. Kb ⊂ Ua,

which we call single interpolation , rounded union and boundedness above and below .
Equivalently, the abstract bases satisfy

a ≺≺ ` =⇒ ∃b. a ≺≺ b ≺≺ `

(b1 ≺≺ a) ∧ (b2 ≺≺ a) =⇒ ∃b. (b1 ≺≺ b ≺≺ a) ∧ (b2 ≺≺ b)

∃b. a ≺≺ b and ∃b. b ≺≺ a.

We may “assume without loss of generality” that our bases have these properties because of
manipulations with bases that we describe in Section 3.

If we fail to assert these extra axioms, it is easy to find ourselves using them without noticing it.
For example, if single interpolation holds then the list k in the Wilker rule may be taken to be
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bijective with `, but otherwise k may have to be longer. Even in the simple case of a ≺≺ b, we
would need to interpolate a list in a ≺≺ k ≺≺ b, rather than a single member of the basis.

Definition 1.11 In fact, any basis that uses compact subspaces (Definition 1.3) actually satisfies
the strong intersection rule,

∃`. a ≺≺ ` and (a ≺≺ `1) ∧ (a ≺≺ `2) =⇒ a ≺≺ `1 u `2,

which is equivalent to the weak rule above together with rounded intersection ,

(Ka ⊂ Ub1) ∧ (Ka ⊂ Ub2) =⇒ ∃b. (Ka ⊂ Ub) ∧ (Kb ⊂ Ub1) ∧ (Kb ⊂ Ub2)

or (a ≺≺ b1) ∧ (a ≺≺ b2) =⇒ ∃b. (a ≺≺ b ≺≺ b1) ∧ (b ≺≺ b2).

As with the other roundedness rules, it is much more convenient in applications to work with bases
that have this property. However, for several reasons we avoid it in this paper in our discussion
of the formulation and completeness of the axioms.

One reason for this is that we fully embrace non-Hausdorff spaces. In a Hausdorff space, the
intersection of two compact spaces is closed in either of them and therefore compact. This need
no longer be the case in a non-Hausdorff space, so the space is called stably locally compact if
it is.

Another is that, in the passage from Point–Set Topology to the formulations in weaker logics
that we consider, it is easier to make the analogy amongst them by considering the neighbourhood
filter Ka instead of the compact subspace Ka. We then find that the filter requirement is not
really necessary.

We will explain these issues in the next section.
Finally, whilst it is possible to turn a basis with the weak intersection property into one obeying

the strong rule, the construction (Theorem 11.6) requires the Axiom of Dependent Choice, which
may be undesirable in certain foundational settings.

Note that, although the weak intersection rule implies transitivity, the latter must be stated
explicitly alongside the strong intersection rule.

Notation 1.12 In these axioms, we extend v and ≺≺ to lists or finite subsets by writing

a v ` ≡ ∃b ∈ `. a v b
a v `1 u `2 ≡ a v `1 ∧ a v `2

≡ ∃b1 ∈ `1. ∃b2 ∈ `2. b1 w a v b2
k v ` ≡ ∀a ∈ k. a v ` ≡ ∀a ∈ k. ∃b ∈ `. a v b
a ≺≺ b ≡ a ≺≺ {b}
k ≺≺ ` ≡ ∀a ∈ k. a ≺≺ `
a ≺≺ `1 u `2 ≡ ∃k. a ≺≺ k ∧ ∀b ∈ k. b v `1 u `2

≡ ∃k. a ≺≺ k ∧ ∀b ∈ k. ∃c1 ∈ `1. ∃c2 ∈ `2. c1 w b v c2
a ≺≺1 ` ≡ ∃b ∈ `. a ≺≺ b
k ≺≺1 ` ≡ ∀a ∈ k. a ≺≺1 ` ≡ ∀a ∈ k. ∃b ∈ `. a ≺≺ b.

We write Fin (A) for either the set of lists or of finite subsets of A, ◦ for the empty list, kt` ≡ k∪`
for the union of two lists and

⊔
L for the union of a list of lists. This structure makes Fin (A) the

free join semilattice on the preorder (A,v) and as such the preorder on Fin (A) is k v ` above.
In constructive settings, we mean finite in the sense of Kazimierz Kuratowski [Kur20], i.e. finitely
enumerable, so arbitrary subsets of finite sets need not necessarily be finite.
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After completing our introduction to the axiomatisation of bases for topological spaces in
Point–Set Topology, we carry out the same task for continuous functions in Section 4:

Definition 1.13 Let f : X → Y be a continuous function between locally compact sober spaces
X and Y with concrete bases {(Ua,Ka) | a ∈ A} and {(Vb, Lb) | b ∈ B} respectively. We define a
binary relation between the indices of the bases,〈

a
∣∣ f ∣∣ b 〉 by Ka ⊂ f−1Vb or equivalently fKa ⊂ Vb.

In particular,
〈
a
∣∣ id ∣∣ a′ 〉 ⇐⇒ (a ≺≺ a′).

We call
〈
a
∣∣ f ∣∣ b 〉 the concrete matrix of f , following the loose analogy between bases in topology

and in linear algebra that we have already made in Definition 1.3. The notation was inspired by
that of Paul Dirac in Quantum Mechanics, whereas [G] used the notation Ĥb

a from Albert Einstein’s
General Relativity.

The matrix represents f in the sense that

fx ∈ Vb ⇐⇒ ∃a. (x ∈ Ua) ∧
〈
a
∣∣ f ∣∣ b 〉,

using the basis expansion of f−1Vb.

Such matrices are characterised as follows:

Definition 1.14 An abstract matrix between bases (A,v,≺≺) and (B,v,≺≺), which we write
as 〈

a
∣∣M ∣∣ b 〉 or M : (A,v,≺≺) −→ (B,v,≺≺),

is a binary relation between the sets A and B that is contravariant and rounded in a,

(a v a′) ∧
〈
a′
∣∣M ∣∣ b 〉 =⇒

〈
a
∣∣M ∣∣ b 〉 ⇐⇒ ∃a′. (a ≺≺ a′) ∧

〈
a′
∣∣M ∣∣ b 〉

and covariant and rounded in b,〈
a
∣∣M ∣∣ b′ 〉 ∧ (b′ v b) =⇒

〈
a
∣∣M ∣∣ b 〉 ⇐⇒ ∃b′.

〈
a
∣∣M ∣∣ b′ 〉 ∧ (b′ ≺≺ b).

The next axioms correspond to the preservation of arbitrary joins and finite meets by inverse
image maps: M has the partition property if〈

a
∣∣M ∣∣ b 〉 ∧ (b ≺≺ `) =⇒ ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b′ ∈ `.

〈
a′
∣∣M ∣∣ b′ 〉,

it is bounded if ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b.
〈
a′
∣∣M ∣∣ b 〉

it is weakly filtered if
(a ≺≺ a′) ∧

〈
a′
∣∣M ∣∣ b1 〉 ∧ 〈 a′ ∣∣M ∣∣ b2 〉 =⇒

∃k`. (a ≺≺ k) ∧
(
∀a′ ∈ k. ∃b ∈ `.

〈
a′
∣∣M ∣∣ b 〉) ∧ (∀b ∈ `. b1 w b v b2).

and strongly so if the same holds without (a ≺≺ a′). Finally, M is saturated if

(a ≺≺ k) ∧ ∀a′ ∈ k.
〈
a′
∣∣M ∣∣ b 〉 =⇒

〈
a
∣∣M ∣∣ b 〉,

but beware that we also use the word saturated in an unrelated sense in Definition 3.15.
We show that the category of locally compact sober spaces and continuous functions is equiv-

alent to the category of bases and matrices that have all of the above properties.

More explanation is needed here to summarise the rest of the paper.
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That is only the beginning of the story, since we still have to demonstrate completeness or
sufficiency of our axioms for bases by constructing a space with a concrete basis that corresponds
to any given abstract one.

In Point–Set Topology of course we need the Axiom of Choice to construct a space and concrete
basis from a given abstract one. However, even though an explicit description is available, it seems
only to be possible to prove its correctness if the basis is countable.

The general case only seems to be provable via Locale Theory together with either Formal
Topology or Abstract Stone Duality.

Moreover, for both of the latter subjects, abstract bases provide a considerably simpler defini-
tion of local compactness than those that currently exist in the literature. Future work will use
matrices to develop computation.

Abstract bases therefore provide a unifying framework across these four formulations of topol-
ogy. Categorical equivalence is provable using the strength of logic that each customarily requires:
set theory with Choice, topos logic, Martin-Löf type theory and an arithmetic universe respec-
tively. We can therefore say logically that a space or continuous function exists in each subject iff
it is definable in the appropriate logic.

2 Point–Set Topology

We begin by showing that any concrete basis for a locally compact space in traditional Point–Set
Topology gives rise to an abstract basis that satisfies the principal axioms. We also introduce a
more general form of concrete basis that identifies more precisely the criterion whereby a basic
open subspace should contribute to the basis expansion.

Lemma 2.1 Any basis using compact subspaces (Definition 1.3) satisfies the boundedness and
strong intersection rules (Definition 1.11),

∃`. a ≺≺ ` and a ≺≺ `1 ∧ a ≺≺ `2 =⇒ a ≺≺ `1 u `2,

where a ≺≺ `1 u `2 means ∃h. a ≺≺ h ∧ ∀b ∈ h. ∃c1 ∈ `1. ∃c2 ∈ `2. c1 w b v c2.

Proof For boundedness, consider the basis expansion of the whole space quâ open subspace.
This covers the given basic compact subspace Ka, but a finite subset ` of this cover suffices.

The hypotheses a ≺≺ `1 and a ≺≺ `2 of the intersection rule say that

Ka ⊂ U`1 ∩ U`2 ≡
⋃
{Ub1 | b1 ∈ `1} ∩

⋃
{Ub1 | b1 ∈ `1}.

Using distributivity and part (c) of Definition 1.3, this union is⋃
{Ub1 ∩ Ub2 | b1 ∈ `1, b2 ∈ `2} =

⋃
{Uc | ∃b1 ∈ `1. ∃b2 ∈ `2. b1 w c v b2}.

Since Ka is compact, a finite set h of such c suffices to cover it, so

Ka ⊂ Uh ≡ a ≺≺ h and ∀c ∈ h. ∃b1 ∈ `1. ∃b2 ∈ `2. b1 w c v b2,

which is the definition of a ≺≺ `1 u `2. �

Definition 2.2 Definition 1.3 and this lemma would have been simpler if the preorder v had had
a formal intersection operation, u, satisfying

a w a u b v b and a w c v b =⇒ c v a u b,
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whilst the basic subspaces would satisfy

Uaub = Ua ∩ Ub but Kaub ⊂ Ka ∩ Kb,

where the containment of compact subspaces need not be an equality.
We call the space stably locally compact when such (binary) intersections do exist.
A stable abstract basis is one that has such a u operation and satisfies the boundedness and

strong intersection rules.

Examples 2.3 Many important examples do have such an operation:
(a) intervals in R and cuboids in Rn, with geometric intersection for u; and

(b) lists of constraints on data, with conjunction or concatenation for u.

On the other hand,
(c) it is more common to use balls as bases for Rn and other metric spaces, but they do not

intersect in balls; but

(d) more fundamentally, the intersection of two compact subspaces in a non-Hausdorff space need
not be compact. Consider, for example, an interval [0, 1] together with an extra 1′, or more
formally the cokernel of [0, 1) ↪→ [0, 1].

Besides this, the subspaces need not overlap at all, so we would need a name for the empty
subspace. Keeping track of empty subspaces creates some quite absurd difficulties. For example,
in the Tychonov basis for the product of two spaces,

(a, b) ≺≺ (a′, b′) ⇐⇒ (a ≺≺ a′) ∧ (b ≺≺ b′) ∨ (a ≺≺ ◦) ∨ (b ≺≺ ◦)

since K × L ⊂ U × ∅ for any compact K and L and open U . In order to avoid this complication
when we construct the Tychonov product of two abstract bases, in [work in progress] we shall
restrict to the case where a ≺≺ ◦ is forbidden, cf. Section 12.

Remark 2.4 There are two ways of proceeding without assuming stable local compactness:
(a) in applications we generally prefer to use compact subspaces for the dual basis, but not

intersections of them; whilst

(b) in proving the equivalence of various notions in this paper, we replace compact subspaces by
something weaker, which would allow us to use intersections, although we usually do not.

Lemma 2.5 For any compact space K, the family K ≡ {V | K ⊂ V } is a Scott-open filter :
(a) if K 3 V ⊂W then K 3W ;

(b) if K 3
⋃

i∈I Vi then there is some finite subset ` ⊂ I for which K 3
⋃

i∈` Vi; and

(c) K 3 X, and K 3 V,W =⇒ K 3 V ∩W . �

In fact, so long as the space is sober, every Scott-open filter of open subspaces arises in this
way (Lemma 3.14). We adopt the habit of writing K 3 U rather than U ∈ K because we will be
able to interchange K ⊂ with K 3 in most of our arguments.

The difficulty in the non-stable case is that there is a conflict between the two uses of inter-
sections: of compact subspaces and of open ones in the definition of a filter. However, for many
purposes, it is unnecessary to use filters. So we can sacrifice the subspaces but retain the essence
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of compactness. Scott-open families satisfy parts (a) and (b) and we can rewrite the Definition
of a basis using them:

Definition 2.6 A basis using Scott-open families consists of
(a) for each a ∈ A, an open subspace Ua and a Scott-open family Ka of open subspaces;

(b) if a v b then Ua ⊂ Ub and Ka ⊃ Kb;

(c) Ua ∩ Ub =
⋃
{Uc | a w c v b}; and

(d) V =
⋃
{Ua | Ka 3 V }.

We amend Notation 1.5 by writing

a ≺≺ ` for Ka 3 U` and K` ≡
⋂
{Kb | b ∈ `}.

Remark 2.7 It is easy to add intersections (u) to a basis, but at the cost of using Scott-open
families instead of compact subspaces. If (Ua,Ka) is a basis of either kind then

U(`) ≡
⋂
{Ua | a ∈ `} and K(`) ≡

⋃
{Ka | a ∈ `}

define another one for the same space such that u is given by union of lists, where the the
parentheses on the subscripts distinguish this construction from the notation that we have just
defined.

The other direction, replacing Scott-open families with compact subspaces, possibly at the
expense of intersections, is rather more difficult, so we defer it to Section 11.

Lemma 2.8 A basis using Scott-open families obeys the weak intersection rule ,

a ≺≺ k ∧ k ≺≺ `1 ∧ k ≺≺ `2 =⇒ a ≺≺ `1 u `2.

Proof The hypothesis k ≺≺ `1 says that, for each b ∈ k,

Kb 3 U`1 ≡
⋃
{Uc | c ∈ `1},

so Ub contributes to the basis expansion of U` and Ub ⊂ U`1 . Since a ≺≺ k, it follows that

Ka 3 Uk ≡
⋃
{Ub | b ∈ k} ⊂ U`1 ∩ U`2 ,

but a Scott-open family Ka must be closed upwards, so Ka 3 U`1 ∩U`2 too. By a similar argument
as in Lemma 2.1, but using Scott-openness of Ka in place of compactness of Ka, there is some
finite set h with

(Ka 3 Uh) ≡ (a ≺≺ h) and ∀c ∈ h. ∃b1 ∈ `1. ∃b2 ∈ `2. (b1 w c v b2),

which is the definition of a ≺≺ `1 u `2. �

We also need a rule to govern unions. The frequency with which this property appears in
print without attribution indicates its importance. This condition was identified by Peter Wilker
[Wil70] as part of the study of topological function-spaces, cf. Proposition 8.3, anticipating many
of the ideas of locale theory and continuous lattices that we used in Section 6.

Lemma 2.9 If a compact subspace is covered by two open ones, K ⊂ U1 ∪ U2, then there are
compact L1 and L2 and open V1, V2 with K ⊂ V1 ∪ V2, V1 ⊂ L1 ⊂ U1 and V2 ⊂ L2 ⊂ U2. �

Lemma 2.10 A basis of either kind also obeys the Wilker rule that

a ≺≺ ` =⇒ ∃k. a ≺≺ k ∧ ∀b ∈ k. ∃c ∈ `. b ≺≺ c.
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Proof Given Ka 3 U` ≡
⋃
{Ub | b ∈ `}, the basis expansion of Ub for each b ∈ ` yields

Ka 3 U` =
⋃
b∈`

Ub =
⋃
b∈`

⋃
{Uc | Kc 3 Ub} =

⋃
{Uc | ∃b ∈ `.Kc 3 Ub}.

Since Ka is a Scott-open family, there is some finite set k of such c for which we still have

Ka 3
⋃
{Uc | c ∈ k} ≡ Uk and ∀c ∈ k. ∃b ∈ `. (Kc 3 Ub),

which is what the conclusion says. �

In the rest of the paper we will make heavy use of Scott-open families and it will not surprise
you to learn that they are part of something bigger:

Proposition 2.11 The Scott-open subsets of any complete lattice form a topology, called the
Scott topology . A function M∗ : Ω2 → Ω1 between complete lattices is Scott-continuous,
i.e. with respect to this topology, iff it preserves directed joins, written

∨
� or

⋃
6. These are joins

of families {Ui | i ∈ I} for which

∃i. i ∈ I and i1, i2 ∈ I =⇒ ∃i ∈ I. Ui1 6 Ui > Ui1 . �

In fact, we shall see in Proposition 8.3 that this is the topology on the topology on a locally
compact space X that defines the exponential ΣX .

3 Manipulating bases

Having established the primary axioms for a basis (Definition 1.8), we can “improve” it to one with
additional properties that are useful for applications (Definition 1.10). This section is a toolbox
for later use and need not be read sequentially as part of the narrative of this paper.

Remark 3.1 In particular, it is very difficult to make progress — and very easy to make errors
— in this subject without the single interpolation property

(a ≺≺ k) =⇒ ∃b. (a ≺≺ b ≺≺ k),

where, according to the convention in Notation 1.5, b denotes a single basis element rather than
a list.

For example, the concrete basis for R using (open and closed) intervals of length < 1 has this
property and is bounded above, but that using intervals of length ≤ 1 does not. We leave it to
the interested reader to find a similar counterexample for rounded unions. �

Whilst bases need not have this property in general, we assume it in the first two lemmas,
which are variations on the rules for intersections, and then show how to turn any given concrete
basis into one that has this and some similar properties.

Lemma 3.2 (a ≺≺ b ≺≺ `) =⇒ ∃k. (a ≺≺ k ≺≺ b) ∧ (k ≺≺1 `).

Proof By the Wilker and single interpolation rules (twice), there are a′, b′ and `′ with

a ≺≺ a′ ≺≺ b′ ≺≺ b ≺≺ `′ ≺≺1 `, so a′ ≺≺ `′.

Then a ≺≺ b′ u `′ by the weak intersection rule, i.e. there is k such that

a ≺≺ k v b′ ≺≺ b and k v `′ ≺≺1 `′.
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Then k ≺≺ b and k ≺≺1 ` as required. �

Lemma 3.3 Suppose that (A,v,≺≺) satisfies the covariance, transitivity and single interpolation
rules. Then it obeys the strong intersection rule,

(a ≺≺ `1) ∧ (a ≺≺ `2) =⇒ a ≺≺ `1 u `2

iff it obeys both the weak intersection rule

(a ≺≺ b ≺≺ `1) ∧ (b ≺≺ `2) =⇒ a ≺≺ `1 u `2

(with a singleton b instead of a set k) and the rounded intersection rule

(a ≺≺ c1) ∧ (a ≺≺ c2) =⇒ ∃b. (a ≺≺ b ≺≺ c1) ∧ (b ≺≺ c2).

Proof The weak rule follows from the strong one by transitivity. The strong rule, single inter-
polation and covariance give

(a ≺≺ c1) ∧ (a ≺≺ c2) =⇒ ∃kb. (a ≺≺ b ≺≺ k v c1 u c2) =⇒ ∃b. (a ≺≺ b ≺≺ c1) ∧ (b ≺≺ c2).

Conversely, single interpolation, rounded intersection, transitivity and weak intersection give

(a ≺≺ `1) ∧ (a ≺≺ `2) ⇒ ∃c1c2. (a ≺≺ c1 ≺≺ `1) ∧ (a ≺≺ c2 ≺≺ `2)

⇒ ∃bc1c2. (a ≺≺ b ≺≺ c1 ≺≺ `1) ∧ (b ≺≺ c2 ≺≺ `2)

⇒ a ≺≺ `1 u `2. �

We have already seen that the strong intersection rule holds for concrete bases using compact
subspaces and we will prove the converse of this in Section 11.

The next construction adds unions to the basis, because some of the results that we shall
discuss do need this. On the other hand, it is a major goal of this paper to develop bases that
need not be closed under unions or intersections. Nevertheless, this result shows that there some
richer basis that has the extra properties that it is convenient to assume. Unfortunately, there
seems to be no canonical way of doing this: in selecting a basis for a space, we have to choose
enough unions to satisfy them.

Lemma 3.4 If (Ua,Ka) is a basis for a space X then its directed basis has

U` ≡
⋃
{Ua | a ∈ `} and K` ≡

⋂
{Ka | a ∈ `}.

This has the single interpolation and rounded union properties. If the given basis has the
strong intersection property then so does the directed basis.

Proof For the filtered condition on basic opens,

x ∈ Uk ∧ x ∈ U` ≡ ∃a ∈ k. ∃b ∈ `. x ∈ Ua ∧ x ∈ Ub

⇒ ∃abc. x ∈ Uc ∧ k 3 a w c v b ∈ `
⇒ ∃h. x ∈ Uh ∧ k w h v `,

where h ≡ {c}. The basis expansion is

x ∈ V ⇔ ∃a. x ∈ Ua ∧ Ka 3 V =⇒ ∃`. x ∈ U` ∧ K` 3 V
≡ ∃`a. a ∈ ` ∧ x ∈ Ua ∧ ∀b ∈ `.Kb 3 V =⇒ ∃a. x ∈ Ua ∧ Ka 3 V.
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The way below relation is

k ≺≺Fin (A) L ≡ Kk 3
⋃
{Ua | ∃`. a ∈ ` ∈ L}

⇔ ∀b ∈ k.Kb 3
⋃
{Ua | a ∈

⊔
L} ≡ k ≺≺A

⊔
L.

This inherits co- and contravariance, the Wilker and intersection rules, essentially as they stand.
The interpolation property for (Ua,Ka) gives single interpolation for (U`,K`),

k ≺≺Fin (A) L ≡ k ≺≺A

⊔
L =⇒ ∃h. k ≺≺A h ≺≺A

⊔
L ≡ ∃h. k ≺≺Fin (A) {h} ≺≺Fin (A) L.

For rounded binary unions,

{`1, `2} ≺≺Fin (A) k ≡ `1 t `2 ≺≺A k

⇒ `1 t `2 ≺≺A h ≺≺A k

≡ {`1, `2} ≺≺Fin (A) h ≺≺Fin (A) k

using the interpolation property that we already have.
Finally, the rounded intersection property for the directed basis,

h ≺≺ `1 ∧ h ≺≺ `2 =⇒ ∃k. h ≺≺ k ∧ k v `1 u `2,

is the same as the strong intersection property for the given one and we deduce strong intersection
for the directed basis using Lemma 3.3. �

We can make a basis bounded below by adding ◦, but this is undesirable (Section 12) and there
is another way:

Lemma 3.5 If (A,v,≺≺) has single interpolation then (A+,v,≺≺) is also bounded below, where
A+ ≡ {b | ∃a. a ≺≺ b}. �

Another simple transformation is to eliminate the preorder v, more or less just by replacing
it with ≺≺:

Lemma 3.6 Any abstract basis (A,v,≺≺) with single interpolation satisfies

a ≺≺ k ≺≺ ` =⇒ a ≺≺ ` =⇒ ∃b. a ≺≺ b ≺≺ `

and a ≺≺ k ≺≺ `1, `2 =⇒ ∃k′. a ≺≺ k′ ≺≺1 `1, `2.

If a ≺≺ b then Ua ⊂ Ub and Ka ⊃ Kb in the concrete basis, where the filter property is

x ∈ Ua ∧ x ∈ Ub =⇒ ∃d. x ∈ Ud ∧ (a �� d ≺≺ b).

Conversely, any relation ≺≺ with these properties defines an abstract basis (A,v,≺≺) by

a v b ≡ a ≺≺ b ∨ a = b.

Proof We deduce the second property from the weak intersection, Wilker and covariance rules:

a ≺≺ k ≺≺ `1, `2 =⇒ ∃k′`. a ≺≺ k′ ≺≺1 ` v `1, `2 =⇒ ∃k′. a ≺≺ k′ ≺≺1 `1, `2.

In a concrete basis, a ≺≺ b ≡ Ka 3 U =⇒ Ua ⊂ Ub since Ua contributes to the basis expansion
of Ub. Similarly, a ≺≺ b ∧ Kb 3 U =⇒ Ka 3 Ub ⊂ U =⇒ Ka 3 U since Ka is upper.
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If x ∈ Ua and x ∈ Ub then x ∈ Uc for some c ∈ A with a w c v b, then the basis expansion of
Uc gives some d ∈ A with x ∈ Ud and Kd 3 Uc, so d ≺≺ c and a �� d ≺≺ b.

For the converse, we prove transitivity of v by an easy case analysis, the extension of which
to (Kuratowski) finite sets or lists gives covariance of ≺≺ with respect to v:

b ≺≺ k v ` ⇒ ∃k1k2k
′. (b ≺≺ k′ ≺≺1 k = k1 t k2) ∧ (k1 ≺≺1 `) ∧ (k2 ⊂ `)

⇒ ∃k′. (b ≺≺ k′ ≺≺1 `). �

Now we consider bases for open and closed subspaces.

Lemma 3.7 A concrete basis for an open subspace V ⊂ X is given by

UV
a ≡ Ua ∩ V and KV

a ≡ Ka ∩ ↓V.

If the given basis for X uses compact subspaces then that for V has

a ≺≺V ` ⇐⇒ a ≺≺X ` ∧ (Ka ⊂ V ).

Proof The basis expansion of x ∈ U ⊂ V is

x ∈ U ⇔ ∃a. x ∈ Ua ∧ Ka 3 U
⇔ ∃a. x ∈ (Ua ∩ V ) ∧ (Ka 3 U ⊂ V ).

The filter property is

x ∈ UV
a ∧ x ∈ UV

b ⇔ x ∈ Ua ∧ x ∈ Ub ∧ x ∈ V
⇔ ∃c. x ∈ (Uc ∩ V ) ∧ (a w c v b). �

This fails the boundedness property, but we can (re)impose it:

Lemma 3.8 For any basis (A,v,≺≺), the subset A′ ≡ {a | ∃`. a ≺≺ `} defines another basis for the
same space but also obeys boundedness.

Proof First observe that

Ka 3 U =
⋃
6{U` | U` ⊂ U} =⇒ ∃`.Ka 3 U` ⊂ U =⇒ ∃`. a ≺≺ `

since the family (U`) provides a directed basis and Ka is Scott continuous. Hence the basis
expansion is

x ∈ U ⇔ ∃a. (x ∈ Ua) ∧ (Ka 3 U)

⇔ ∃a. (x ∈ Ua) ∧ (Ka 3 U) ∧ (∃`. a ≺≺ `)
≡ ∃a ∈ A′. (x ∈ Ua) ∧ (Ka 3 U).

The subset A′ is downwards-closed with respect to v and ≺≺ because of contravariance and tran-
sitivity of ≺≺. Hence the concrete basis still has the filtered property and the abstract one still
obeys the Wilker and intersection rules:

a ≺≺ ` ⊂ A′ =⇒ ∃k. a ≺≺ k ≺≺1 ` ∧ k ⊂ A′

a ≺≺ k ≺≺ `1 ⊂ A′ ∧ k ≺≺ `2 ⊂ A′ =⇒ ∃`′. a ≺≺ `′ v `1 ∧ `′ v `2 ∧ `′ ⊂ A′. �
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Lemma 3.9 A basis for an closed subspace C ⊂ X is obtained from a basis (Ua,Ka) for X by

UC
a ≡ Ua ∪ V and KC

a ≡ Ka,

where V is the complementary open subspace to C (in the sense of Proposition 8.1). Hence

a ≺≺C ` ⇐⇒ ∃k. (a ≺≺ k t `) ∧ (Kk 3 V ).

Proof If x ∈ C, so x /∈ V , then

x ∈ (Ua ∪ V ) ∧ x ∈ (Ub ∪ V ) ⇐⇒ ∃c. x ∈ (Ub ∪ V ) ∧ (a w c v b)

and x ∈W ⇐⇒ ∃a. x ∈ (Ua ∪ V ) ∧ Ka 3W.

Notice in particular that (a ≺≺C ◦) if Ka 3 V . In Section 12 we investigate when it is possible to
eliminate such empty covers. �

The topological ideas that we shall use in the course of this paper rely, naturally enough, on
the open subspaces of a space. We will come to learn that the points are secondary, so the rest of
this section shows how to express points and compact subspaces in terms of open ones. The first
result is due to Jimmie Lawson [GHK+80, §I 3.3].

Lemma 3.10 Let a ∈ r ⊂ A where r is rounded ,

r 3 b ⇐⇒ ∃c. r 3 c ≺≺ b.

Then there is a ≺≺-filter s with a ∈ s ⊂ r, i.e.

∃a. a ∈ s, (a ∈ s) ∧ (b ∈ s) ⇐⇒ ∃c ∈ s. (c ≺≺ a) ∧ (c ≺≺ b).

Proof Let a0 ≡ a. By repeated use of single interpolation, roundedness of r and Dependent
Choice, let r 3 ai+1 ≺≺ ai. Having constructed such a sequence, let s ≡ {b | ∃i. ai ≺≺ b}.

Then a ∈ s because a1 ≺≺ a0 ≡ a.
Also s is upper because if b ∈ s with b ≺≺ b′ or b v b′ then ai ≺≺ b ≺≺ b′ and b′ ∈ s.
Also s is a ≺≺-filter because if ai1 ≺≺ b1 and ai2 ≺≺ b2 then with i = max(i1, i2), ai ≺≺ ai1 ≺≺ b1

and ai ≺≺ ai2 ≺≺ b2. �

Lemma 3.11 Let (Ua,Ka) be a basis using Scott-open families and s ⊂ A a ≺≺-filter. Then
K ≡ {U | ∃a ∈ s.Ka 3 U} is a Scott-open filter of open subspaces.

Proof It is Scott-open since theKa are and we haveK 3 X because s is inhabited. If U ∈ Ka ⊂ K
and V ∈ Kb ⊂ K with d ≺≺ c ≺≺ a, b in s then by the weak intersection rule there is some k with
d ≺≺ k v a, b, so

Kd 3 Uk ⊂ Ua ∩ Ub ⊂ U ∩ V

and U ∩ V ∈ Kd ⊂ K since it’s upper. �

We will see in Corollary 8.4 that, if the basis is directed, then every Scott-open filter may be
expressed in this way.

Lemma 3.12 Let K ⊂ Ω be a Scott-filter with V /∈ K. Then there is a maximal Scott-open filter
P with K ⊂ P ⊂ Ω and V /∈ P and then P is completely coprime.

Proof This is based on a well known argument for commutative rings, using Zorn’s Lemma, but
see [Joh82, Lemma VII 4.3] for a proof. �
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In order to deduce information about the points, we need an additional property to say that a
space has exactly the points that are dictated by its open subspaces.

Definition 3.13 A completely co-prime filter or formal point for the topology on X is a
family P of open subspaces of X such that

X ∈ P, U, V ∈ P ⇐⇒ U ∩ V ∈ P and
⋃
Ui ∈ P ⇐⇒ ∃i. Ui ∈ P.

In particular, for every ordinary point x ∈ X, the neighbourhood filter Px ≡ {U | x ∈ U} is a
formal point.

Then a space X is sober if every formal point is of this form for some unique ordinary
point x ∈ X. Sobriety is often stated as requiring that every irreducible closed subspace C is the
closure of a unique point p. This is equivalent to our definition, with

P ≡ {U | U ∩ C = ∅} and C ≡ X \
⋃
{U | U /∈ P},

so that U ∩ C = ∅ ⇐⇒ U ∈ P ⇐⇒ x ∈ U .
Containment, P1 ⊂ P2, of one formal point in another is called the specialisation order , as

is the corresponding relation between ordinary points.

Now we can give the topological characterisation of compact subspaces that is due to Karl
Hofmann and Michael Mislove [HM81]. Beware that it requires the space to be sober, though not
necessarily locally compact.

Proposition 3.14 Any Scott-open filter K of open subspaces of a sober space satisfies

K 3 U ⇐⇒ K ⊂ U where K ≡
⋂
K is compact.

Proof If K 3 U then K ⊂ U by definition of
⋂
K. Conversely, by Lemma 3.12, if U /∈ K then

there is a formal point P with U /∈ P ⊃ K, so by sobriety (Definition 3.13) there is a (concrete)
point p with p ∈ V ⇐⇒ V ∈ P. Hence p ∈ K but p /∈ U , as required. The subspace K is
compact because its neighbourhood filter K is Scott-open. �

Definition 3.15 We therefore call any Scott-open filter K a formal compact subspace . How-
ever, the constructions in Section 8 illustrate that not every (concrete) compact subspace is the
intersection of its neighbourhoods like this; one that does so is called saturated , although this
use of the word is unrelated to that in Definition 1.14.

Proposition 3.16 If the abstract basis satisfies the boundedness and strong intersection rules
then each Scott-open family Ka is a filter and Ka ≡

⋂
Ka is a compact subspace with Ka ⊂

U ⇐⇒ Ka 3 U . Then the basis expansion is

p ∈ U ⇐⇒ ∃a. p ∈ Ua ∧ Ka ⊂ U or U =
⋃
{Ua | Ka ⊂ U}.

Proof Each a ∈ A has some a ≺≺ b by boundedness and Ub ⊂ X, so Ka 3 X.
If Ka 3 U, V then Uk ⊂ U and U` ⊂ V with a ≺≺ k, `, so a ≺≺ h v k, ` for some h by the

strong intersection rule, but then Uh ⊂ Uk ⊂ U and similarly Uh ⊂ V and Uh ⊂ U ∩ V , making
Ka 3 U ∩ V . So Ka 3 U ⇐⇒ Ka ⊂ U by Proposition 3.14 and the basis expansion follows. �

We will describe Ka more explicitly in terms of the abstract basis in Theorem 5.10. In Sec-
tion 11 we will show how to replace a concrete basis that uses Scott-open families or an abstract
one that obeys the weak intersection rule with another that has compact subspaces or the strong
rule.
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4 Continuous maps

Having described concrete and abstract bases for locally compact spaces, we now undertake a
similar task for continuous functions, which we shall also characterise using binary relations. Since
they are induced by bases and our notion of a dual base of compact subspaces already alludes to
an analogy with linear algebra, we shall call these relations matrices.

Most of the rest of this paper is about equivalent formulations of locally compact spaces and
does not make much use of the results in this section about continuous functions. Indeed, we
discuss the minutiae of the axioms for matrices more for the benefit of subsequent work than for
our present requirements.

Remark 4.1 Given a continuous function f : X → Y between locally compact sober spaces
that have bases (Ua,Ka) and (Vb, Lb) respectively using compact subspaces, we study the binary
relation, which we call a concrete matrix , that is defined by〈

a
∣∣ f ∣∣ b 〉 ≡ (fKa ⊂ Lb) ≡ (Ka ⊂ f−1Lb),

so in particular
〈
a
∣∣ id ∣∣ b 〉 ≡ (a ≺≺ b). As usual, we can replace the second form of the definition

by Ka 3 f−1Lb and use Scott-open families instead of compact subspaces. We will characterise
matrices for continuous functions by the axioms in Definition 1.13.

In fact we can set up a lot of the correspondence for Scott-continuous operators M∗ : ΩY → ΩX
(Proposition 2.11), although it only works properly when they preserve all unions.

Lemma 4.2 For any such Scott-continuous operator M∗, the concrete matrix
〈
a
∣∣M ∣∣ b 〉 ≡ (Ka ⊂

M∗Vb) is contravariant and saturated in a and covariant in b. It also satisfies

M∗Vb =
⋃
a

{Ua |
〈
a
∣∣M ∣∣ b 〉} =

⋃
6

k

{Uk | ∀a ∈ k.
〈
a
∣∣M ∣∣ b 〉}.

Proof The variance properties follow from those of Ka and Vb (Definition 1.3(b)) and mono-
tonicity of M∗. The last part is the basis expansion of M∗Vb, from which we deduce

Ka ⊂M∗Vb ⇐⇒ ∃k. Ka ⊂ Uk ∧ ∀a′ ∈ k. Ka′ ⊂M∗Vb

since Ka is compact. Hence the matrix is saturated in a:〈
a
∣∣M ∣∣ b 〉 ⇐⇒ ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k.

〈
a′
∣∣M ∣∣ b 〉. �

We can improve on this using the ideas of the previous section:

Lemma 4.3 If the bases obey the single interpolation, rounded union and boundedness below
properties (Definition 1.10 and Lemma 3.4) then the matrix is rounded on both sides.

Proof By single interpolation within the saturation property of the previous result,〈
a
∣∣M ∣∣ b 〉 ⇔ ∃k. (a ≺≺ k) ∧ ∀a′′ ∈ k.

〈
a′′
∣∣M ∣∣ b 〉

⇔ ∃a′k. (a ≺≺ a′ ≺≺ k) ∧ ∀a′′ ∈ k.
〈
a′′
∣∣M ∣∣ b 〉

⇔ ∃a′. (a ≺≺ a′) ∧
〈
a′
∣∣M ∣∣ b 〉,

we deduce roundedness in a.
The expansion of Vb with respect to the directed basis (Lemma 3.4) is

Vb =
⋃
6

`

{V` | ∀b′ ∈ `. Lb′ ⊂ Vb} ≡
⋃
6

`

{V` | ` ≺≺ b},
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so, since M∗ is Scott-continuous and Ka is compact,〈
a
∣∣M ∣∣ b 〉 ≡ Ka ⊂M∗Vb =

⋃
6

`

{M∗V` | ` ≺≺ b}

⇔ ∃`. Ka ⊂M∗V` ∧ (` ≺≺ b)
⇔ ∃`b′. Ka ⊂M∗V` ∧ (` ≺≺ b′ ≺≺ b)
≡ ∃b′.

〈
a
∣∣M ∣∣ b′ 〉 ∧ (b′ ≺≺ b),

where b′ comes from the rounded union property. Hence the matrix is rounded in b. �

Lemma 4.4 For any matrix
〈 ∣∣M ∣∣ 〉 that is rounded in b, the operator M† defined by

M†V ≡
⋃
a

{Ua | ∃b.
〈
a
∣∣M ∣∣ b 〉 ∧ Lb ⊂ V }

=
⋃
6

k

{Uk | ∀a ∈ k. ∃b.
〈
a
∣∣M ∣∣ b 〉 ∧ Lb ⊂ V }

is Scott-continuous and

M†Vb =
⋃
a

{Ua |
〈
a
∣∣M ∣∣ b 〉} =

⋃
6

k

{Uk | ∀a ∈ k.
〈
a
∣∣M ∣∣ b 〉}.

Hence if the matrix
〈 ∣∣M ∣∣ 〉 was defined from an operator M∗ then

M†V ⊂ M∗V and M†Vb = M∗Vb.

Proof Scott continuity is immediate from compactness of Lb, whilst roundedness gives

M†Vb ≡
⋃
a

{Ua | ∃b′.
〈
a
∣∣M ∣∣ b′ 〉 ∧ Lb′ ⊂ Vb}

≡
⋃
a

{Ua | ∃b′.
〈
a
∣∣M ∣∣ b′ 〉 ∧ (b′ ≺≺ b)}

⇔
⋃
a

{Ua |
〈
a
∣∣M ∣∣ b 〉}.

To show that M†V ⊂M∗V it suffices to observe that〈
a
∣∣M ∣∣ b 〉 ∧ Lb ⊂ V =⇒ Ka 3M∗Vb ∧ Lb ⊂ V =⇒ Ua ⊂M∗Vb,

by the basis expansion of M∗Vb. Equality in the case V ≡ Vb follows from Lemma 4.2. �

Lemma 4.5 If the matrix
〈 ∣∣M ∣∣ 〉 is co- and contravariant, rounded on both sides and saturated

in its input then it is recovered from the operator M†.

Proof By the previous lemma, the derived matrix is

Ka ⊂M†Vb ⇐⇒ ∃k. Ka ⊂ Uk ∧ ∀a′ ∈ k.
〈
a′
∣∣M ∣∣ b 〉,

but the right hand side of this is just
〈
a
∣∣M ∣∣ b 〉 because this is saturated by hypothesis. �

Notation 4.6 Given matrices
〈 ∣∣M ∣∣ 〉 and

〈 ∣∣N ∣∣ 〉,
M†(N†W ) =

⋃
6{Uk | ∀a ∈ k. ∃b.

〈
a
∣∣M ∣∣ b 〉 ∧ Lb ⊂ N†W},

so
〈
a
∣∣M ;N

∣∣ c 〉 ≡ Ka ⊂M†(N†Wc)

= ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b.
〈
a
∣∣M ∣∣ b 〉 ∧ 〈 b ∣∣N ∣∣ c 〉,
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which we call the saturated composite . However, this definition is not yet safe to use:

Example 4.7 Even when Scott-continuous operators M∗ and N∗ are representable by matrices,
their composite P ∗ ≡M∗ ·N∗ not not be.

Proof Let X ≡ 1 ≡ {•} with prime basis A ≡ {•}, Y ≡ 2 ≡ {0, 1} with directed basis
B ≡ {0, 1, •} and Z ≡ 2× 2 with prime basis C ≡ {(0, 0), (0, 1), (1, 0), (1, 1)}.

Let M∗ : ΣY → ΣX be conjunction, so its only true matrix element is
〈
•
∣∣M ∣∣ • 〉.

Let N∗ : ΣZ → ΣY be disjunction on the second component, its true matrix elements being〈
0
∣∣N ∣∣ (0, 0)

〉
,
〈

0
∣∣N ∣∣ (0, 1)

〉
,
〈

1
∣∣N ∣∣ (1, 0)

〉
and

〈
1
∣∣N ∣∣ (1, 1)

〉
.

Then M∗N∗{(0, 1), (1, 0)} = {•} but M∗N∗{(z1, z2)} = ∅ for any of the four singletons.
Therefore, since these singletons provide the basis for Z, the matrix

〈
•
∣∣P ∣∣ c 〉 for P ∗ ≡M∗ ·N∗

is everywhere false and P †V = ∅. The relational and saturated composite matrices are also
everywhere false. �

It is not this failure that will surprise you but that we ever suggested that we could define
matrices using singletons instead of lists, when we needed to use lists in bases to capture the way
below relation for locally compact spaces other than domains. We will see that it does work for
inverse images operators for continuous functions. For Scott-continuous operators, we have

Lemma 4.8 If the basis (Vb, Lb) is directed then every Scott-continuous operator is represented
by its matrix.

Proof By hypothesis, the basis expansion V =
⋃
{Vb | Lb ⊂ V } is directed and M∗ preserves

it. By Lemma 4.4, the operator M† that is derived from the matrix
〈
a
∣∣M ∣∣ b 〉 that was obtained

from M∗ also preserves this union, whilst M†Vb = M∗Vb. Hence M†V = M∗V for any V . �

In this case, Lemmas 4.2–4.4 define a bijection between these operators and matrices that are
co- and contravariant, rounded and saturated. It follows that the category of locally compact
spaces and Scott-continuous operators is equivalent to one of bases and matrices with saturated
composition, although it is not obvious from its abstract definition that this composition is asso-
ciative.

Without this assumption, however, rounded saturated matrices just correspond to some of the
Scott-continuous operators between open-set lattices, but unfortunately not even to a subcategory
of them. In order to improve on this result, we require better control of finite unions, so we must
restrict attention to operators that preserve them.

First we want to extend the definition of the matrix to unions in the output:

Lemma 4.9 If M∗ preserves all unions then

Ka ⊂M∗V` ⇐⇒ ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b ∈ `.
〈
a′
∣∣M ∣∣ b 〉.

Proof Using the directed basis expansion of M∗Vb,

M∗V` ≡ M∗
⋃
b∈`

Vb =
⋃
b∈`

M∗Vb =
⋃
b∈`

⋃
a′

{Ua′ | Ka′ ⊂M∗Vb}

=
⋃
a′

{Ua′ | ∃b ∈ `. Ka′ ⊂M∗Vb}

=
⋃
6

k

{Uk | ∀a′ ∈ k. ∃b ∈ `. Ka′ ⊂M∗Vb}.

Then, since Ka is compact,

Ka ⊂M∗V` ⇐⇒ ∃k. Ka ⊂ Uk ∧ ∀a′ ∈ k. ∃b ∈ `. Ka′ ⊂M∗Vb,
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whence the result follows by the definitions of (a ≺≺ k) and
〈
a′
∣∣M ∣∣ b 〉. �

This brings us to the matrix characterisation of operators that preserve arbitrary unions:

Lemma 4.10 If M∗ preserves unions then
〈 ∣∣M ∣∣ 〉 has the partition property ,〈

a
∣∣M ∣∣ b 〉 ∧ (b ≺≺ `) =⇒ ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b ∈ `.

〈
a′
∣∣M ∣∣ b 〉.

Proof Since (b ≺≺ `) ≡ (Lb ⊂ V`)⇒ (Vb ⊂ V`)⇒ (M∗Vb ⊂M∗V`), the previous result gives〈
a
∣∣M ∣∣ b 〉 ∧ (b ≺≺ `) ⇒ Ka ⊂M∗Vb ⊂M∗V`

⇒ ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b′ ∈ `.
〈
a′
∣∣M ∣∣ b′ 〉. �

Lemma 4.11 For any predicate φ on the indexing set of the basis,⋃
{Ua | ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. φa′} ⊂

⋃
{Ua′ | φa′}.

Proof If a ≺≺ k then Ka ⊂ Uk, so Ua ⊂ Uk ≡
⋃
{Ua′ | a′ ∈ k}. Hence if also ∀a′ ∈ k. φa′ then

Ua ⊂ {Ua′ | φa′} and the result follows. �

Lemma 4.12 If the matrix
〈 ∣∣M ∣∣ 〉 has the partition property then M† preserves unions.

Proof If b ∈ ` then Vb ⊂ V` and M†Vb ⊂M†V`, so
⋃
{M†Vb | b ∈ `} ⊂ M†V`.

For the reverse inclusion, by the partition property and Lemma 4.11,

M†V` =
⋃
{Ua | ∃b′.

〈
a
∣∣M ∣∣ b′ 〉 ∧ (b′ ≺≺ `)}

⊂
⋃
{Ua | ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b ∈ `.

〈
a′
∣∣M ∣∣ b 〉}

⊂
⋃
{Ua′ | ∃b ∈ `.

〈
a′
∣∣M ∣∣ b 〉}

=
⋃
{M†Vb | b ∈ `}.

Then, since M† also preserves directed unions, it preserves all of them. �

Proposition 4.13 If the bases obey the single interpolation, rounded union and boundedness
below properties then the correspondence above defines a bijection between union-preserving op-
erators and matrices that are co- and contravariant, rounded and saturated and have the partition
property.

Proof As in Lemma 4.8, but with arbitrary unions instead of directed ones, where the previous
two lemmas establish the connection between finite unions and the partition property. �

Example 4.14 For f : R → R with the usual interval basis, the partition property expresses
uniform ε–δ continuity à la Weierstrass: If ` is a list of intervals each of width ε that together
cover the range of a function, there is a list k of intervals of width δ covering its argument. Then
if x1 and x2 belong to the same δ-interval, fx1 and fx2 will belong to the same ε-interval. �

It remains to find the properties of matrices that correspond to the fact that inverse images
maps preserve the whole space and intersections. We say that a matrix is bounded and filtered
respectively if it has the relevant properties. Unfortunately, we cannot do this independently of the

19



unions: we must assume either that the bases are directed or that the matrices have the partition
property.

Remark 4.15 Suppose first that the bases are stable (Definition 2.2). Then the matrix for a
continuous function satisfies 〈

a
∣∣ f ∣∣ • 〉 ≡ (fKa ⊂ Y ) ⇔ >

and (fKa ⊂ Vb1) ∧ (fKa ⊂ Vb2) ⇐⇒ (fKa ⊂ Vb1ub2),

which is
〈
a
∣∣ f ∣∣ b1 〉 ∧ 〈 a ∣∣ f ∣∣ b2 〉 ⇐⇒ 〈

a
∣∣ f ∣∣ b1 u b2 〉.

However, as we discussed in Examples 2.3, we do not want to assume that our bases carry this
semilattice structure. In some cases we may replace the actual top element or intersection above
with an existentially quantified variable b:

Definition 4.16 A matrix is uniformly bounded and filtered respectively if

∃b.
〈
a
∣∣ f ∣∣ b 〉

and
〈
a
∣∣ f ∣∣ b1 〉 ∧ 〈 a ∣∣ f ∣∣ b2 〉 =⇒ ∃b.

〈
a
∣∣ f ∣∣ b 〉 ∧ (b ≺≺ b1) ∧ (b ≺≺ b2).

However, in the leading examples we do not want to assume a union operation for our bases
any more than we did an intersection. We really need to use

〈
a
∣∣ f ∣∣ ` 〉 ≡ (Ka ⊂ f−1V`), but

this is not defined in Notation 1.13, although Lemma 4.9 gave a formula for it that is related to
saturation. So, instead of requiring uniform boundedness and filteredness as above, we ask that
these properties hold after they have been saturated.

Lemma 4.17 If M∗ preserves unions and M∗Y = X then
〈 ∣∣M ∣∣ 〉 is bounded :

∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b.
〈
a′
∣∣M ∣∣ b 〉.

Conversely, if
〈 ∣∣M ∣∣ 〉 is bounded then M†Y = X.

Proof We have Ka ⊂ M∗Y for each basic compact subspace and so ∃`. Ka ⊂ M∗V`. Using
Lemma 4.9, this amounts to the given formula for boundedness. Conversely, by Lemma 4.11,

M†Y =
⋃
{Ua′ | ∃b.

〈
a′
∣∣M ∣∣ b 〉}

⊃
⋃
{Ua | ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b.

〈
a′
∣∣M ∣∣ b 〉}

⊃
⋃
{Ua | >} = X. �

This complicated property reduces to the simpler ones if we have the relevant structure:

Lemma 4.18 Let the abstract matrix
〈 ∣∣M ∣∣ 〉 be covariant, rounded, bounded and saturated.

Then
(a) if the basis B has a top element • with respect to v then

〈
a
∣∣M ∣∣ • 〉⇔ >;

(b) if B is directed then ∃b.
〈
a
∣∣M ∣∣ b 〉; and

(c) if A is prime (a ≺≺ k ⇒ ∃b. a ≺≺ b ∈ k, Example 13.2) then ∃b.
〈
a
∣∣M ∣∣ b 〉. �

Example 4.19 Let X ≡ 2 with the singleton basis, Y ≡ 2 with the directed basis and consider
the identity map between them. Then the matrix

〈
a
∣∣ id ∣∣ ` 〉 ≡ (a ∈ `) for id : X → Y is uniformly

bounded but its inverse
〈
`
∣∣ id ∣∣ a 〉 ≡ (` ⊂ {a}) is not. �
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Turning to binary intersections, we have different results for bases that use compact subspaces
or Scott-open families:

Lemma 4.20 Let M∗ : ΩY → ΩX be an operator that preserves all unions and binary intersec-
tions. If the basis for X uses compact subspaces then the matrix

〈 ∣∣M ∣∣ 〉 is strongly filtered :〈
a
∣∣M ∣∣ b1 〉 ∧ 〈 a ∣∣M ∣∣ b2 〉 =⇒

∃k`. (a ≺≺ k) ∧
(
∀a′ ∈ k. ∃b ∈ `.

〈
a′
∣∣M ∣∣ b 〉) ∧ (∀b ∈ `. b1 w b v b2).

If instead it uses Scott-open families then
〈 ∣∣M ∣∣ 〉 is weakly filtered :

(a ≺≺ a′) ∧
〈
a′
∣∣M ∣∣ b1 〉 ∧ 〈 a′ ∣∣M ∣∣ b2 〉 =⇒

∃k`. (a ≺≺ k) ∧
(
∀a′ ∈ k. ∃b ∈ `.

〈
a′
∣∣M ∣∣ b 〉) ∧ (∀b ∈ `. b1 w b v b2).

Proof The hypotheses for the strong rule are Ka ⊂M∗Vb1 and Ka ⊂M∗Vb1 . Then

Ka ⊂M∗Vb1 ∩M∗Vb2 = M∗(Vb1 ∩ Vb2) and so Ka ⊂M∗V`

for some ` with ` v b1 and ` v b2. By Lemma 4.9, this is the stated conclusion.
In the weak case, we are given Ka 3 Ua′ , Ka′ 3 M∗Vb1 and Ka′ 3 M∗Vb1 . Then we deduce

Ka 3M∗Vb1 ∩M∗Vb2 as in Lemma 2.8 and the rest of the argument is the same as in the strong
case. �

Lemma 4.21 If the matrix
〈 ∣∣M ∣∣ 〉 is weakly or strongly filtered and has the partition property

then M† preserves binary intersections.

Proof By Lemma 4.4, the filter property of a concrete basis, contravariance, the basis expansion
of Ua (for roundedness), the weak intersection rule and Lemma 4.11,

M†Vb1 ∩M†Vb2
⊂

⋃
{Ua | ∃a1a2. (a1 w a v a2) ∧

〈
a1

∣∣M ∣∣ b1 〉 ∧ 〈 a2

∣∣M ∣∣ b2 〉}
⊂

⋃
{Ua |

〈
a
∣∣M ∣∣ b1 〉 ∧ 〈 a ∣∣M ∣∣ b2 〉}

⊂
⋃
{Ua′ | ∃a. (a′ ≺≺ a) ∧

〈
a
∣∣M ∣∣ b1 〉 ∧ 〈 a ∣∣M ∣∣ b2 〉}

⊂
⋃
{Ua′ | ∃k. (a′ ≺≺ k) ∧ ∀a′′ ∈ k. ∃b.

〈
a′′
∣∣M ∣∣ b 〉 ∧ (b1 w b v b2)}

⊂
⋃
{Ua′′ | ∃b.

〈
a′′
∣∣M ∣∣ b 〉 ∧ (Vb1 ⊃ Vb ⊂ Vb2)}

⊂ M†(Vb1 ∩ Vb2),

where the fourth line is not needed if
〈 ∣∣M ∣∣ 〉 is strongly filtered. Then M†V1∩M†V2 = M†(V1∩

V2) since M† also preserves arbitrary unions by Lemma 4.12. �

Finally we use sobriety (Definition 3.13) to complete the characterisation of matrices for con-
tinuous functions:

Theorem 4.22 Let X and Y be locally compact sober spaces with concrete bases (Ua,Ka) and
(Vb, Lb) that have single interpolation and rounded unions. Then the formulae〈

a
∣∣ f ∣∣ b 〉 ≡ Ka ⊂ f−1Vb ≡ fKa ⊂ Vb and fx ∈ Vb ⇐⇒ ∃a. x ∈ Ua ∧

〈
a
∣∣ f ∣∣ b 〉
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define bijections amongst
(a) a continuous function f : X → Y ;

(b) an operator f−1 that takes open subspaces of Y to open subspaces of X preserving finite
intersections and arbitrary unions; and

(c) a matrix
〈
a
∣∣ f ∣∣ b 〉 that is co- and contravariant, rounded, saturated, bounded and filtered

and has the partition property.

Proof The correspondence between (a) and (b) is the definition of sobriety and that between
(b) and (c) was the subject of this section. In detail, for each ordinary point x ∈ X,

Px ≡ {V ∈ ΩY | x ∈ f∗V } ≡ {V | ∃a. x ∈ Ua ∧
〈
a
∣∣ f ∣∣ b 〉}

is a formal point of Y , because
⋃
Vi ∈ Px =⇒ ∃i. Vi ∈ Px by Lemma 4.12, X ∈ Px by Lemma 4.17

and V1, V2 ∈ Px =⇒ V1∩V2 ∈ Px by Lemma 4.21. Then by sobriety V ∈ Px ⇐⇒ y ∈ V for some
unique y ∈ Y and we put fx ≡ y. This defines a continuous function because f−1V = f∗V ⊂ X
and this is open by construction, for any open V ⊂ Y . �

Remark 4.23 In order to check that you understand the axioms for bases and matrices and how
to use them, you should verify that

〈
a
∣∣ id ∣∣ b 〉 ≡ (a ≺≺ b) has all of the properties of a matrix and

is a unit for saturated composition. By making modifications to this, show that the “improved”
abstract bases in the previous section are isomorphic to the given ones.

5 Classical completeness

In order to prove that the category of locally compact sober spaces and continuous functions is
equivalent to one of bases and matrices, it remains to construct a space from any given abstract
basis.

As is customary, we begin with the points, which are the same as continuous functions from the
singleton. The latter has just one basis element •, with • ≺≺ •, so points correspond to matrices
of the form

〈
•
∣∣ f ∣∣ b 〉. This means that, in the axioms in the previous section, contravariance,

saturation and roundedness in the argument are trivial, whilst by Lemma 4.18(c) boundedness and
filteredness are uniform. The partition property is also simplified, to one that we call locatedness
by analogy with Example 13.7 for the (Dedekind) real line. Writing p ≡ {b |

〈
•
∣∣ f ∣∣ b 〉}, we have

Definition 5.1 A formal point for an abstract basis (A,v,≺≺) is a (typically infinite) subset
p ⊂ A such that

a w b ∈ p ⇒ a ∈ p upper

a ∈ p ⇔ ∃b. (b ≺≺ a) ∧ b ∈ p rounded

∃a. a ∈ p bounded

(a ∈ p) ∧ (b ∈ p) ⇒ ∃c. (a w c v b) ∧ c ∈ p filtered

(a ∈ p) ∧ (a ≺≺ k) ⇒ k G p ≡ ∃b. (b ∈ k) ∧ (b ∈ p). located

We write X for the set of formal points. Beware that this notion of formal point is related to
the abstract basis, whereas the one in Definition 3.13 is defined by the topology, which we now
describe. We will show that the two notions are isomorphic in Lemma 5.9. The specialisation
order is given by inclusion.

Definition 5.2 For each a ∈ A and k ∈ Fin (A), the basic open subsets of X are

Ua ≡ {p | a ∈ p} and Uk ≡ {p | k G p ≡ ∃a. a ∈ k ∧ a ∈ p}.
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General open subsets are unions of these, so they are of the form Uu, as in the second expression,
but with a possibly infinite set u ⊂ A in place of k. It is convenient to write

u G v ≡ ∃a. (a ∈ u) ∧ (a ∈ v)

for any two such subsets u, v ⊂ A.

Lemma 5.3 If a v b or a ≺≺ b then Ua ⊂ Ub. The whole set X of formal points is open, i.e. it is
expressible as a union of basic open subsets, as is the intersection of any two subsets that are so
expressible.

Proof The first three parts follow from the requirements that formal points be upper, rounded
and bounded respectively, whilst the filteredness property of formal points says that

Ua ∩ Ub =
⋃
{Uc | a w c v b}

and the property for intersections of general unions follows from this. �

Lemma 5.4 The family of open subspaces given by

Ka ≡ {U | ∃k. (a ≺≺ k) ∧ Uk ⊂ U}

is Scott-open. If a ≺≺ k then Ka 3 Uk and if a v b then Ka ⊃ Kb.

Proof By the Wilker property of ≺≺ and the previous lemma,

Ka 3 U ≡ ∃k. (a ≺≺ k) ∧ Uk ⊂ U
⇒ ∃k`. (a ≺≺ ` ≺≺1 k) ∧ Uk ⊂ U
≡ ∃k`. (a ≺≺ `) ∧ ∀b ∈ `. ∃c ∈ k. (b ≺≺ c) ∧ Uk ⊂ U
⇒ ∃k`. (a ≺≺ `) ∧ U` ⊂ Uk ⊂ U
≡ ∃k.Ka 3 Uk ⊂ U.

Contravariance of K(−) follows from that of ≺≺. �

Lemma 5.5 The system (Ua,Ka) satisfies the basis expansion

p ∈ U ⇐⇒ ∃a. p ∈ Ua ∧ Ka 3 U or U =
⋃
{Ua | Ka 3 U}

and is therefore a concrete basis for X using Scott-open families.

Proof [⇒] Since general open subsets are unions of basic ones, p ∈ Ub ⊂ U for some b. Then
b ∈ p and by roundedness of p there is some a ∈ p with a ≺≺ b. Hence p ∈ Ua and Ka 3 U because
k ≡ {b} gives a ≺≺ k and Uk ⊂ U .

[⇐] For some a and k, we have a ∈ p and a ≺≺ k with Uk ⊂ U , so by locatedness of p there is
some b ∈ k ∩ p and p ∈ Ub ⊂ Uk ⊂ U . �

This is all very well, but the problem was to find a space with a concrete basis that induces
the given abstract basis, i.e. such that a ≺≺ k ⇐⇒ Ka 3 Uk. Proving such things in point–
set topology involves finding points with specific properties. In particular, if Ka is of the form
{U | Ka ⊂ U} but a 6≺≺ k then we need to find a point that is in Ka but not in Uk.
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For us, a “point” is a certain kind of subset of A (Definition 5.1) and we need one that includes
some elements of A but excludes others. Lawson’s Lemma 3.10 provides a ≺≺-filter, so we need a
way of obtaining rounded located subsets of the basis.

Lemma 5.6 For any subset r ⊂ A, we obtain a rounded located subset r ⊂ r by

r ≡ {a ∈ A | ∃a′. (a′ ≺≺ a) ∧ a′ • r}

where a′ • r ≡ (∀k. a′ ≺≺ k =⇒ k G r).

Indeed, r 7→ r is coclosure operation for which r = r iff r is rounded and located.

Proof The operation is decreasing (r ⊂ r), by putting k ≡ {a}, so a ∈ k ∩ r.
It also preserves order: if r ⊂ r′ then a′ • r ⇒ a′ • r′ and so r ⊂ r′.
If r is already rounded and located then r = r: given a ∈ r, by roundedness there is some

a′ ∈ r with a′ ≺≺ a and if a′ ≺≺ k then k G r by locatedness.
For general r, the subset r is rounded: if a ∈ r then by the definition of r and single interpolation

there are a′′ ≺≺ a′ ≺≺ a with a′′ • r, so a′ ∈ r.
The difficult part is locatedness of r. Let a ∈ r with a ≺≺ `, so there are a′ and k with

a′ ≺≺ k ≺≺ a and k ≺≺1 ` by Lemma 3.2. We need to find b ∈ k with b • r, from which we obtain c
with b ≺≺ c ∈ ` since k ≺≺1 ` and then c ∈ ` ∩ r.

Suppose that there is no such b ∈ k, so

∀b ∈ k. ¬(b • r) ≡ ∀b ∈ k. ∃hb. (b ≺≺ hb) ∧ (hb ∩ r = ∅).

Then a ≺≺ k ≺≺ h ≡
⋃
{hb | b ∈ k} with h ∩ r = ∅,

which contradicts a • r. Hence there is some b ∈ k with b • r as required
�

Now we want to find a point p such that s ⊂ p ⊂ r ⊂ A, where s is a ≺≺-filter and r a rounded
located subset. One way of making a formal point from a filter is to incorporate instances of
locatedness into the proof of Lemma 3.10, which we can do if the basis is countable:

Lemma 5.7 Let (A,v,≺≺) be a countable abstract basis and a ∈ r ⊂ A, where r is rounded and
located. Then there is a point p with a ∈ p ⊂ r.
Proof Let ki be an enumeration of Fin (A) such each finite set k occurs infinitely often, so for
any k ∈ Fin (A) and i ∈ N there is some j > i with k = kj .

As in Lemma 3.10, we put a0 ≡ a and define a descending sequence with ai+1 ≺≺ ai, but we
use locatedness to modify the choice of the terms.

As before, at each stage i ∈ N, we first let a′ ≺≺ ai with a′ ∈ r since r is rounded. If ai 6≺≺ ki
then just let ai+1 ≡ a′.

If a′ ≺≺ ai ≺≺ ki then by Lemma 3.2 there is some k′ with a′ ≺≺ k′ ≺≺1 ai, ki. Since a′ ∈ r and
r is located, there is some a′′ ∈ r ∩ k′, so a′′ ≺≺ ai and a′′ ≺≺ b ∈ ki, so b ∈ r since r is upper. We
put ai+1 ≡ a′′.

Again as before, the subset p ≡ {b | ∃i. ai ≺≺ b} is a ≺≺-filter with a ∈ p ⊂ r.
But p is also located. If ai ≺≺ a′ ≺≺ k then, by assumption on the enumeration of Fin (A),

k ≡ kj for some j with i < j. By construction, aj ≺≺ ai ≺≺ a′ ≺≺ k ≡ kj and then aj+1 ≺≺ b ∈ kj ,
so b ∈ k ∩ p as required.

Then p is a filter with respect to v as well as ≺≺: If a ∈ p 3 b then there is d ∈ p with
a �� d ≺≺ b and a further e ∈ p with e ≺≺ d. Then by the weak intersection rule there is some k
with e ≺≺ k v a, b. Since p is located, there is some c ∈ k ∩ p, so a w c v b.

Hence p has all the properties of a formal point. �
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The statement of this result is very similar to Lemma 3.12, so with some ingenuity you may
be able to adapt that to the uncountable case. In fact, we will see how to do this in the next two
sections, with the benefit of the point-free view of topology. But for the moment we accept the
countability restriction and use the result that we have to recover a ≺≺ k:

Lemma 5.8 If the basis is countable and Ka 3 Uk then a ≺≺ k.

Proof We claim first that

(b ≺≺ c) ∧ (Uc ⊂ Uk) ≡ (b ≺≺ c) ∧ (∀p. c ∈ p⇒ p G k) =⇒ (b ≺≺ k).

Otherwise, by Lemma 5.6, there is a rounded located subset r ⊂ A with c ∈ r ⊂ A \ k. Then by
Lemma 5.7 there is a point p with c ∈ p ⊂ r. This means that p ∈ Uc ⊂ Uk, so p G k, contradicting
p ∩ k = ∅ from the construction.

We generalise this to covers by lists using the Wilker and transitivity properties for ≺≺:

Ka 3 Uk ⇒ ∃``′. (a ≺≺ `′ ≺≺1 `) ∧ ∀c ∈ `. (Uc ⊂ Uk)

⇒ ∃`′. (a ≺≺ `′) ∧ ∀b ∈ `′. ∃c. (b ≺≺ c) ∧ (∀p. c ∈ p⇒ p G k)

⇒ ∃`′. (a ≺≺ `′) ∧ ∀b ∈ `′. (b ≺≺ k) =⇒ a ≺≺ k. �

Now we can at last return to the topological ideas.

Lemma 5.9 If the basis is countable then the space X is sober.

Proof Let P be a formal point in the sense of Definition 3.13, i.e. a family of open subspaces of
X such that

X ∈ P, U, V ∈ P ⇐⇒ U ∩ V ∈ P and
⋃
Ui ∈ P ⇐⇒ ∃i. Ui ∈ P.

We claim that p ≡ {a | Ua ∈ P} is a formal point in the sense of Definition 5.1 and satisfies
P = {U | p ∈ U}. Indeed, p ∈ Ua ⇐⇒ a ∈ p ⇐⇒ Ua ∈ P and this extends to p ∈ U ≡ Uu ⇐⇒
Uu ∈ P by the third property of P.

We leave it to the reader to show that P is a filter, i.e. bounded, filtered and upper.
It is located: if a ∈ p and a ≺≺ ` then Ua ∈ P and Ka 3 U`, so Ua ⊂ U` ∈ P from the basis

expansion, but then Ub ∈ P by the third property of P, for some b ∈ `, for which b ∈ p.
Finally, using Lemma 5.8, the basis expansion Ua =

⋃
{Ub | Kb 3 Ua} gives the roundedness

property a ∈ p ⇐⇒ ∃b. p ∈ b ∧ b ≺≺ a.
Alternatively, q ≡ {a | ∃b. Ub ∈ P ∧ b ≺≺ a} is easily seen to be rounded and upper, whilst the

proof that p is filtered and located can be adapted to q, but then showing that q ∈ U ⇐⇒ U ∈ P
depends on Lemma 5.8. �

Theorem 5.10 Every countable abstract basis arises from some concrete basis using Scott-open
families for some locally compact sober topological space. If the abstract basis satisfies the bound-
edness and strong intersection rules then it arises from some basis using compact subspaces, where

Ka ≡
⋂
Ka ≡ {p | ∀k. (a ≺≺ k) =⇒ p G k}.

Proof We have already completed the proof for Scott-open families, so it only remains to identify
the points of the compact subspace in the strong case, using Proposition 3.16:

p ∈
⋂
Ka ≡ ∀U ∈ Ka. p ∈ U

≡ ∀k. ∀U. (a ≺≺ k) ∧ Uk ⊂ U =⇒ p ∈ U
⇔ ∀k. (a ≺≺ k) =⇒ p ∈ Uk

≡ ∀k. (a ≺≺ k) =⇒ (p G k). �
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Remark 5.11 If a ≺≺ c but a 6≺≺ k then Ka ⊂ Uc but Ka 6⊂ Uk, so there is a point p with
p ∈ Ka ⊂ Uc but p /∈ Uk, so c ∈ p but p∩k = ∅. However, this begs the question, because we used
this property to prove sobriety and so to characterise compact subspaces.

Examining the place where we needed to use the partial result (Lemma 5.7), we notice first
that the topology on X is not actually being used: the arguments just concern the relationship
between the abstract basis and its formal points. In fact the difficulty was in translating the
containment of subspaces Uc ⊂ Uk in Lemma 5.8 and the basis expansion Ua =

⋃
{Ub | Kb 3 Ua}

in Lemma 5.9 from their definition in terms of points in Definition 5.2 back into the properties
of ≺≺. Indeed it was the Uk ⊂ U in Lemma 5.4 (which was needed to make Ka upper) that obliged
us to do this.

Maybe we should define the open subspaces directly from the abstract basis without this
diversion via formal points.

6 Locales

The applications of topology to other disciplines are often called spectra , in which the “points”
are structures such as prime ideals that have fairly complicated definitions (cf. Definitions 3.13
and 5.1) and can be difficult to find (cf. Lemma 5.7). On the other hand, the “open subspaces”
typically correspond directly to much simpler features of the mathematical system under study.
Peter Johnstone’s book [Joh82] explores many examples of this phenomenon. Following him, we
make the

Definition 6.1 A frame Ω is a lattice with arbitrary joins (
∨

) over which meets (∧) distribute,

U ∧
∨
Vi =

∨
(U ∧ Vi),

so the lattice ΩX of open subspaces of any topological space X is an example. Accordingly, a
frame homomorphism f∗ : Ω2 → Ω1 is a function that preserves

∨
, > and ∧, just as the

inverse image operator f−1 : ΩY → ΩX does for any continuous function f : X → Y . Frames
and homomorphisms form a category, but when we want to use them to discuss topological ideas
we use the names locale and continuous map instead for the objects and morphisms of the
opposite category.

For compatibility with Point–Set Topology, we (sometimes) continue to use capital letters for
elements of a frame. However, we write U ≤ V instead of U ⊂ V for the order, because it is
abstract and not necessarily represented by an inclusion (Warning 6.12). As we have already
done, we also use ∧ and

∨
instead of ∩ and

⋃
for the operations.

Definition 6.2 In a locale, following Definitions 3.13 and 3.15,
(a) a formal point is a completely coprime filter P ⊂ Ω;

(b) a formal open subspace is an element U ∈ Ω of the frame,

(c) a formal compact subspace is a Scott-open filter K ⊂ Ω in the frame.

In order to work with locales, we need a technique for constructing frames, so, since they
are algebras, we present them by means of generators and equations. Such a set of generators is
essentially just a basis in the same sense as for general (not necessarily locally compact) topological
spaces (Definition 1.1), i.e. using just open subspaces and not compact ones:

Definition 6.3 A concrete basis for a frame or locale is a family of elements Ua of the frame Ω
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such that
(a) if a v b then Ua ≤ Ub;

(b) Ua ∧ Ub =
∨
{Uc | a w c v b}; and

(c) U =
∨
{Ua | Ua ≤ U} for any U ∈ Ω.

The most efficient way of expressing the equations for a frame is this:

Definition 6.4 A formal cover (A,v, /) consists of a preorder v on a set A together with a
relation a / u between elements and (possibly infinite) subsets of A such that

a ∈ u =⇒ a / u, b v c / u v v =⇒ b / v,

a / u / v =⇒ a / v and c / u ∧ c / v ⇐⇒ c / u u v,

where u / v ≡ ∀b ∈ u. b / v, u v v ≡ ∀b ∈ u. ∃c ∈ v. b v c

and u u v ≡ {b | (∃c ∈ u. b v c) ∧ (∃d ∈ v. b v d)}.

Therefore u and not ∩ is the meet operation corresponding to the preorder v and beware that
our use of u is temporarily different from that in Notation 1.12, as far as Lemma 7.1.

Lemma 6.5 Given any A-indexed concrete basis for a topological space or frame, the relation
defined by

a / u ≡ Ua ≤
∨
{Ub | b ∈ u}

is a formal cover. �

Lemma 6.6 Given any formal cover (A,v, /), the map j on subsets of A that takes

u ⊂ A to ju ≡ {a | a / u} ⊂ A

is a closure operation and also satisfies

ja ⊂ ju ⇐⇒ a / u and ju ∩ jv = j(u u v).

In particular, if u = ju then u is lower, but see Proposition 7.8 for the precise characterisation.

Proof If u ⊂ v then ∀a. a / u =⇒ a / v so ju ⊂ jv.
If a ∈ u then a / u, so u ⊂ ju.
Therefore a / u ⇐⇒ a ∈ ju ⇐⇒ ja ⊂ ju and u / v ⇐⇒ u ⊂ jv ⇐⇒ ju ⊂ jv.
If a ∈ ju then a / u so ju / u and j(ju) = ju.
For the intersection, ju ∩ jv = j(u u v) because a / u ∧ a / v ⇐⇒ a / u u v. �

Theorem 6.7 Every formal cover presents a frame, i.e. it arises from some concrete basis on some
frame.

Proof Let Ω ≡ {u ⊂ A | u = ju} with (u ≤ v) ≡ (u ⊂ v),

> ≡ A ∈ Ω u ∧ v ≡ j(u u v) and
∨
ui ≡ j

(⋃
ui
)
.

If u, v, ui ∈ A then >, u∧v,
∨
ui ∈ A too, by the Lemma. We recover the formal / relation because

ja ≤
∨
ui ≡ ja ⊂ j

(⋃
ui
)
⇐⇒ a /

⋃
ui

by the Lemma. Note that we put no countability restriction on this result as we did in the previous
section: it holds for any formal cover.
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We have
∨

(u ∧ vi) ≤ u ∧
∨
vi trivially. Conversely, writing v ≡

⋃
vi,

u u v ≡ u u
⋃
vi = {d | ∃a ∈ u. ∃i. ∃b ∈ vi. a w d v b}

=
⋃

(u u vi) /
⋃
j(u u vi) ≡

⋃
(u ∧ vi).

c ∈ u ∧
∨
vi ⇒ c / u u

∨
vi =⇒ c / u ∧ c /

∨
vi

⇒ c / u ∧ c / v =⇒ c / u u v /
⋃

(u u vi)

⇒ c ∈
∨

(u ∧ vi). �

Whilst we have introduced Ω here as a subset of the powerset P(A), it is actually a retract
and we shall often find it more convenient to regard it as a quotient. That is, we use a general
subset u ⊂ A to denote an element ju ∈ Ω of the frame. Indeed, it is the surjection and not the
inclusion of frames that is the homomorphism, defining a sublocale.

Proposition 6.8 Any frame with a concrete basis (Definition 6.3) is recovered up to isomorphism
from the formal cover that it defines, where

u 7→
∨
{Ub | b ∈ u} and U 7→ {a | Ua ⊂ U},

the basic open subspaces being Ua and ja = {b | b / a} = {b | Ub ⊂ Ua}. �

Therefore a formal cover corresponds bijectively to a locale that is equipped with a specified
concrete basis. Using arguments similar to those in Section 4, we can go on to express frame
homomorphisms or continuous functions between locales in terms of a basis and therefore a formal
cover:

Proposition 6.9 There is a bijective correspondence between frame homomorphisms and matrices
defined by [

a
∣∣ f ∣∣ b ] =

(
a ∈ f∗(jb)

)
and f∗v = {a | ∃b.

[
a
∣∣ f ∣∣ b ] ∧ b / v},

where the matrices satisfy

a v a′ ∧
[
a′
∣∣ f ∣∣ b′ ] ∧ b′ v b

⇒
[
a
∣∣ f ∣∣ b ] co- & contravariance

∃b.
[
a
∣∣ f ∣∣ b ] boundedness[

a
∣∣ f ∣∣ b1 ] ∧ [ a ∣∣ f ∣∣ b2 ] ⇒ ∃b.

[
a
∣∣ f ∣∣ b ] ∧ b1 w b v b2 filteredness[

a
∣∣ f ∣∣ b ] ∧ b / v ⇒ ∃u. a / u ∧ ∀a′ ∈ u. ∃b′ ∈ v.

[
a′
∣∣ f ∣∣ b′ ] partition

a / u ∧ ∀a′ ∈ u.
[
a′
∣∣ f ∣∣ b ] ⇒ [

a
∣∣ f ∣∣ b ]. saturation

I don’t think the bounded and filtered rules are correct, for the same reason as in Example 4.19.
We can deduce the characterisation of formal points from this as we did in Definition 5.1, but

since we intend to use it we prove it in detail.

Proposition 6.10 A formal point of a formal cover is a subset p ⊂ A such that

∃a. a ∈ p bounded

a w b ∈ p ⇒ a ∈ p upper

(a ∈ p) ∧ (b ∈ p) ⇒ ∃c. (a w c v b) ∧ c ∈ p filtered

(a ∈ p) ∧ (a / u) ⇒ u G p ≡ ∃b. (b ∈ u) ∧ (b ∈ p). positive

28



The correspondence with Definition 3.13 is

p ≡ {a | ja ∈ P} ⊂ A and P ≡ {u | p G u = ju} ⊂ Ω.

Proof Given a completely coprime filter P ⊂ Ω, the set p is upper because P is and j preserves
inclusions. Also p is bounded because P 3 A =

∨
{ja | a ∈ A} so ∃a. ja ∈ P since it is completely

coprime. For the filter property of p,

a ∈ p 3 b ≡ ja ∈ P 3 jb
⇒ P 3 ja ∩ jb = j(a u p) =

∨
{jc | c ∈ a u b}

⇒ ∃c. P 3 jc ∧ (a w c v b) =⇒ ∃c. p 3 c ∈ a u b.

For positivity,
p 3 a / u ⇒ P 3 ja ⊂ ja =

∨
{jb | b ∈ u}

⇒ ∃b. P 3 jb ∧ b ∈ u =⇒ ∃b. p 3 b ∈ u.

Conversely, given p, the family P is upper since p G u ⊂ v ⇒ p G v and bounded since p is and so
∃a. a ∈ p ∧ ja ∈ P. For the filter property of P,

u ∈ P 3 v ⇒ u G p G v =⇒ ∃ab. u 3 a ∈ p 3 b ∈ v
⇒ ∃c. u u v 3 c ∈ p =⇒ u ∩ v ∈ P.

We recover P from p because P is completely coprime and

{u | p G u = ju} = {u | ∃a. P 3 ja ∧ a ∈ u = ju}
= {u | u =

∨
{ja | P 3 ja ∧ a ∈ u}} = P.

We recover p from P because it is positive and

{a | ja ∈ P} = {a | p G ja} = {a | ∃b. p 3 b / a} = p. �

When we make the connection between / and ≺≺ in Lemma 7.11 we will see that the notions of
formal point for these two relations also agree, with positivity playing the same role as locatedness
and roundedness together.

Corresponding with Definition 3.13, ju ∈ P ⇐⇒ ∃a. p 3 a / u. We say that such a point lies
in a formal open set u ⊂ A if p G u, and then we write Uu ≡ {p | p G u} for the extent of u. This
is the same as Definition 5.2 and we have

Proposition 6.11 Extent (the map u 7→ Uu) is a frame homomorphism.

Proof From the first three axioms, > G p and u G p G v =⇒ p G (uu v), so extent preserves finite
meets. By the last, p G ju ⇐⇒ p G u, so p G

∨
ui ⇐⇒ p G

⋃
ui ⇐⇒ ∃i. p G ui and extent

preserves joins. �

Warning 6.12 Although the formal opens u ∈ Ω in Theorem 6.7 are sets, they are sets of basis
elements and not sets of (formal) points as they were in Section 5. Indeed, the formal opens of a
locale need not in general be faithfully representable as sets of points at all, since the extent need
not be an isomorphism [Joh82]. A frame, locale or formal cover for which this is an isomorphism
is called spatial or is said to have enough points. Since we just need Ua ⊂ Uu =⇒ a / u, the
characterisation in terms of / is this:

Proposition 6.13 A formal cover / has enough points iff(
∀p. a ∈ p⇒ p G u

)
=⇒ a / u. �
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Now we return to locales and local compactness. Definition 2.6 of a basis for a topological
space using Scott-open families can easily be transferred because it only mentions opens and not
points. We find that, when a locale has some basis of this kind then is has a canonical one, in
which Ka is determined order-theoretically by Ua:

Lemma 6.14 If a frame Ω has a basis (Ua,Ka) using Scott-open families then

Ka 3 V =⇒ Ua � V and so a ≺≺ ` ≡ Ka 3 U` =⇒ Ua � U`,

where we say that U is way below V in Ω, written

U �W, if ∀(Wi). V ≤
∨
i∈I

Wi =⇒ ∃`. U ≤
∨
i∈`

Wi.

In such a frame, the subset ↑↑U ≡ {V | U � V } ⊂ Ω is itself Scott-open.

Proof If Ka 3 V ≤
∨
Wi then, since Ka is Scott-open, a finite join j ⊂ I will do, so Ka 3

W ≡
∨
{Wi | i ∈ `}. The latter means that Ua contributes to the expansion of W , so Ua ≤W , as

required for the definition of Ua � V . �

Corollary 6.15 A locale is locally compact in the sense that its frame has some basis using
Scott-open families, with

V =
∨
{Ua | Ka 3 V }, iff it is continuous, V =

∨
{U | U � V }. �

However, we retain the distinction that a locally compact locale comes equipped with the
additional structure of an arbitrary but specified concrete basis (Ua,Ka), cf. Definition 1.3, whilst
a continuous one just has the relation � that is defined from the order on the frame.

The notion of a continuous lattice arose during the 1970s in theoretical computer science,
topological lattice theory and spectral theory, leading to the six-author Compendium [GHK+80]:
see in particular the historical notes at the end of its Section I 1.

We can proceed in the same way as in Sections 4 and 5:

Proposition 6.16 For any concrete basis on a locale using Scott-open families, in particular the
one with Ka ≡ ↑↑Ua, the relation (a ≺≺ `) ≡ (Ka 3 U`) makes (A,v,≺≺) an abstract basis. �

Also summarise the translations of the results in Sections 2–4 into locale theory.

Next, Inger Sigstam [Sig95] translated the way-below relation � from continuous lattices to
their generating formal covers. Then Sara Negri [Neg02] considered a possibly sparser relation like
our ≺≺, writing i(a) for our {b | b ≺≺ a} in her Definition 4.10 for a “locally Stone” formal cover,
i.e. one that we simply call locally compact.

Lemma 6.17 For any formal cover (A,v, /), the frame that it presents is continuous iff

a / {b | b < a} where (u < v) ≡ (∀w. v / w ⇒ ∃`. u / ` ⊂ w).

We then say that A is a continuous formal cover .
Here we are temporarily using < for a binary relation on A that we are comparing with � on

the frame Ω that we constructed in Theorem 6.7. Afterwards, we shall write� for both relations.

Proof By Lemma 6.6, the u < v relation on subsets of A is equivalent to

∀w. jv ⊂ jw =⇒ ∃`. ju ⊂ j` ∧ ` ⊂ w,
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which is ju � jv in Ω. However, we are claiming that it is enough to use single elements of
the basis to test continuity of the frame. The set-wise continuity condition (Corollary 6.15), for
v ≡ {a}, implies

a /
⋃
{u | u < a} = {b | ∃u. b ∈ u < a} = {b | b < a},

as follows from the fact that b ∈ u < a⇒ b < a. Conversely, the singleton condition gives

∀a ∈ u. a / {b | b < a} ⊂
⋃
{v | v < u}, so u /

⋃
{v | v < u},

since b < a ∈ u⇒ v ≡ {b} < u. �

Traditional topology relied to its detriment on points, where the natural mathematical structure
often lies in the open subspaces instead. On the other hand, it may be said of locale theory that
it makes excessively heavy use of infinitary lattice theory. Analysts, for example, would tend to
refer to open balls and other neighbourhoods, but not to the lattice of all of them.

The use of complete lattices makes it very tempting to focus on the biggest or smallest example
of something. In our case, we saw earlier that a binary relation ≺≺ arises naturally from a concrete
basis using compact subspaces. In the localic presentation, Lemma 6.14 showed that there is a
densest example of ≺≺, namely the relation� that is defined infinitarily from the open-set lattice.
However, for example in the last two results, it is not actually necessary to use the densest relation:
any ≺≺ satisfying our axioms will do.

We have not yet completed the task of constructing a locally compact locale or topological
space with a given abstract basis. We do this in the next section by translating a general ≺≺
relation into a formal cover.

7 Formal topology

We now focus more directly on formal covers per se, instead of just using them as a tool to construct
locales. We take Lemma 6.17, which was inspired by continuous frames, as our starting point, but
we shall see that the modification that Sara Negri made to this definition actually agrees with our
Scott-open families and so our usual definition of local compactness. The outcome of this is that
we succeed in proving completeness of the axioms for abstract bases for sober topological spaces
and locales as well as for formal topology.

Lemma 7.1 For any formal cover (A,v, /), the relation � defined by

a� u ≡ (∀v. u / v =⇒ ∃k. a / k ⊂ v)

satisfies
a� u =⇒ a / u

a v b� u v v =⇒ a� v

a / u� v / w =⇒ a� w

a� u� v =⇒ a� v

a� k � u ∧ k � v =⇒ a� u u v,

in which the subset u u v ⊂ A is given by Definition 6.4.

Proof If a� u then by putting v ≡ u (so u / v) in its definition we deduce a / u.
If a v b � u v v / w, so ∀c ∈ u. ∃d ∈ v. c v d / w, then a v b � u / w and a / w using the

variance properties of / twice. Hence a v b� u v v =⇒ a� v.
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Using transitivity of / twice, if a / u� v / w / w′ then ∃k. a / k ⊂ w′. Therefore a / u� v /
w ⇒ a� w.

If a� u� v then u / v and a� v.
If a � k � u ∧ a � v then k / u ∧ k / v, so a � k / u u v by the intersection property of /

and then a� u u v. �

Lemma 7.2 If the formal cover is continuous in the sense of Lemma 6.17 then the relation � is
finitely represented (or Scott-continuous),

a� u ⇐⇒ ∃`. a� ` ⊂ u,

and satisfies the Wilker rule,

a� ` ⇐⇒ ∃k. a� k �1 ` ≡ ∃k. a� k ∧ ∀b ∈ k. ∃c. b� c ∈ `.

Also, the property a� u u v is then equivalent to Notation 1.12.

Proof Given a� u, we use continuity twice (for the elements of u and then v) to obtain

a � u / v ≡ {c | ∃b. c� b ∈ u} / w ≡ {d | ∃bc. d� c� b ∈ u}.

Then transitivity of / and the definition of � give some h such that

a / h ⊂ w, so ∀d ∈ h. ∃bc. d� c� b ∈ u.

Now let k and ` be choices of cs and bs for d ∈ h in this, so

a / h�1 k �1 ` ⊂ u,

whence a � k �1 u and a � ` ⊂ u as required. The converses are given by transitivity and
covariance. Applying this to the definition of u u v, we recover Notation 1.12:

a� u u v ⇐⇒ ∃`. a� ` ∧ ∀b ∈ `. ∃c ∈ u. ∃d ∈ v. c w b v d. �

Proposition 7.3 If (A,v, /) is a continuous formal cover then (A,v,�) is an abstract basis in
our sense and

b / v ⇐⇒ (∀a. a� b⇒ ∃`. a� ` ⊂ v).

Proof Only the last part remains. [⇒] If a� b / v then ∃`. a� ` ⊂ v by the previous results.
[⇐] Let u ≡ {a | a� b}, so u / v because a� ` ⊂ v =⇒ a / v, and then b / u / v. �

Notation 7.4 Conversely, we now show that any abstract basis (A,v,≺≺) defines a continuous
formal cover by

(b / u) ≡ (∀a. a ≺≺ b⇒ ∃`. a ≺≺ ` ⊂ u).

Lemma 7.5 This cover relation satisfies

b ∈ u =⇒ b / u, b v c / u v v =⇒ b / v, c / u / v =⇒ c / v,

b / {a | a ≺≺ b} and a ≺≺ ` =⇒ a / `.
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Proof
b / u ≡ ∀a. a ≺≺ b⇒ ∃`. a ≺≺ ` ⊂ u

⇐ ∀a. (a ≺≺ b⇒ a ≺≺ b ∈ u) ⇐= b ∈ u
b v c / u ≡ b v c ∧ ∀a. a ≺≺ c⇒ ∃`. a ≺≺ ` ⊂ u

⇒ ∀a. a ≺≺ b⇒ ∃`. a ≺≺ ` ⊂ u ≡ b / u contravariance

c / u v v ≡ ∀a. a ≺≺ b⇒ ∃`. a ≺≺ ` ⊂ u v v
⇒ ∀a. a ≺≺ b⇒ ∃`. a ≺≺ ` v v ≡ c / v

b / ` ≡ ∀a. a ≺≺ b⇒ ∃k. a ≺≺ k ⊂ `
⇐ ∀a. a ≺≺ b⇒ a ≺≺ ` ⇐ b ≺≺ ` transitivity of ≺≺

c / {b | b ≺≺ c} ≡ ∀a. a ≺≺ c⇒ ∃`. a ≺≺ ` ⊂ {b | b ≺≺ c}
⇐ ∀a. a ≺≺ c⇒ ∃`. a ≺≺ ` ≺≺ c. interpolation �

The proof of the other two properties of / of course depends on the Wilker and weak intersection
rules for ≺≺.

Lemma 7.6 If c / u / v then c / v.

Proof Suppose that a ≺≺ c / u / v. Since c / u means

∀a. (a ≺≺ c)⇒ ∃`. (a ≺≺ ` ⊂ u),

there is some finite set ` with a ≺≺ ` ⊂ u. Then by the Wilker rule there is another finite set k
with

a ≺≺ k ≺≺1 ` ⊂ u ≡ (a ≺≺ k) ∧ ∀b ∈ k. ∃c ∈ `. (b ≺≺ c ∈ u).

We combine this with u / v ≡ ∀bc. (b ≺≺ c ∈ u⇒ ∃h. b ≺≺ h ⊂ v) to give

a ≺≺ k ∧ ∀b ∈ k. ∃hb. b ≺≺ hb ⊂ v.

Taking h ≡
⋃
{hb | b ∈ k} ⊂ v, we obtain a ≺≺ k ≺≺ h ⊂ v, from which a ≺≺ h ⊂ v follows by

transitivity of ≺≺. Hence c / v. �

Lemma 7.7 If c / u and c / v then c / u u v.

Proof Given a ≺≺ c, we first interpolate a ≺≺ ` ≺≺ c, so a ≺≺ ` ∧ ∀b ∈ `. b ≺≺ c.
Combining this with c / u and c / v gives

a ≺≺ ` ∧ (∀b ∈ `. ∃hb. b ≺≺ hb ⊂ u) ∧ (∀b ∈ `. ∃kb. b ≺≺ kb ⊂ v).

Taking h ≡
⋃
{hb | b ∈ `} ⊂ u and k ≡

⋃
{kb | b ∈ `} ⊂ v, we obtain

a ≺≺ ` ≺≺ h ⊂ u ∧ ` ≺≺ k ⊂ v.

Then the weak intersection rule gives a ≺≺ h u k, which means

∃`′. a ≺≺ `′ ∧ ∀b ∈ `′. (∃c. b v c ∈ h ⊂ u) ∧ (∃d. b v d ∈ k ⊂ v),

but this is a ≺≺ `′ ⊂ u u v. Hence c / u u v. �

Having derived a formal cover / from an abstract way-below relation ≺≺, we can use it in the
construction in Theorem 6.7:

Proposition 7.8 Any abstract basis (A,v,≺≺) defines a frame Ω whose elements are the subsets
u ⊂ A such that

b ≺≺ ` ⊂ u =⇒ b ∈ u and ↓↓ b ≡ {a | a ≺≺ b} ⊂ u =⇒ b ∈ u.
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Proof If the left hand side of either of the implications holds then b / u and so b ∈ u since u = ju.
Conversely, suppose that u is closed under these two conditions and b / u. Then for any a ≺≺ b

we have some ` with a ≺≺ ` ⊂ u by definition of b / u, so a ∈ u by the first condition. Hence

↓↓ b ⊂ u, so b ∈ u by the second condition. �

The way-below relation � that is derived from the formal cover / which is itself defined from
≺≺ satisfies a ≺≺ `⇒ a� ` but not necessarily the converse. This is because the given ≺≺ relation
may encode smaller Scott-open families Ka than the canonical ↑↑Ua, as we saw in Corollary 6.15:

Lemma 7.9 This frame Ω has a basis (Ua,Ka) using Scott-open families that is given by

Ua ≡ ja and Ka ≡ {u ∈ Ω | ∃`. a ≺≺ ` ⊂ u} so Ka 3 Uk ⇐⇒ a ≺≺ k.

Proof By the form of the definition, Ka is Scott-open. and a ≺≺ k =⇒ Ka 3 Uk. For u ∈ Ω, let

v ≡ {a | Ka 3 u} ≡ {a | ∃`. a ≺≺ ` ⊂ u},

so v ⊂ u by the first part of the previous result. Also, if b ∈ u then b / {a | a ≺≺ b} ⊂ v, so u / v.
Hence

u = ju = jv =
∨
{Ua | Ka 3 u},

which is the basis expansion. For the way-below relation,

Ka 3 Uk ≡ ∃`. a ≺≺ ` ⊂ jk
⇒ ∃b`. a ≺≺ b ≺≺ ` ⊂ jk single interpolation

⇒ ∃b`. a ≺≺ b / ` / k Lemmas 7.5, 6.6

⇒ a ≺≺ k. Lemma 7.6, Notation 7.4 �

We have now proved the analogue of Lemma 5.8 for locales in complete generality (not just
countably based ones) without using either points or the Axiom of Choice.

Theorem 7.10 Every abstract basis arises from some concrete basis using Scott-open families on
a locally compact formal cover, or locale. �

On the other hand, we may take another look at formal points and prove the classical version
of the theorem, but now without the countability restriction.

Lemma 7.11 Definitions 5.1 and 6.10 for formal points in terms of ≺≺, � and / agree.

Proof They share the properties of being upper, bounded and filtered, so we just have to show
that p is rounded and located (with respect to ≺≺) iff it is positive (with respect to /). Substituting
the definition of / from ≺≺, the subset p ⊂ A is positive iff, for all b ∈ A ⊃ u,

b ∈ p ∧ b / u ≡ b ∈ p ∧ (∀a. a ≺≺ b ⇒ ∃`. a ≺≺ ` ⊂ u) =⇒ p G u.

If p is positive and b ∈ p, put u ≡ {a | a ≺≺ b}. Then b / u (the bracketed clause holds) because
if a ≺≺ b then a ∈ u and we may interpolate a ≺≺ c ≺≺ b, so a ≺≺ ` ≡ {c} ⊂ u. Then by positivity
there is some d ∈ p ∩ u, so p 3 d ≺≺ b. Hence p is rounded.

If further p 3 b ≺≺ ` then b / u ≡ ` because a ≺≺ b =⇒ a ≺≺ `. So by positivity p G u ≡ ` and p
is located.

Conversely, suppose that p is rounded and located and b ∈ p, so we have p 3 a ≺≺ b by
roundedness. Then if b / u we have a ≺≺ ` ⊂ u by the bracketed clause and so p G ` ⊂ u by
locatedness. Hence p is positive.
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Given that we have shown equivalence of any ≺≺ with /, the choice of ≺≺ or� doesn’t matter.�

Although locales and formal covers in general need not have enough points (Warning 6.12),
locally compact ones do. The underlying idea here is actually the one that we were unable to use in
Remark 5.11, which we expressed there using compact subspaces. Here we exploit the way-below
relation� instead, but we use that on the formal cover, where the same proof in [Joh82, Theorem
VII 4.3] used the frame.

Theorem 7.12 Any continuous formal cover or locale has enough points.

Proof Recall from Proposition 6.13 that we need to show that(
∀p. c ∈ p⇒ p G u

)
=⇒ c / u,

so suppose that c 6/ u. Then c ∈ r ≡ A \ ju and we require c ∈ p ⊂ r.
By Proposition 7.8, r is rounded, so by Lemma 3.10 there is a ≺≺-filter s ≡ {a | ∃i. ci ≺≺ a} with

s ⊂ r, where · · · ≺≺ c2 ≺≺ c1 ≺≺ c0 ≡ c and ci ∈ r. Then by Lemma 3.11, K ≡ {v | ∃a ∈ s.Ka 3 v} =
{v | ∃i`. ci ≺≺ ` ⊂ v} ⊂ Ω is a Scott-open filter. If ju ∈ K then ∃i`. ci ≺≺ ` ⊂ ju, so ci ∈ ju by
Proposition 7.8, but by construction this is not the case, so ju /∈ K.

Now, by Lemma 3.12, which relies on the Axiom of Choice and applies to locales as well as
traditional topology, there is a completely coprime filter P with ju /∈ P ⊃ K.

By Proposition 6.10, p ≡ {d | jd ∈ P} is a formal point in the sense of /, which is the same as
that of ≺≺ by Lemma 7.11, and P = {v | p G v}.

If d ∈ p then jd ∈ P whilst ju /∈ P and P is upper, so jd 6⊂ ju and d /∈ ju by Lemma 6.6.
Also, c1 ≺≺ c0 ≡ c ∈ jc ∈ K ⊂ P, so c ∈ p ⊂ r ≡ A \ ju as required. �

Corollary 7.13 Every abstract basis arises from some concrete basis on a locally compact sober
topological space. In particular,

(b ≺≺ c) ∧ (∀p. c ∈ p⇒ p G k) =⇒ (b ≺≺ k).

Proof Combine the Theorem with Notation 7.4 and the results of Section 5. �

This completes the proof of the equivalence of categories between locally compact sober spaces
or locales and continuous functions on the one hand and bases and matrices on the other. We
defer the summary to the Conclusion and return to discussing the definition of local compactness
in Formal Topology.

Remark 7.14 Sara Negri introduced i(a) ≡ {b | b ≺≺ a} in [Neg02, Definition 4.10], where ≺≺ may
be sparser than the � relation that comes from continuous lattices. This was to allow i(a) to be
a legitimate “set” in the sense of Martin-Löf Type Theory, in terms of which Formal Topology is
usually presented. In our notation, she required

b / {a | a ≺≺ b}, a ≺≺ k =⇒ a / k and a / u =⇒ (∀a. a ≺≺ b⇒ ∃`. a ≺≺ ` ⊂ u).

The � relation in Lemma 6.17 is not permitted in MLTT because the quantification ∀w is
impredicative . However, Giovanni Curi [Cur07, Section 7.3] gave a predicative formula that is
equivalent to this (maximal) �, based on an observation of Peter Aczel [Acz06, Section 4.3].

There is an extensive discussion of the proof-theoretic issues regarding formal covers in general
in [CSSV03]. Abstract bases provide a very simple example of this:

Proposition 7.15 For any abstract basis (A,v,≺≺), the families

I(a) ≡ {k | a ≺≺ k}+
{
↓↓
}
, C(a, k) ≡ k and C(a, ↓↓) ≡ {b | b ≺≺ a}
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inductively generate the cover / in the sense that a / u holds iff it is provable using just the
axioms

a ∈ u =⇒ a / u and C(a, i) / u =⇒ a / u,

which are called reflexivity and infinity.

Proof Any such proof is sound by transitivity because a / C(a, i). Conversely, these axioms are
complete because we have the following deduction, using reflexivity and infinity but not transitiv-
ity:

· · · ` ∀a ∈ ↓↓ b. ∃k. a ≺≺ k ⊂ u
· · · , a ∈ ↓↓ b ` ∃k ∈ I(a). k ⊂ u
· · · , a ∈ ↓↓ b ` ∃k ∈ I(a). C(a, k) ≡ k / u reflexivity

· · · , a ∈ ↓↓ b ` a / u infinity

· · · ` ∀a ∈ ↓↓ b. a / u
· · · ` C(b, ↓↓) ≡ ↓↓ b / u

· · · ` b / u. infinity �

Similar methods could be used to say how some more manageable sparser system might gener-
ate ≺≺ in the way that we wanted in Rn (Example 1.6). We would need to consider how intersections
are managed. For the same issue in what we have just done, and we leave the interested reader
to use Lemmas 3.2 and 3.6 to show that if instead

C(a, k) ≡
⋃
{k′ | ∃a′. a′ ≺≺ k′ ≺≺ a ∧ k′ ≺≺1 k}

then we obtain a localised inductive cover in the sense of [CSSV03, Definition 3.4].

Our contribution to this topic is to provide the topological motivation and the abstract ax-
iomatisation for this sparser ≺≺ relation. We also regard this instead of / as primary. Indeed, the
examples that are usually given, in particular R, are already of this form.

Remark 7.16 Even for those who specifically wish to study / using Martin-Löf Type Theory, our
account and those of Negri, Aczel and Curi make a compelling case for presenting / in terms of
≺≺ whenever the space happens to be locally compact.

If a specific formal cover is inductively generated in some more complicated way and is locally
compact in the sense of Curi then by our Propositions 7.3 and 7.15 it has an abstract basis and
hence a simple inductive generation. In particular, the proof of the Curi property for the cover
also serves to show that it satisfies our definition.

On the other hand, if we wish to work with locally compact formal covers in general, is it more
convenient to assume that they are presented in our simpler way.

Therefore the more complicated definition of locally compact inductively generated formal
topologies is redundant. �

Such a presentation also makes a much clearer connection between Formal Topology and the
theory that we consider next.

Proposition 7.17 The correspondence between matrices with respect to / and ≺≺ is:[
a
∣∣ f ∣∣ b ] ⇔

(
∀a′. a′ ≺≺ a =⇒

〈
a′
∣∣ f ∣∣ b 〉)〈

a
∣∣ f ∣∣ b 〉 ⇔ ∃k. a ≺≺ k ∧ ∀a′ ∈ k.

[
a′
∣∣ f ∣∣ b ].

It would take another three or four pages to prove this, maybe in a new section.
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8 Intrinsic structure

Our fourth account of general topology exploits the topological operations that we may perform
within the category of locally compact spaces, instead of relying on the set theory of their classical
points or the algebra of their frames of open subspaces. We set out these properties here using
the notation and technology that we have already developed. Then we show in the next section
how they can be used to develop an intrinsic language for locally compact spaces.

Proposition 8.1 There is an object, called the Sierpiński space and written Σ, that has an
open point > and a closed one ⊥, with the property that, for any space X, there is a bijection
amongst
(a) an open subspace U ⊂ X,

(b) a continuous function φ : X → Σ and

(c) a closed subspace C ⊂ X,
where U = φ−1(>) and C = φ−1(⊥).

Moreover, Σ is a topological distributive lattice, with respect to which

(σ ∈ U) ⇐⇒ (⊥ ∈ U) ∨ σ ∧ (> ∈ U).

Proof Classically Σ ≡ {>,⊥} with open subspaces ∅, {>} and Σ. It has a concrete basis indexed
by A ≡ (� v •), where

U� ≡ {>} K� ≡ {>}
U• ≡ Σ K• ≡ {⊥} or Σ

and the basis expansion is the formula above. Notice that we have a choice between a singleton
and a compact saturated subspace for K•, cf. the ambiguity in Definitions 1.3 and 3.15. The
way-below relation ≺≺ for the abstract basis and the cover relation / for the formal topology are
the same as v.

The topology on Σ is the free frame on one generator, so frame homomorphisms from it
correspond to elements of the target frame. Hence in locale theory continuous maps X → Σ are
given by elements U ∈ Ω of the frame corresponding to X. Sublocales are defined by nuclei,
written j and satisfying id 6 j = j2 and j(U ∧ V ) = jU ∧ jV , cf. Lemma 6.6. In particular,
the open and closed sublocales named by U ∈ Ω are given by the nuclei U ⇒ (−) and U ∨ (−)
respectively. If V ∈ Ω gives rise to an isomorphic sublocale of either kind then the corresponding
nuclei are equal as endofunctions, but by applying them both to ∅, U and V , we deduce that
U = V . Hence the Sierpiński locale enjoys the same universal property as its classical analogue
for both open and closed sublocales, cf. [Joh82, Lemma II 2.6]. �

Remark 8.2 The familiar Tychonov construction provides finite products in the category of
locally compact sober spaces, but the description of the abstract basis for a product is beyond the
scope this paper: see [work in progress].

Proposition 8.3 For any locally compact space X, the exponential ΣX exists in the category.

Proof As Proposition 8.1 suggests, the points of ΣX are the open subspaces of X itself, or the
elements of the frame ΩX in locale theory. A typical open subspace V ⊂ ΣX is a Scott-open
family of open subspaces of X, i.e. ΣX carries the Scott topology (Proposition 2.11).

There is then a bijection that is natural in Γ between continuous maps

σ : Γ×X −→ Σ and φ : Γ −→ ΣX ,
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given classically by σ(γ, x) = > ⇐⇒ x ∈ φ(γ). This is valid exactly when X is a locally
compact space; for the long history of the ideas behind this fact see [Isb86]; the same holds for
locales [Hyl81] [Joh82, Theorem VII 4.11] and formal topology [Sig95] [Mai05] [Cur07, appendix].
However, we are unable to give the proof of the adjunction here since we do not want to discuss
the Tychonov topology on the product Γ×X.

Now let (U`,K`) be a directed basis using Scott-open families for X (Lemma 3.4), so that

U =
⋃
6{U` | K` 3 U}.

Then for any Scott-open family V ⊂ ΣX we have

V 3 U ⇐⇒ ∃`. V 3 U` ∧ K` 3 U.

Hence ΣX has a concrete basis (V(`),L(`)) indexed by Fin (A) and given by

V(`) ≡ K` and L(`) ≡ {U`} or {V | U` ⊂ V },

where, as in Remark 2.7, the parentheses on the subscripts denote formal intersections instead of
unions as in a directed basis. Also, even more than with Σ, we see the utility of using a singleton
{U`} ⊂ ΣX instead of a compact saturated subspace.

Since U` and K` essentially swap their roles, the pre-order vΣX on Fin (A) that we use for the
basis on ΣX is the opposite of vX for X. A similar thing happens with the way-below relation,

(k ≺≺ΣX L) ≡ (L(k) ⊂ V(L)) ≡ ∃` ∈ L. ∀a ∈ `. (Ka ⊂ Uk) ≡ ∃` ∈ L. (` ≺≺X k),

where L ∈ Fin (Fin (A)) denotes a finite set of finite sets or list of lists.
This is a stable basis (Definition 2.2) in which the empty list ∅ ≡ ◦X provides the top element

•ΣX for vΣX , whilst union or concatenation (tX) in the directed basis for X is now conjunction
uΣX for vΣX . The strong intersection rule holds because

(k ≺≺ΣX L1) ∧ (k ≺≺ΣX L2) ≡ ∃`1 ∈ L1. ∃`2 ∈ L2. (`1 ≺≺X k) ∧ (`2 ≺≺X k)

⇔ k ≺≺ΣX (L1 uΣX L2),

where (L1 uΣX L2) ≡ {`1 tX `2 | `1 ∈ L1, `2 ∈ L2}. Single interpolation is

(k ≺≺ΣX L) ≡ ∃` ∈ L. (` ≺≺X k)

⇒ ∃h. ∃` ∈ L. (` ≺≺X h ≺≺X k) ≡ ∃h. (k ≺≺ΣX h ≺≺ΣX L)

and this also gives Wilker with H ≡ {h} ≺≺1
ΣX {`} ⊂ L.

Using the translations in Section 7, the formal cover for the exponential ΣX is

(` /ΣX V ) ≡ ∀k. (` ≺≺X k =⇒ ∃h ∈ V . h ≺≺X k),

where V is a possibly infinite set of finite subsets of A and ≺≺X is an abstract basis that gener-
ates /X . �

Corollary 8.4 Every Scott-open filter is expressible in the manner of Lemma 3.11, as

K =
⋃
{K` | ` ∈ s} ⊂ Ω, where s ≡ {` | K 3 U`} ⊂ Fin (A)

is a ≺≺-filter in the directed basis (Lemma 3.4).

Proof This is the basis expansion of K 3 U in ΣX . �
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In Section 3 we relied on the fact that the directed basis automatically satisfies the bounded-
below and rounded unions rules to say that without loss of generality we may choose the bases for
spaces to have these properties, without necessarily requiring them to be closed under unions.

That is a reasonable attitude for base types, in the sense of the next section, i.e. spaces such as
R that we introduce on their own merits. However, for type constructors the situation is different:
we want to assign bases to product and exponential types in a canonical way that makes use
of the given bases for the base types. The simple way in which the basis for the exponential
is constructed above gives us a strong preference for this over modified forms, for example the
directed basis would be indexed by lists of lists (or by lattices).

We would therefore like to know when the foregoing construction yields a basis with the rounded
union property:

Lemma 8.5 If X has a basis (A,v,≺≺) that satisfies the strong intersection rule then the basis
for ΣX satisfies the rounded union rule.

Proof By the strong intersection and Wilker rules,

(L ≺≺ΣX `) ⇔ ∀b ∈ `. ∀k ∈ L. (b ≺≺X k)

⇒ ∀b ∈ `. ∃`′`′. (b ≺≺X `′′ ≺≺1
X `′) ∧ ∀k ∈ L. `′ v k

⇒ ∃`′′′. (` ≺≺X `′′′) ∧ ∀k ∈ L. `′′′ ≺≺1
X k

≡ ∃`′′′. (`′′′ ≺≺ΣX `) ∧ ∀k ∈ L. (k ≺≺ΣX `′′′)

≡ ∃`′′′. (L ≺≺ΣX `′′′ ≺≺ΣX `),

where `′′′ is the union of the lists `′′ for b ∈ `.
Conversely, we can deduce ∃`. a ≺≺X ` ≺≺X c, d from the rounded union rule for ΣX with

L ≡ {{c}, {d}} and ` ≡ {a}, along with single interpolation, whence Lemma 3.3 gives the strong
intersection rule. �

Example 8.6 The space ΣN is classically the powerset P(N) with the Scott topology. This
topology is the free frame on N. It has a basis indexed by finite sets ` of natural numbers, where

U(`) ≡ {u | ` ⊂ u ⊂ N} ⊂ P(N) and K(`) ≡ {`} or U(`).

The basis expansion is u ∈ U ⇐⇒ ∃`. (` ⊂ u) ∧ (` ∈ U). �

The space ΣN is also an example, with A ≡ Fin (N) and (k v `) ≡ (k ⊃ `), of the following
class of spaces. These are the starting point for the construction of a space from an abstract basis
using the ideas of this section:

Proposition 8.7 For any preorder (A,v), the relations

a ≺≺0 ` ≡ ∃b. a v b ∈ ` and a /0 u ≡ ∃b. a v b ∈ u

define an abstract basis satisfying the strong intersection rule and a formal cover, for which any
upper subset p ⊂ A is trivially rounded, located and positive (Definitions 5.1 and 6.10). In the
corresponding locally compact sober space,
(a) the formal points are (upper, bounded) filters p ⊂ A, so

b w a ∈ p =⇒ b ∈ p, ∃a. a ∈ p and a ∈ p ∧ b ∈ p =⇒ ∃c. c ∈ p ∧ a w c v b;
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(b) in particular each a ∈ A defines a so-called compact point p ≡ ↑ a ≡ {b | a v b};
(c) the specialisation order on compact points is the reverse of the usual one in domain theory:

if a v b then ↑ a ⊃ ↑ b;
(d) the open subspaces are Scott-open sets of points;

(e) the basic open and compact subspaces are

Va ≡ {p | a ∈ p} and La ≡ {↑ a} or La ≡ ↑↑ a ≡ {p | a ∈ p};

(f) and the basis expansion is

p ∈ V ⇐⇒ ∃a. p ∈ Va ∧ La ⊂ V ⇐⇒ ∃a. a ∈ p ∧ ↑ a ∈ V.

This space is called Filt(A,v) or Idl (A,vop) and is (the typical example of) an algebraic dcpo
(directed-complete partial order). �

This space allows us to give a simple categorical meaning to concrete bases:

Proposition 8.8 For any locally compact space X with a concrete basis (Ua,Ka) indexed by
(A,v) there are maps

i : X −→ Y ≡ Filt(A,v) and I : ΣX −→ ΣY such that ix ∈ IU ⇐⇒ x ∈ U

that are defined by

ix ≡ {a | x ∈ Ua} and IU ≡
⋃
{Va | Ka 3 U} ≡ {p | ∃a. (Ka 3 U) ∧ (a ∈ p)}.

Conversely, any such pair (i, I) defines a concrete basis on X by

Ua ≡ i−1Va ≡ {x : X | a ∈ ix} and Ka ≡ {U | {b | a v b} ∈ IU}.

Moreover, these translations are inverse.

Proof The filteredness conditions for a concrete basis (Definition 2.6(b,c)) give those for ix
in the Proposition, so this is a point of Filt(A,v). The subspace IU is a union of basic open
subspaces. Then

ix ∈ IU ≡ ∃a. x ∈ Ua ∧ Ka 3 U ⇐⇒ x ∈ U

by the basis expansion for X.
Conversely, Ua is an inverse image of an open subspace, whilst Ka is Scott-open because I is

Scott-continuous. The basis expansion for X follows from that for Y and the equation for (i, I)
because

x ∈ U ⇔ ix ∈ IU ⇐⇒ ∃a. ix ∈ Va ∧ La ⊂ IU
⇔ ∃a. a ∈ ix ∧ {b | a v b} ∈ IU
⇔ ∃a. x ∈ Ua ∧ ∃c.Kc 3 U ∧ c ∈ {b | a v b}
⇔ ∃a. x ∈ Ua ∧ Ka 3 U.

Finally, the definitions are inverse because

ix 3 a ⇐⇒ x ∈ Ua and ↑ a ∈ IU ⇐⇒ Ka 3 U. �
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We now describe this categorical structure more formally, because it offers a way of constructing
a general locally compact space from data on Filt(A,v).

Definition 8.9 For locally compact sober spaces X and Y , a Σ-split inclusion is a continuous
map i : X � Y together with a Scott-continuous map I : ΣX → ΣY such that

ix ∈ IU ⇐⇒ x ∈ U or Σi · I = idΣX .

The other composite, E ≡ I · Σi : ΣY → ΣY , is called a nucleus and satisfies

E(U ∧ V ) = E(EU ∧ EV ) and E(U ∨ V ) = E(EU ∨ EV ).

If nuclei E1 and E2 satisfy E1 · E2 = E2 = E2 · E1 then the subspace defined by E2 is a Σ-split
subspace of that defined by E1 and then we write E2 ⊂ E1.

Lemma 8.10 The following diagram is then an equaliser in the category of locally compact sober
spaces:

X-
i - Y

y 7→ {V | y ∈ EV }-

y 7→ {V | y ∈ V }
- ΣΣY

so the points of X are those y : Y that are admissible , ∀V ∈ ΣY . y ∈ EV ⇐⇒ y ∈ V .

Proof For any y ∈ Y that satisfies y ∈ V ⇐⇒ y ∈ EV ≡ IΣiV for all open V ⊂ Y , let
P ≡ {U ⊂ X | y ∈ IU}. Then
(a) y ∈ IX ≡ IX ≡ I(ΣiY ) ≡ EY ⇐⇒ y ∈ Y , which is true;

(b) dually y /∈ I∅ since y /∈ ∅ ⊂ Y ;

(c) y ∈ IU ∧ y ∈ IV ⇐⇒ y ∈ IU ∩ IV ⇐⇒ y ∈ IΣi(IU ∩ IV ) ≡ I(ΣiIU ∩ ΣiIV ) ≡ I(U ∩ V );

(d) dually y ∈ IU ∨ y ∈ IV ⇐⇒ y ∈ IU ∪ IV ⇐⇒ y ∈ I(U ∪ V ); and

(e) the family P ≡ {U | y ∈ IU} ⊂ ΣX is Scott-open because I is Scott-continuous.
Hence P is a formal point (Definition 3.13) of X, so by sobriety of X there is a unique point x ∈ X
with x ∈ U ⇐⇒ y ∈ IU , but x ∈ U ⇐⇒ ix ∈ IU so y = ix. Then ix ∈ V ⇐⇒ x ∈ U ≡
i∗V ⇐⇒ u ∈ IU ≡ I(i∗V ) ≡ EV ⇐⇒ y ∈ V , so y = ix by sobriety of Y . �

We can describe the same structure using locales instead of Point–Set Topology:

Lemma 8.11 The trivial formal cover in Proposition 8.7 generates the Alexandrov topology

D(A,v) on (A,v), consisting of its lower subsets.

Proof In Proposition 7.8, u = ju for this cover iff u is lower. �

To make a closer connection with the previous version, we may regard D(A,v) as the lattice
of open sets of compact points (Proposition 8.7(b)) and Filt(A,v) as its sobrification.

Proposition 8.12 Let Ω be a frame with concrete basis (Ua,Ka). Then there are maps i∗ :

D(A)� Ω and i∗, I : Ω� D(A), where i∗ is a frame homomorphism, i∗ preserves arbitrary meets
and I is Scott continuous. These satisfy the equations

i∗ · i∗ = i∗ · I = idΩ i∗ · i∗ = j and I · i∗ = E ,

where
ju ≡ {a | a / u} and Eu ≡ {a | ∃`. a ≺≺ ` ⊂ u}
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are localic- and ASD-nuclei respectively.

Proof We already know all of this structure apart from I and E . In particular, i∗ is the inverse
image operation for the inclusion i : X → Filt(A,v) in Proposition 8.8, which also defined, for
u ∈ Ω (so u = ju),

Iu ≡ {a | Ka 3 u} ≡ {a | ∃k. a ≺≺ k ⊂ u},

by Lemma 7.9. By the first part of Proposition 7.8, if u = ju then Iu ⊂ u, so i∗Iu ⊂ i∗u = ju = u.
Conversely, if a ∈ u = ju then, using Lemma 6.17,

a / {b | b ≺≺ a} ≡ Ij{a} ⊂ Iju ≡ Iu,

so u / Iu and then i∗ · I = idΩ.
The maps I and E ≡ I · i∗ are Scott-continuous because of their definition using the Scott-

open families Ka. Also, j and E inherit the equations for the two kinds of nuclei from the frame
homomorphism i∗. �

Corollary 8.13 Any continuous frame Ω is related in the same way to D(Ω) by

i∗u ≡
∨
u, i∗a ≡ ↓ a ≡ {b | b ≤ a} and Ia ≡ ↓↓ a ≡ {b | b� a}. �

Whilst the two kinds of nuclei satisfy different equations, they play the same role in their
respective subjects, namely to define subspaces.

Then every ASD nucleus splits in this way:

Theorem 8.14 Let E be a Scott-continuous endofunction of continuous frame Ω (for a locale Y )
such that

E(U ∧ V ) = E(EU ∧ EV ) and E(U ∨ V ) = E(EU ∨ EV ).

Then there is a Σ-split sublocale i : X � Y with X locally compact and E = I · Σi. If Y ≡
Filt(A,v) then X is given by the formal cover defined by

a / u ≡ EBa 6 EBu

and has a concrete basis. These are unique up to unique isomorphism.

Proof From either equation, E is an idempotent on Ω. Splitting it, we write i∗ for the epi part
because the equations make this a frame homomorphism, with a right adjoint i∗ a i∗. Then i∗ · i∗
is also the identity on the smaller lattice, whilst the composite j ≡ i∗ · i∗ is a localic nucleus, so the
splitting is a frame that defines a sublocale i : X � Y . Neither i∗ nor j need be Scott continuous,
but E and hence I are, so the smaller frame is a continuous lattice and X is locally compact. The
cover relation is

a / u ≡ a ∈ ju ≡ {a} ⊂ i∗(i∗u)

⇔ i∗{a} ⊂ i∗u ⇐⇒ I(i∗{a}) ⊂ I(i∗u)

≡ EBa 6 EBu. �

Notice in this proof that we pass irreversibly from using I to i∗. This is where we lose the
track of the chosen Scott-open family Ka and are just left with ↑↑Ua defined by the order on the
frame, cf. Corollary 6.15.

Remark 8.15 We have essentially given the proof that the contravariant self-adjunction Σ(−) a
Σ(−) on the category of locally compact locales is monadic.
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In particular, re-interpreting the diagram in Lemma 8.10 using locales, it is an equaliser because
it is a “U-split coequaliser” of frames, where U is the forgetful functor to Set or Dcpo. We leave
the reader to prove this, with the help of any account of the Eilenberg–Moore category for a
monad, such as [Tay99, Section 7.5].

The idea of Abstract Stone Duality that gave it its name was to take this as the defining
property of an abstract category and develop a symbolic calculus for general topology from that
[B]. The equation for a nucleus was expressed there using the λ-calculus, but [G] showed that this
is equivalent to our lattice-theoretic form. In this calculus the (somewhat unwieldy) notion of
nucleus therefore provided the definition (formation rule) for types.

In the next section we shall develop the ideas that we have discussed into a intrinsic language
for locally compact spaces, taking types to be specified by abstract bases. Then in Section 10 we
will show that any abstract basis defines a nucleus.

9 Abstract Stone Duality

We now introduce a notation based on the simply typed λ-calculus that is designed to take
advantage of the topological facts about the categories of locally compact spaces that we stated
in the previous section. Describing such calculi and their equivalence with other mathematical
structures takes a lot of space, so we do this rather tersely. For more extensive introductions
that show the relationship with real analysis please see [J], with domain theory see [I] and with
mathematical foundations see [O]. In the following account we rely on our earlier treatment of
locally compact spaces in Point–Set Topology, Locale Theory and Formal Topology, but in [work
in progress] we shall construct a model of ASD directly from abstract bases and matrices over an
arithmetic universe.

Remark 9.1 We shall take a type in ASD to be specified by an abstract basis (A,v,≺≺) and its
interpretation or denotation is a locally compact space together with a concrete basis. If this
subject is new to you then you should just regard the type as the space. On the other hand, using
abstract bases as the definition is an innovation of this paper in the ASD programme: previous
work specified types as nuclei (Definition 8.9), so in the next section we will prove that these are
equivalent.

Remark 9.2 As usual in modern symbolic logic, we write

x1 : X1, . . . , xn : Xk ` t : Y

for a term t of type Y , possibly containing (at most) free variables x1, . . . , xn respectively of types
X1, . . . , Xn. How terms are formed and manipulated remains to be defined, but the interpreta-
tion or denotation of t is a continuous function

J t K : JX1K× · · · × JXkK −→ JY K,

where JX1K, . . . , JXkK, JY K are locally compact spaces that have been chosen as the denotations of
the types X1, . . . , Xn, Y . The validity of processes such as substitution depends on having finite
products in the category. We shall omit the brackets because we do not really need to distinguish
between (syntactic) terms and their (topological) denotations in this paper.

Remark 9.3 Sets and lists or (Kuratowski-) finite subsets, with induction over them.

Remark 9.4 Very brief introduction to the restricted λ-calculus to exploit the exponential ΣX
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from Proposition 8.3. Give the β- and η-rules; also λ-abstraction preserves =, 6 and ⇒.

Remark 9.5 The other topological facts in the previous section may be taken as symbolic oper-
ations and equations:
(a) the types Σ and ΣX are distributive lattices and we may use >, ⊥, ∧ and ∨ on their terms,

because of Proposition 8.1;

(b) equality n = m between members of a set such as N is a term of type Σ because the diagonal
subspace N ↪→ N× N is open;

(c) combining these operations with induction over a list, we have membership (a ∈ `) and both
forms of quantification over a list or (Kuratowski-) finite subset (∀a ∈ `. φa and ∃a ∈ `. φa) as
terms of type Σ;

(d) the Phoa1 principle
Fσ ⇐⇒ F⊥ ∨ σ ∧ F>

holds for any σ : Σ and F : ΣΣ, also because of Proposition 8.1;

(e) existential quantification ∃n. φn of any system of Σ-terms indexed by a set gives another
Σ-term, since the union of a family of open subspaces is open;

(f) the Scott principle
Fξ ⇐⇒ ∃`. (∀n ∈ `. ξn) ∧ F (λn.n ∈ `)

holds for any ξ : ΣN and F : ΣΣN
, because of Example 8.6; and

(g) in fact the Scott principle holds for any set N (quâ discrete space) in place of N and the case
N ≡ 1 is the Phoa principle.

Remark 9.6 From the Phoa principle we deduce that
(a) if σ ⇒ τ then Fσ ⇒ Fτ ;

(b) more generally, any F : ΣY → ΣX preserves the lattice order, which we therefore call intrinsic
and write as 6;

(c) the symbols ¬, ⇒ and ⇔ are therefore not allowed within terms of type Σ, but we use ⇒ and
⇔ instead of 6 and = for the order and equality between such terms and ¬σ for σ ⇔ ⊥;

(d) if F> ⇒ G> then σ ∧ Fσ ⇔ σ ∧ (F⊥ ∨ F>)⇒ σ ∧ F> ⇒ σ ∧G> ⇒ Gσ; and

(e) similarly if F⊥ ⇒ G⊥ then Fσ ⇒ Gσ ∨ σ.
The last two observations may be formulated as the following two fundamental rules for topological
reasoning, where the terms α, β : Σ may depend on σ : Σ (so α ≡ Fσ and β ≡ Gσ) and the variables
in Γ:

Γ, σ ⇔ > ` α =⇒ β
===================

Γ ` σ ∧ α =⇒ β
and

Γ, σ ⇔ ⊥ ` α =⇒ β
===================

Γ ` α =⇒ β ∨ σ
The top lines say that α ⇒ β holds in the subspace U or C of Γ on which σ ⇔ > or ⊥. Then
the rules allow us to deduce the more complex implications in the whole space. We call these
principles after Gerhard Gentzen because of the loose resemblance to his rules for implication
and negation in the sequent calculus [Gen35, Section III].

The rule on the left is used very commonly and is easily overlooked, so for illustration we spell
out its use in the proof of Lemma 10.1. The one on the right, on the other hand, may be surprising
to an intuitionistic set theorist, but is a theorem of intuitionistic locale theory.

Lemma 9.7 Let G : ΣΣX

, φ` : ΣX and α` : Σ for ` ∈ Fin (N) be such that

φk =⇒ φkt` ⇐= φ`, α◦ ⇐⇒ > and αkt` ⇐⇒ αk ∧ α`.

1After Wesley Phoa, whose name is of southeast Asian origin and is pronounced a little like French poire.
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Then G
(
∃`. φ` ∧ α`

)
⇐⇒ ∃`. (Gφ`) ∧ α`.

Proof Let ξ ≡ λn. α{n}, so α` ⇐⇒ ∀n ∈ `. ξn, and

F ≡ λζ. G
(
∃`. φ` ∧ ∀n ∈ `. ζn

)
.

Then F (λn. n ∈ k) ⇐⇒ G
(
∃`. φ` ∧ (` ⊂ k)

)
⇐⇒ Gφk,

so ∃`. (∀n ∈ `. ξn) ∧ F (λn. n ∈ `) ⇐⇒ ∃`. α` ∧ Gφ`,

which is equal by Remark 9.5(f) to Fξ ⇐⇒ G
(
∃`. φ` ∧ α`

)
, as required. �

Definition 9.8 Turning to the topological interpretation of this calculus,
(a) terms of type X are formal points;

(b) terms of type ΣX are formal open subspaces;

(c) such terms are also used to describe the complementary closed subspaces, cf. Proposition 8.1;

(d) terms of type ΣΣX

are interpreted as Scott-open families of open subspaces, of which we have
made substantial use in this paper;

(e) in particular, a formal compact subspace of X (cf. Proposition 3.14 and Definition 6.2) is
a term

K : ΣΣX

such that K> ⇐⇒ > and K(φ ∧ ψ) ⇐⇒ Kφ ∧Kψ,

where φ and ψ are terms of type ΣX that denote open subspaces U, V ⊂ X;

(f) because of the Phoa principle (or the negation-like Gentzen rule, Remark 9.6(e)), any formal
compact subspace also satisfies the so-called dual Frobenius law ,

K (λx. σ ∨ φx) ⇐⇒ σ ∨ Kφ,

so long as σ does not depend on x. This rule, which was essentially first observed by Japie
Vermeulen for proper maps [Ver94], is valid in intuitionistic locale theory and formal topology,
because, by Proposition 8.1, the logic is one of closed subspaces as well as of open ones.

See [J] for the treatment of discrete and Hausdorff spaces in this formalism, along with further
discussion of compact subspaces and the way in which we may use K as a universal quantifier.
Beware, however, that formal compact subspaces are not necessarily representable as spaces or
types in our calculus, because not all compact subspaces of a locally compact space are locally
compact.

The logic also admits existential quantifiers, in particular over N and more generally over any
set quâ discrete space. More generally, the class of spaces over which this quantifier may range is
a constructively subtle issue, to which we return in Section 12.

We can now use this λ-notation to rewrite the fundamental definition of this paper. We now

use terms φ, βa : Σ in place of open subspaces and K : ΣΣX

for compact ones or Scott-open
families, the distinction between these being whether or not K preserves intersections. Then we
have:

Definition 9.9 A concrete basis using λ-terms consists of

(a) for each a ∈ A, terms βa : ΣX and Ka : ΣΣX

;

(b) if a v b then βax =⇒ βbx and Kbφ =⇒ Kaφ;

(c) βax ∧ βbx ⇐⇒ ∃c. βcx ∧ (a v c w b); and

(d) φx ⇐⇒ ∃a. βax ∧ Kaφ.
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Proposition 9.10 Any concrete basis (βa,Ka) using λ-terms gives rise to an abstract basis
(A,v,≺≺), where

(a ≺≺ `) ≡ Kaβ` ≡ Ka (∃b ∈ `. βb).

If the Ka preserve meets, so they are formal compact subspaces, then ≺≺ obeys the strong inter-
section rule.

Proof Co- and contravariance of ≺≺ follow from that of β` and Aa respectively. For the Wilker
rule we use the basis expansion of βc, switch to a directed basis and then apply Ka:

βk ≡ ∃c ∈ k. βc = ∃c ∈ k. ∃b. βb ∧ Abβc

= ∃b. βb ∧ ∃c ∈ k. Abβc

= ∃`. β` ∧ ∀b ∈ `. ∃c ∈ k. Abβc.

Hence a ≺≺ k ≡ Aaβk ⇔ ∃`. Aaβ` ∧ ∀b ∈ `. ∃c ∈ k. Abβc

≡ ∃`. a ≺≺ ` ≺≺1 k

by Lemma 9.7. For the weak intersection rule, the directed basis expansion of β` gives

β` = ∃b. βb ∧ Abβ` = ∃k. βk ∧ ∀b ∈ k. Abβ` > βk ∧ (k ≺≺ `).

Hence, using βc ∧ βd = ∃e. βe ∧ (c w e v d) in the equality,

βk ∧ (k ≺≺ `1) ∧ (k ≺≺ `2) 6 β`1 ∧ β`2 = ∃h. βh ∧ h v `1 u `2

and therefore, by Lemma 9.7 again,

Kaβk ∧ (k ≺≺ `1) ∧ (k ≺≺ `2) =⇒ ∃h. Kaβh ∧ h v `1 u `2.

The strong case is similar but simpler. �

In future work, we intend the ASD calculus to use the following rules to define general types
and their terms.

Definition 9.11 The formation rule for a type X in ASD takes an abstract basis (A,v,≺≺).

This yields not only the type itself but also a Σ-split inclusion i : X → ΣA with I : ΣX → ΣΣA

and a concrete basis βa : ΣX and Ka : ΣΣA

.

Definition 9.12 The introduction rule for terms of the type X specified by (A,v,≺≺) takes a
covariant, rounded, bounded filter ξ : ΣA and defines a term x : X with ix = ξ or βax ≡ ξa.

Two such terms are equal in X iff they are equal in ΣA.
Conversely, the elimination rules recover ξ ≡ ix : ΣA and its properties from a term x : X.

Definition 9.13 The elimination rule for x : X also gives an introduction rule that turns a

term Φ : ΣΣA

into φ ≡ ΣiΦ : ΣX by φx ≡ Φξ ≡ Φ(ix).

Conversely, the elimination rule turns φ : ΣX into Φ ≡ Iφ : ΣΣA

by Φξ ≡ ∃a. ξa ∧ Kaφ,
using the dual basis (Ka).

Two such terms Φ and Ψ are equal in ΣX if EΦ = EΨ.

We need to justify these rules with respect to the previous ASD literature, which we do in the
next section.

We could also show that morphisms in ASD, i.e. terms x : X ` t : Y , correspond bijectively to
matrices.
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10 Abstract bases and nuclei

In Remark 7.16 we argued that abstract bases are equivalent to but easier to use than the definition
of a locally compact Formal Topology that is found in the existing literature on that subject. Here
we do the same thing for Abstract Stone Duality, where nuclei (Definition 8.9) provided the earlier
definition.

Following Proposition 8.7, we must therefore first introduce Filt(A,v) as an object in ASD.
We do this by defining a nucleus E0 on ΣA and identifying the admissible terms. The following
account is a much simplified version of the one in [G].

Lemma 10.1 The term E0 defined by E0Φξ ≡ ∃a. ξa ∧ Φ(λb. a v b) is a nucleus.

Proof We spell out this simple argument in detail because it illustrates the Gentzen rule (Re-
mark 9.6(d)), whilst any Φ : ΣA → Σ preserves the intrinsic order (Remark 9.6(b)).

a v b, b v c ` a v c transitivity

a v b ` b v c =⇒ a v c Gentzen

a v b ` λc. b v c 6 λc. a v c λ-abstraction

a v b ` Φ(λc. b v c) =⇒ Φ(λc. a v c) intrinsic monotonicity

. . . ` (a v b) ∧ Φ(λc. b v c) =⇒ Φ(λc. a v c) Gentzen

. . . ` ∃b. (λb. a v b)b ∧ Φ(λc. b v c) =⇒ Φ(λc. a v c), ∃

where the last line is in fact ⇔ because we may put b ≡ a. Hence E0Φ(λb. a v b)⇔ Φ(λb. a v b).
Then, with either ∧ or ∨,

E0(E0Φ
∨

∧
E0Ψ)ξ ≡ ∃a. ξa ∧ (E0Φ

∨

∧
E0Ψ)(λb. a v b)

⇔ ∃a. ξa ∧ (Φ
∨

∧
Ψ)(λb. a v b) ≡ E0(Φ

∨

∧
Ψ)ξ. �

Next we verify that E0 defines the object that we want by proving that a term ξ : ΣA is a filter
iff it is admissible for E0 in the sense of Lemma 8.10, satisfying E0Φξ = Φξ for all Φ. Note that
such a term ξ may have parameters, so these points are “generalised” ones in the sense of sheaf
theory; they are test maps to an equaliser from a general object.

Lemma 10.2 If ξ : ΣA is admissible for E0 then it is covariant, bounded and filtered.

Proof We use admissibility with respect to various Φ. For covariance, let Φ ≡ λζ. ζa, so

ξa ≡ Φξ ⇐⇒ E0Φξ ≡ ∃b. ξb ∧ (b v a).

Then, for filteredness, let Φ ≡ λζ. ζb ∧ ζc, so

ξb ∧ ξc ≡ Φξ ⇐⇒ E0Φξ ⇐⇒ ∃a. ξa ∧ (b w a v c).

Finally, Φ ≡ λζ.> gives boundedness: > ≡ Φξ ⇔ E0Φξ ⇔ ∃a. ξa. �

Lemma 10.3 If ξ is covariant then E0Φξ =⇒ Φξ.

Proof As in Lemma 10.1, we may write covariance as ξb ` (λc. b v c) 6 ξ.
Since any Φ preserves the intrinsic order 6, we have ξb ` Φ(λc. b v c) =⇒ Φξ.
Using the Gentzen rule we deduce that ξb ∧ Φ(λc. b v c) =⇒ Φξ. �
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The converse uses the Scott principle, Remark 9.5(f):

Lemma 10.4 If ξ is bounded and filtered then Φξ =⇒ E0Φξ.

Proof By Scott continuity, Φξ ⇐⇒ ∃`. (∀b ∈ `. ξb) ∧ Φ(λb. b ∈ `).
By induction on `, we claim that

∃c. ξc ∧ ∀b ∈ `. (c v b).

In the base case ` ≡ ◦, this is boundedness of ξ, whilst filteredness of ξ gives the induction step.
Then (λb. b ∈ `) 6 (λb. c v b), so Φ(λb. b ∈ `) =⇒ Φ(λb. c v b) since Φ preserves the intrinsic
order. Hence ∃c. ξc ∧ Φ(λb. c v b), which is E0Φξ. �

Lemma 10.5 The object Filt(A,v) that is defined by the nucleus E0 on ΣA has a basis using
λ-terms with

Ba ≡ λξ. ξa and La ≡ λΦ. Φ(λb. a v b),

where the general open subspaces are those Φ : ΣΣA

such that Φ = E0Φ and the basis expansion
is

Φξ ⇐⇒ E0Φξ ≡ ∃a. Baξ ∧ LaΦ ≡ ∃a. ξa ∧ Φ(λb. a v b). �

Next we prove the analogue of Theorem 8.8 in ASD.

Proposition 10.6 Any concrete basis (βa,Ka) for X using λ-terms defines a Σ-split inclusion
i : X → Y ≡ Filt(A,v) by

ix ≡ λa. βax and Iφ ≡ λξ. ∃a. Kaφ ∧ ξa.

Conversely, given such an inclusion, the basis is

βa ≡ λx. ixa and Ka ≡ λφ. Iφ(λb. a v b)

and these translations are inverse.

Proof The basis gives a Σ-splitting because

(Iφ)(ix) ≡ ∃a. Kaφ ∧ βax ⇐⇒ φx.

Conversely, the Σ-splitting yields a basis because

φx ⇔ Iφ(ix) ≡ ∃a. Ba(ix) ∧ La(Iφ)

≡ ∃a. ixa ∧ Iφ(λb. a v b) ≡ ∃a. βax ∧ Kaφ.

These translations are inverse because ixa ⇐⇒ βax and Kaφ ⇐⇒ Iφ(λb. a v b) and we
can recover Iφξ from the latter. �

Corollary 10.7 Any concrete basis gives rise to a nucleus on Filt(A,v) with

EΦξ ≡ ∃a`. ξa ∧ (a ≺≺ `) ∧ ∀b ∈ `. Φ(λc. b v c).
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Proof Let Φ be an open subspace of Filt(A,v), so Φ = E0Φ, then

ΣiΦ ≡ λx. Φ(ix) ≡ λx. Φ(λb. βbx)

= λx. E0Φ(λb. βbx)

≡ λx. ∃b. (λb′. βb′x)b ∧ Φ(λc. b v c) Lemma 10.1

= ∃b. βb ∧ Φ(λc. b v c)
= ∃`. β` ∧ ∀b ∈ `. Φ(λc. b v c)

Ka(ΣiΦ) ⇔ ∃`. Kaβ` ∧ ∀b ∈ `. Φ(λc. b v c) Lemma 9.7

EΦξ ≡ I(ΣiΦ)ξ ≡ ∃a. ξa ∧ Ka(ΣiΦ) Prop 10.6

⇔ ∃a`. ξa ∧ a ≺≺ ` ∧ ∀b ∈ `. Φ(λc. b v c).

The equations for a nucleus follow from the fact that E = I · Σi. �

Now we show that any abstract basis defines a nucleus too.

Lemma 10.8 Given any co- and contravariant relation ≺≺, let

KaΦ ≡ ∃`. (a ≺≺ `) ∧ ∀b ∈ `. Φ(λc. b v c)

and EΦξ ≡ ∃a. Baξ ∧ KaΦ ≡ ∃a`. ξa ∧ (a ≺≺ `) ∧ ∀b ∈ `. Φ(λc. b v c).

Then we recover

KaΦ ⇐⇒ EΦ(λb. a v b) and (a ≺≺ `) ⇐⇒ KaB` ⇐⇒ EB`(λb. a v b).

Also, E satisfies E = E0 · E = E · E0 and is recovered from ≺≺.

Proof By covariance of a ≺≺ ` in `,

KaB` ≡ ∃k. (a ≺≺ k) ∧ ∀b ∈ k. ∃c ∈ `. b v c ⇐⇒ (a ≺≺ `).

Contravariance of a ≺≺ ` in a transfers to Ka; using this, Ka is recovered from E . We leave the last
part to the reader since we will not use it. �

Now we must use the properties of an abstract basis to prove that E satisfies the two equations
in Definition 8.9. However, since any term preserves the intrinsic order, we already have

E(Φ ∧Ψ) 6 (EΦ) ∧ (EΨ) and (EΦ) ∨ (EΨ) 6 E(Φ ∨Ψ),

so we need to prove the reverse inequalities. The weak intersection rule gives the first and the
Wilker rule the second.

Lemma 10.9 If ≺≺ satisfies the weak intersection rule

(a ≺≺ `) ∧ ∀b ∈ `. (b ≺≺ k1 ∧ b ≺≺ k2) =⇒ a ≺≺ k1 u k2,

then Ka(EΦ ∧ EΨ) =⇒ Ka(Φ ∧Ψ) and so E(EΦ ∧ EΨ) 6 E(Φ ∧Ψ).

Proof Using the formulae for Ka in Lemma 10.8 three times,

Ka(EΦ ∧ EΨ)

⇔ ∃`. (a ≺≺ `) ∧ ∀b ∈ `. EΦ(λc. b v c) ∧ EΨ(λc. b v c)

⇔ ∃`. (a ≺≺ `) ∧ ∀b ∈ `.
{

∃k1. (b ≺≺ k1) ∧ ∀c1 ∈ k1. Φ(λd. c1 v d)

∧ ∃k2. (b ≺≺ k2) ∧ ∀c2 ∈ k2.Ψ(λd. c2 v d).
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Taking the unions of the k-lists for all b ∈ ` and using covariance of ≺≺ with respect to k, this
implies

∃k1k2.

 ∃`. (a ≺≺ `) ∧ (∀b ∈ `. b ≺≺ k1 ∧ b ≺≺ k2)
∧ ∀c1 ∈ k1. Φ(λd. c1 v d)
∧ ∀c2 ∈ k2.Ψ(λd. c2 v d).

By the weak intersection rule, the top line implies a ≺≺ k1 u k2, which is

∃`′. (a ≺≺ `′) ∧ ∀b ∈ `′. (∃c1 ∈ k1. b v c1) ∧ (∃c2 ∈ k2. b v c2),

possibly with a different list `′. Then we match ∃c with ∀c and use

(b v c) ∧ Φ(λd. c v d) =⇒ Φ(λd. b v d)

from Lemma 10.1, the fact that Φ preserves the intrinsic order, the Gentzen rule and Lemma 10.8
to obtain

∃`′. (a ≺≺ `′) ∧ ∀b ∈ `′. Φ(λd. b v d) ∧ Ψ(λd. b v d) ≡ Ka(Φ ∧Ψ).

Hence we have shown that Ka(EΦ ∧ EΨ) =⇒ Ka(Φ ∧Ψ). Then by Lemma 10.8,

E(Φ ∧Ψ)ξ ≡ ∃a. ξa ∧ Ka(Φ ∧Ψ)

⇒ ∃a. ξa ∧ Ka(EΦ ∧ EΨ) ≡ E(EΦ ∧ EΨ). �

We leave the following similar but simpler results to the reader:

Lemma 10.10
(a) If E satisfies E(EΦ ∧ EΨ) 6 E(Φ ∧Ψ) then ≺≺ obeys the weak intersection rule;

(b) E · E 6 E iff ≺≺ is transitive; and

(c) E preserves meets iff ≺≺ satisfies the strong intersection rule. �

In the Wilker rule it is convenient to consider existential quantification instead of binary
disjunction:

Lemma 10.11 If ≺≺ satisfies the Wilker rule

a ≺≺ k =⇒ ∃`. (a ≺≺ `) ∧ ∀b ∈ `. ∃c ∈ k. (b ≺≺ c),

then Ka(∃i. Φi) =⇒ Ka(∃i. EΦi) and so E(∃i. Φi) 6 E(∃i. EΦi)

and in particular E 6 E · E .

Proof Using Lemma 10.8 several times, the Wilker rule in the second line and h ≡ {c} half-way
down,

Ka(∃i. Φi) ≡ ∃k. (a ≺≺ k) ∧ ∀c ∈ k. ∃i. Φi(λd. c v d)

⇒ ∃k`. (a ≺≺ `) ∧
(
∀b ∈ `. ∃c ∈ k. b ≺≺ c

)
∧
(
∀c ∈ k. ∃i. Φi(λd. c v d)

)
⇒ ∃`. (a ≺≺ `) ∧ ∀b ∈ `. ∃ci. (b ≺≺ c) ∧ Φi(λd. c v d)

⇒ ∃`. (a ≺≺ `) ∧ ∀b ∈ `. ∃i.
∃h. (b ≺≺ h) ∧ ∀c ∈ h. Φi(λd. c v d)

⇒ ∃`. (a ≺≺ `) ∧ ∀b ∈ `. ∃i. EΦi(λc. b v c)
≡ Ka(∃i. EΦi).
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Then E(∃i. Φi)ξ ≡ ∃a. ξa ∧ Ka(∃i. Φi) =⇒ ∃a. ξa ∧ Ka(∃i. EΦi) ≡ E(∃i. EΦi)ξ. �

This completes the proof that E is a nucleus, so we can split it to define a locally compact
locale by Theorem 8.14. We would also like to compare this construction with the one via Formal
Topology, the logic of which we use for the following result:

Lemma 10.12 For the nucleus E , with Buξ ≡ ∃c ∈ u. ξb, we have

EBuξ ⇐⇒ ∃a`. ξa ∧ a ≺≺ ` ⊂ u,

and so (EBb 6 EBu) ⇐⇒ (∀a. a ≺≺ b⇒ ∃`. a ≺≺ ` ⊂ u).

Proof
EBuξ ⇔ ∃a`. ξa ∧ a ≺≺ ` ∧ ∀b ∈ `. Bu(λc. b v c)

⇔ ∃a`. ξa ∧ a ≺≺ ` ∧ ∀b ∈ `. ∃c ∈ u. b v c
⇔ ∃a``′. ξa ∧ a ≺≺ ` v `′ ⊂ u
⇔ ∃a`′. ξa ∧ a ≺≺ `′ ⊂ u.

Hence EBb 6 EBu ⇔ ∀ξa.
(
ξa ∧ a ≺≺ b =⇒ ∃a′`. ξa′ ∧ a′ ≺≺ ` ⊂ u

)
⇔ ∀a. (a ≺≺ b =⇒ ∃`. a ≺≺ ` ⊂ u),

where ⇐ in the last line is easy and we obtain ⇒ by putting ξ ≡ λa′. a v a′. �

Theorem 10.13 Every abstract basis defines a locally compact formal cover, locale, sober space
and object in Abstract Stone Duality. Hence the formation rule for an ASD type X in Defini-
tion 9.11 and the elimination rule for ΣX in Definition 9.13 are justified.

Proof Having verified the equations for a nucleus we may invoke Theorem 8.14, in which the
formal cover agrees with that in Section 7. On the other hand, a nucleus directly justifies the
introduction of an object in ASD according to its previous literature [B] [G]. This object is a
Σ-split subspace of Filt(A,v) and carries a concrete basis using the λ-terms

B` ≡ λξ. ∃b ∈ `. ξb and Ka ≡ λΦ. EΦ(λb. a v b),

and the way-below relation is KaB` ⇐⇒ (a ≺≺ `) by Lemma 10.8. �

Warning 10.14 If you want to define a new space from (A,v,≺≺), where a ≺≺ ` ≡ Aaβ` for some
terms, it is advisable to check the Wilker and intersection rules explicitly and not assume that
they will follow automatically, cf. Theorem 12.10.

Now that we have established the equivalence between abstract bases and nuclei we turn to
that between their respective notions of formal point, in Definition 5.1 and Lemma 8.10.

Lemma 10.15 If ξ is admissible then it is rounded , ξc ⇐⇒ ∃a. ξa ∧ (a ≺≺ c).
Conversely, if ξ is rounded then E0Φξ =⇒ EΦξ for any Φ.

Proof Consider Φ ≡ λζ. ζc and use covariance for ` v {c}.

ξc ≡ Φξ ⇐⇒ EΦξ def Φ

≡ ∃a`. ξa ∧ (a ≺≺ `) ∧ ∀b ∈ `. (λc′. b v c′)c Lemma 10.8

⇔ ∃a. ξa ∧ ∃`. a ≺≺ ` v c Notation 1.12

⇔ ∃a. ξa ∧ (a ≺≺ c). covariance for ` v {c}
E0Φξ ≡ ∃b. ξb ∧ Φ(λc. b v c) Lemma 10.1

⇔ ∃ab. ξa ∧ (a ≺≺ b) ∧ Φ(λc. b v c) rounded

≡ E1Φξ =⇒ EΦξ,
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where the intermediate term E1Φξ ≡ ∃ab. ξa ∧ (a ≺≺ b) ∧ Φ(λc. b v c) will become relevant in
Example 13.3 �

Lemma 10.16 If ξ is admissible then it is located ,

ξa ∧ (a ≺≺ `) =⇒ ∃b. ξb ∧ (b ∈ `).

Conversely, if ξ is located then EΦξ =⇒ E0Φξ for any Φ.
In particular, if a is empty (a ≺≺ ◦) then ξa⇔ ⊥.

Proof Consider Φ ≡ λζ. ∃b ∈ `. ζb. Then with k ≡ ` and b ≡ d,

ξa ∧ (a ≺≺ `) ⇒ ∃ak. ξa ∧ (a ≺≺ k) ∧ ∀d ∈ k. ∃b ∈ `. d v b
≡ EΦξ ⇐⇒ Φξ ≡ ∃b ∈ `. ξb. def E , Φ

EΦξ ≡ ∃a`. ξa ∧ (a ≺≺ `) ∧ ∀b ∈ `. Φ(λc. b v c) def E
⇒ ∃b`. ξb ∧ (b ∈ `) ∧ ∀b′ ∈ `. Φ(λc. b′ v c) located

⇒ ∃b. ξb ∧ Φ(λc. b v c) ≡ E0Φξ. Lemma 10.1 �

Lemma 10.17 If ξ is admissible then it is covariant , ξa ∧ (a v b) =⇒ ξb.

Proof We need to be careful because the verbatim proof of Lemma 10.2 gave roundedness
instead. For a ∈ A, let Φa ≡ λζ. ζa, so by Lemma 10.8,

EΦaξ ⇐⇒ ∃c`. ξc ∧ (c ≺≺ `) ∧ ∀d ∈ `. d v a.

Then, for admissible ξ, since v is transitive we have

a v b ` ξa ⇐⇒ Φaξ ⇐⇒ EΦaξ =⇒ EΦbξ ⇐⇒ Φbξ ⇐⇒ ξb

and the stated result follows from the Gentzen rule. �

Lemma 10.18 If ξ is admissible then it is bounded and filtered ,

∃a. ξa and ξb ∧ ξc =⇒ ∃a. ξa ∧ (b w a v c).

Proof The proof of boundedness is the same as in Lemma 10.2, but that for filteredness uses
the roundedness property above. With Φ ≡ λζ. ζb ∧ ζc as before,

ξb ∧ ξc ≡ Φξ ⇐⇒ EΦξ

⇒ E0Φξ ≡ ∃a. ξa ∧ Φ(λd. a v d) ≡ ∃a. ξa ∧ (b w a v c). �

Proposition 10.19 A term ξ : ΣA is admissible for E iff it is rounded, bounded, covariant,
filtered and located for ≺≺. Hence the introduction and elimination rules for terms of type X and
the introduction rule for ΣX in Definitions 9.12 and 9.13 are justified.

Φξ
bounded & filtered-
�

covariant
E0Φξ

EΦξ

admissible

?

6

� always

located

-

E1Φξ

rounded

?
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Proof The preceding lemmas deduce the other properties from admissibility. Conversely, if ξ
is rounded and located then E0Φξ ⇔ EΦξ by Lemmas 10.15 and 10.16, whilst if it is bounded,
covariant and filtered then E0Φξ ⇔ Φξ by Lemmas 10.3 and 10.4. �

This completes the proof of the soundness and completeness of the axioms for a abstract basis
as an account of concrete bases for locally compact sober spaces, locales, formal topologies and
objects of ASD.

11 Bases using compact subspaces

We began this paper with a natural definition of basis that uses compact subspaces, but in most
of our discussion we have used Scott-open families instead, at the cost of a weaker rule for in-
tersections. In this section we use Lawson’s Lemma 3.10 and the axiom of Dependent Choice to
convert the weaker forms to the stronger ones. We consider the result for abstract bases in detail
first and the concrete one afterwards.

Notation 11.1 Let (A,v,≺≺) be an abstract basis that satisfies the single interpolation rule.
A Lawson sequence ~a is one of the form

a∞ ≺≺ · · · ≺≺ a2 ≺≺ a1 ≺≺ a0, that is, ∀i <∞. a∞ ≺≺ ai ∧ ai+1 ≺≺ ai,

and we let ~A be the set of such sequences. We write ~̀ for a list or finite subset of ~A (not a sequence

of unrelated lists) and `∞ for the list {b∞ | ~b ∈ ~̀}. Then we define

a ≺≺ ~̀ ≡ a ≺≺ `∞ ~b ≺≺ k ≡ ∃i <∞. bi ≺≺ k

and ~a ≺≺ ~̀ ≡ ∃i <∞. ai ≺≺ `∞ ≡ ∃i <∞. ai ≺≺ ~̀ ≡ ~a ≺≺ `∞.

As in Lemma 3.6, ~a v ~b is given by (~a ≺≺ ~b) ∨ (~a = ~b).

Lemma 11.2 Lawson sequences may be interpolated between individual basis elements and be-
tween lists of them:

a ≺≺ k ⇐⇒ ∃~b. a ≺≺ ~b ≺≺ k and k ≺≺1 ` =⇒ ∃~h. k ≺≺1 ~h ≺≺1 `.

Proof By repeated single interpolation, as in Lemma 3.10, given a ≺≺ k there are

a ≺≺ b∞ ≺≺ · · · ≺≺ b2 ≺≺ b1 ≺≺ b0 ≺≺ k,

so a ≺≺ b∞ and ∃i <∞. bi ≺≺ k, and conversely. Since (k ≺≺1 `) ≡ ∀b ∈ k. ∃c ∈ `. b ≺≺ c, the second
part iterates the first over the list k. �

Lemma 11.3 Transitivity, single interpolation and boundedness hold:

~a ≺≺ ~k ≺≺ ~̀ =⇒ ~a ≺≺ ~̀ =⇒ ∃~b. ~a ≺≺ ~b ≺≺ ~̀ and ∃~b. ~a ≺≺ ~b.

Proof By interpolation, using the previous result,

~a ≺≺ ~k ≺≺ ~̀ ≡ ∃i. ai ≺≺ k∞ ∧ ∀~b ∈ ~̀. ∃j. b∞ ≺≺ bj ≺≺ `∞
⇒ ∃i. ai ≺≺ k∞ ≺≺ `∞ =⇒ ~a ≺≺ ~̀

~a ≺≺ ~̀ ≡ ∃i. ai+1 ≺≺ ai ≺≺ `∞
⇒ ∃~bi. ai+1 ≺≺ ~b ≺≺ ai ≺≺ `∞ =⇒ ∃~b. ~a ≺≺ ~b ≺≺ ~̀
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and for any ~a, interpolate a2 ≺≺ a1 ≺≺ ~b ≺≺ a0, so that ~a ≺≺ ~b. �

Lemma 11.4 The Wilker and strong intersection rules hold in the form

(~a ≺≺ ~k) ∧ (~a ≺≺ ~̀) =⇒ ∃~h. (~a ≺≺ ~h ≺≺1 ~k) ∧ (~h ≺≺1 ~̀).

Proof We use the greater of i and j, the weak intersection and Wilker rules in A (cf. Lemma 3.6)
and the list form of Lawson interpolation:

(~a ≺≺ ~k) ∧ (~a ≺≺ ~̀) ≡ (∃i <∞. ai ≺≺ k∞) ∧ (∃j <∞. aj ≺≺ `∞)

⇒ ∃i <∞. ai+1 ≺≺ ai ≺≺ k∞, `∞
⇒ ∃i <∞. ∃h′h′′. ai+1 ≺≺ h′′ ≺≺1 h′ v k∞, `∞
⇒ ∃h′h′′~h. ~a ≺≺ h′′ ≺≺1 ~h ≺≺1 h′ v k∞, `∞
⇒ ∃~h. ~a ≺≺ ~h ≺≺1 ~k ∧ ~h ≺≺1 ~̀. �

Lemma 11.5 If the given basis (A,v,≺≺) is bounded below, has rounded unions is positive or

prime then ~A has the same property.

Proof Given ~a, we have c ≺≺ a∞ since A is bounded below and then c ≺≺ ~b ≺≺ a∞, so ~b ≺≺ ~a.
Similarly, if ~b,~c ≺≺ ~a then bi ≺≺ a∞ and cj ≺≺ a∞, so there are d and ~e with bi ≺≺ d ≺≺ ~e ≺≺ a∞

and cj ≺≺ b. Hence ~b,~c ≺≺ ~e ≺≺ ~a.
For positivity, ~a ≺≺ ~◦ ⇐⇒ ∃i. ai ≺≺ ◦.
For primality, ~a ≺≺ ~̀ ≡ ∃i. ai ≺≺ `∞ =⇒ ∃ib. ai ≺≺ b ∈ `∞ =⇒ ∃~b. ~a ≺≺ ~b ∈ ~̀,

where ~b ∈ ~̀ is the member for which b∞ = b ∈ `∞. �

Theorem 11.6 Any abstract basis that satisfies the single interpolation rule is isomorphic to one
that also satisfies boundedness above and the strong intersection rule, by〈

a
∣∣ f ∣∣~b 〉 ≡ a ≺≺ ~b and

〈
~b
∣∣ g ∣∣ a 〉 ≡ ~b ≺≺ a.

Proof Lemma 3.6 provides v for the new basis, all of the properties of which we have proved. We
may show that these matrices have the required properties and are inverse by similar methods. In
particular, they are both uniformly bounded,

〈
a
∣∣ f ∣∣~b 〉 is uniformly weakly filtered and

〈
~b
∣∣ g ∣∣ a 〉

is strongly but non-uniformly filtered. �

Notation 11.7 Now let (Ua,Ka) be a concrete basis for a space X using Scott-open families that

is indexed by (A,v,≺≺). We define an ~A-indexed basis for the same space by

U~a ≡ Ua∞ and K~a ≡
⋃
6{Kai

| i <∞}.

Lemma 11.8 These have the variance properties and agree with the way-below relation.

Proof By Lemma 3.6, if ~a ≺≺ ~b ≡ ∃i. a∞ ≺≺ ai ≺≺ b∞ then U~a = Ua∞⊂ Ub∞ = U~b and

~a ≺≺ ~b =⇒ ∃i. ∀j. ai ≺≺ b∞ ≺≺ bj =⇒ ∀j <∞. ∃i <∞.Kai ⊃ Kbj

so K~a ≡
⋃
{Kai | i <∞} ⊃

⋃
{Kbj | j <∞} ≡ K~b .

Also K~a 3 U~̀ ⇐⇒ ∃i <∞.Kai
3 U`∞ ⇐⇒ ∃i <∞. ai ≺≺ `∞ ≡ ~a ≺≺ ~̀. �
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Lemma 11.9 The filter property for concrete bases is satisfied.

Proof If x ∈ U~a ≡ Ua∞ and x ∈ U~b ≡ Ub∞ then there is some c with x ∈ Uc and a∞ w c v b∞.

By the basis expansion of Uc and Lemma 11.2 there are e ≺≺ ~d ≺≺ c with x ∈ Ue ⊂ Ud∞ = U~d ⊂ Uc,

so ~a w ~d v ~b. �

Lemma 11.10 The basis expansion is satisfied.

Proof We use the basis expansion in A twice and then interpolate b ≺≺ ~a ≺≺ c:

x ∈ U ⇒ ∃b. x ∈ Ub ∧ Kb 3 U
⇒ ∃bc. x ∈ Ub ∧ Kb 3 Uc ∧ Kc 3 U
⇒ ∃~a. x ∈ Ua∞ ∧ Ka∞ ⊃ K~a ≡

⋃
i<∞
Kai
⊃ Ka0

3 U
⇒ ∃~a. x ∈ U~a ∧ K~a 3 U
⇒ ∃~a. x ∈ Ua∞ ∧ Ka∞ 3 U
⇒ ∃b. x ∈ Ub ∧ Kb 3 U =⇒ x ∈ U. �

Theorem 11.11 Every locally compact sober topological space has a basis using compact sub-
spaces.

Proof We have constructed an abstract basis that satisfies the strong intersection rule and a
concrete one whose Scott-open families are filters by Lemma 3.11. Hence these are the neighbour-
hood filters of compact subspaces by Proposition 3.14. �

Remark 11.12 The other parts of the theory of abstract bases per se can be carried out in a
world that has nothing more powerful than the ability to manipulate the type of all finite subsets
or lists. This setting is called an arithmetic universe .

How can we accommodate Lawson sequences into this view?
In fact, we do not need them in general, just the ability to interpolate such a sequence given its

endpoints (a∞ ≺≺ a0). Classically, we use the interpolation property and the axiom of Dependent
Choice to do this. However, if we are not going to remember our choices, we need some way of
ensuring that we recover the same result if we repeat the selection process.

In the free arithmetic universe, the subobjects are recursively enumerable. Therefore, by
imposing a fixed way of scheduling parallel computations, we have a deterministic way of selecting
an element of any inhabited subobject.

The reason for using the formulation of abstract bases without v here (Lemma 3.6) is that we
cannot expect this choice to respect v. (Ideally, given a∞ ≺≺ ai and b∞ ≺≺ bj with a∞ v b∞ and
ai ≺≺ bj , we would like to chose interpolants such that ai+1 ≺≺ bj+1 too.)

This means that, instead of working with “the whole” infinite sequence a∞ ≺≺ · · · a2 ≺≺ a1 ≺≺ a0,
we may regard it as being encoded by its endpoints (a∞ ≺≺ a0) along with as many iterates as we
require of an interpolation operator µ that takes a∞ ≺≺ ai to a∞ ≺≺ ai+1. Then we define

a ≺≺ (b∞ ≺≺ b0) ≡ a ≺≺ b∞ and (b∞ ≺≺ b0) ≺≺ a ≡ ∃i. µi(b∞ ≺≺ b0) ≺≺ a,

the latter being understood as c ≺≺ a where µi(b∞ ≺≺ b0) = (b∞ ≺≺ c). After Lemma 11.2 above,
we need no further analysis than this of the meaning of the sequence ~a.

Therefore Theorem 11.6 is valid in any arithmetic universe that has such a deterministic choice
operation on inhabited subobjects, in particular in the free one. �

Presumably this is also valid in Martin-Löf Type Theory .
Is there a counterexample in a locale in a topos without Dependent Choice?
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This completes the proof, which we began in Section 3, that abstract bases may be taken to
satisfy all of the additional “convenient” properties in Definitions 1.10 and 1.11 as well as the
primary ones in Definition 1.8. The benefit of assuming all of the roundedness rules is this:

Lemma 11.13 Let (A,v,≺≺) be a basis with these roundedness properties and φ(a) be a for-
mula built from a free variable a : A, the way-below relation ≺≺, the connectives ∧ and ∨ and
quantification over lists. Then φ is rounded in a:

φ(a) =⇒ ∃a−a+. (a− ≺≺ a ≺≺ a+) ∧ ∀b. (a− ≺≺ b ≺≺ a+)⇒ φ(b). �

We now turn from the general theory to some important special cases.

12 Overt spaces

Overtness has arisen independently under various names in several constructive disciplines: located
subspaces in Constructive Analysis, open locales, positivity in Formal Topology and liveness in
Process Algebra. It is often said to be invisible classically, but the ideas that we need in this
section were actually introduced in Section 5 when we tried to construct a traditional topological
space directly from an abstract basis.

It is easiest to give the initial definition of this concept using Abstract Stone Duality, but we
then characterise it using abstract bases and formal covers and work with these. Finally we prove
a Theorem that links Topology to Computability.

Topologically, overtness is the lattice dual of compactness, the latter being related to the
universal quantifier. For example, whereas a compact subspace of a Hausdorff space is closed, so
an overt subspace of a discrete space is open. Similarly, an open subspace or direct image of an
overt subspace is again overt. These ideas are explored in the context of real analysis in [J].

Definition 12.1 A space X is overt if it has a term ∃X : ΣX → Σ that obeys the rules for
existential quantification :

. . . , x : X ` φx =⇒ σ
=====================
. . . ` ∃x. φx =⇒ σ

In classical topology, where the Sierpiński space Σ just has the two points > and ⊥, we just
have ∃XU ≡ (U 6= ∅) in any space. However, it is actually the points rather than Excluded
Middle that make overtness trivial (Remark 12.5).

Overt locales were first studied by André Joyal, Miles Tierney [JT84] and Peter Johnstone
[Joh84], who called them open because for them !X : X → 1 is an open map, i.e. there is a left
adjoint ∃X a !∗X satisfying the Frobenius law below. The name needed to be changed because
overt subspaces are often closed.

Lemma 12.2 A space X is overt iff there is a term ♦ : ΣX → Σ that satisfies

♦⊥ ⇐⇒ ⊥ and x : X, φ : ΣX ` φx =⇒ ♦φ.

Then ♦ ≡ ∃X and this also preserves joins and satisfies the Frobenius law

♦ (σ ∧ φ) ⇐⇒ σ ∧ ♦φ

for any σ : Σ and φ : ΣX , cf. Remark 9.8(f).

Proof These are consequences of the Phoa Principle (Remark 9.6) and the adjunction ∃X a !∗X .
See [J] for discussion. �
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Definition 12.3 More generally,
(a) an overt subspace of a (not necessarily overt) space X is by definition any operator ♦ :

ΣX → Σ that preserves joins;

(b) it is said to be inhabited if ♦> ⇔ >; and

(c) a point x : X is an accumulation point of ♦ if φx =⇒ ♦φ for all φ : ΣX .

Therefore ♦ ≡ ∃X makes any overt space X into an overt subspace of itself for which every
x : X is an accumulation point.

For subspaces, we may regard the accumulation points as providing the extent of ♦. However,
we can only understand overtness if we regard them as secondary to the operator (or its equivalent
positivity). Sometimes there is an equivalent open or closed subspace, as explained in [J], but in
general the extent need not be locally compact.

Beware that being inhabited does not mean ā priori that the subspace has an accumulation
point: we have a Theorem to prove about this.

Example 12.4 For any sequence f : N → X, the operator ♦U ≡ ∃n. fn ∈ U defines an overt
subspace. In this, the limit of any convergent subsequence is an accumulation point (hence the
name). Any recursively enumerable subset may be used here in place of N itself. �

Remark 12.5 Indeed we may replace N here with anything that we consider to be a “set” in
whichever logical foundations we are using. This means that any space that has enough points
(Warning 6.12) is overt.

Indeed, for any ♦ operator in Point–Set Topology with Excluded Middle,

V ≡ {x | ∃U. x ∈ U ∧ ¬♦U} =
⋃
{U | ¬♦U}

C ≡ {x | ∀U. x ∈ U ⇒ ♦U}

are complementary open and closed subspaces such that ♦U ⇐⇒ U G C. �

Leaving the uninteresting classical case behind, the preservation of joins invites characterisation
in terms of the basis:

Proposition 12.6 Overt subspaces correspond bijectively to positivities. These are subsets
r ⊂ A of the basis that are rounded and located, or equivalently upper and positive,

r 3 b =⇒ ∃a. r 3 a ≺≺ b and r 3 a ≺≺ ` =⇒ ∃b. r 3 b ∈ `

or r 3 a v b =⇒ r 3 b and r 3 a / u =⇒ ∃b. r 3 b ∈ u,

where r ≡ {a | ♦Ua} and ♦U ⇐⇒ ∃a. (a ∈ r) ∧ Ka 3 U.

Then a formal point p ⊂ A is an accumulation point of ♦ iff p ⊂ r ⊂ A.

Proof Proposition 4.13 and (the proof of) Lemma 7.11 characterised the subset r. We recover
♦ from r by the basis expansion and r from ♦ by roundedness. The containment p ⊂ r is the
restriction of the definition of an accumulation point to the basis and this is recovered for the
same reason. �

Now we turn to the characterisation of overt spaces in terms of / and ≺≺.

Lemma 12.7 If a space has a positive basis (with no a ≺≺ ◦) then it is overt.

Proof Let ♦U ≡ ∃a.Ka 3 U , so by hypothesis

♦⊥ ≡ ♦U◦ ≡ ∃a.Ka 3 U◦ ≡ ∃a. (a ≺≺ ◦) ⇐⇒ ⊥.

57

http://PaulTaylor.EU/ASD/lamcra


Then ♦ is ∃X by Lemma 12.2 because, by the basis expansion,

x ∈ U ⇐⇒ ∃a. x ∈ Ua ∧ Ka 3 U =⇒ ∃a.Ka 3 U ≡ ♦U.

So long as the given basis has single interpolation, the positivity isA+ ≡ {b | ∃a. a ≺≺ b}, cf. Lemma 3.5.
�

However, we cannot obtain a positive basis for an overt space “negatively” by just omitting
the a with a ≺≺ ◦.

Notation 12.8 For any overt space X with concrete basis (Ua,Ka) indexed by (A,v,≺≺), let

A+ ≡ {a | ∃x. x ∈ Ua} ⊂ A.

This is the positivity that corresponds to ♦ ≡ ∃X by Proposition 12.6. Since it is located, we
never have A+ 3 a ≺≺ ◦.

The key result is (our version of) a lemma that Peter Johnstone discovered [Joh84, Lemma 2.5]
on a ferry journey while he was investigating locale theory without excluded middle. He stated it
as a� (b+c) =⇒ (a� b)∨ (c ∈ A+), which in our notation is a ≺≺ `t{c} =⇒ (a ≺≺ `)∨ (c ∈ A+).

Whilst it may appear that we are simply cutting ` down to its intersection with A+, doing that
need not yield a constructively finite subset [Kur20]. However, Scott openness of Ka does provide
some suitable finite k ⊂ ` ∩A+.

Lemma 12.9 a ≺≺ ` ⇐⇒ ∃k. a ≺≺ k v ` ∧ k ⊂ A+.

Proof Ka 3 U` ⇐⇒ Ka 3
⋃
{Ub | b ∈ ` ∩A+} ⇐⇒ ∃k.Ka 3 Uk ∧ k ⊂ ` ∩A+. �

In particular, a ≺≺ c =⇒ (a ≺≺ ◦) ∨ (c ∈ A+). We use the form above to eliminate empty basic
subspaces from the interpolants that are provided by the Wilker and intersection rules for the
given basis:

Theorem 12.10 A space is overt iff it has a positive abstract basis.

Proof We may restrict the basis expansion to A+ because

x ∈ U ⇐⇒ ∃a. x ∈ Ua ∧ Ka 3 U ⇐⇒ ∃a. x ∈ Ua ∧ a ∈ A+ ∧ Ka 3 U.

It still obeys the filter property because in the statement

x ∈ Ua ∧ x ∈ Ub =⇒ ∃c. x ∈ Uc ∧ (a w c v b),

we have a, b, c ∈ A+. Hence the concrete basis (Ua,Ka) may be cut down to A+.
Now we prove the Wilker and weak intersection rules that make (A+,v,≺≺) an abstract basis.

First we apply them for the given basis A and then we use Johnstone’s lemma to reduce the
interpolant:

a ≺≺ ` ⇒ ∃k. a ≺≺ k ≺≺1 `

⇒ ∃kh. a ≺≺ h v k ≺≺1 ` ∧ (h ⊂ A+)

⇒ ∃h ⊂ A+. a ≺≺ h ≺≺1 `

a ≺≺ k ≺≺ `1 ∧ k ≺≺ `2 ⇒ ∃`′. a ≺≺ `′ v `1 u `2
⇒ ∃`′h. a ≺≺ h v `′ v `1 u `2 ∧ (h ⊂ A+)

⇒ ∃h ⊂ A+. a ≺≺ h v `1 u `2.
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Finally, since A+ is located, A+ 3 a ≺≺ ` =⇒ ∃b. b ∈ ` ∩A+, so A+ is a positive basis. �

In Formal Topology, the usual definition of overtness is this:

Theorem 12.11 A space is overt iff there is a positivity r ⊂ A such that b / b+ ≡ {b} ∩ r.
Proof Suppose that there is such a positivity and let ♦ be the corresponding operator by
Proposition 12.6, so ♦U ≡ ∃a ∈ r.Ka 3 U . Then

♦⊥ ≡ ∃a ∈ r.Ka 3 U◦ ≡ ∃a ∈ r. a ≺≺ ◦ ⇐⇒ ⊥.

If x ∈ Ua then a ∈ r since a / {a} ∩ r, so

x ∈ U ⇔ ∃a. x ∈ Ua ∧ Ka 3 U
⇒ ∃a. a ∈ r ∧ Ka 3 U ≡ ♦U.

Hence ♦ is ∃X as in Lemma 12.2.
Conversely, if X is overt then A+ (Notation 12.8) is a positivity. Also, from Section 7,

b / b+ ≡ (∀a. a ≺≺ b =⇒ ∃`. a ≺≺ ` ⊂ b+)

⇔
(
∀a. a ≺≺ b =⇒ (a ≺≺ ◦) ∨ (b ∈ A+)

)
since finite ` ⊂ b+ must be ◦ or {b}. This property is true by Johnstone’s Lemma 12.9. �

Finally we characterise overt subspaces.

Definition 12.12 A space X or its basis (A,v,≺≺) is called recursively enumerable if there is
some bijection A ∼= R ⊂ N where R and (the image of) ≺≺ are recursively enumerable.

Every object that is definable in Abstract Stone Duality is recursively enumerable, as are the
naturally occurring examples in Section 13, even if we choose to think of them classically.

We also call an overt subspace ♦ recursively enumerable if the corresponding positivity r ≡
{a | ♦Ua} ⊂ A ∼= R ⊂ N is recursively enumerable. Again this happens if ♦ is definable in ASD
or, we claim, naturally occurring. However, there is potentially some ambiguity in this usage, but
it will be resolved by the Theorem that we aim to prove.

Lemma 12.13 An abstract basis is recursively enumerable iff there is an enumeration k(−) : N→
Fin (A) and a decidable predicate WB(j, a, k) such that, for all i ∈ N, a ∈ A and k ∈ Fin (A),

a ≺≺ k ⇐⇒ ∃j. i < j ∧ k = kj ∧ WB(j, a, k).

Proof Stephen Kleene’s Theorem [Kle43, Section 4]. �

Remark 12.14 Is there a similar result in Martin-Löf Type Theory, maybe where WB(j, a, k) says
that j encodes a proof that a ≺≺ kj?

What is the result in locale theory?

Lemma 12.15 Let ♦ be a recursively enumerable overt subspace of a (not necessarily overt but)
recursively enumerable space and suppose that ♦U holds. Then ♦ has an accumulation point that
also lies in U .

Proof It suffices to consider U ≡ Ua, so a ∈ r. The result is essentially Lemma 5.7: we must
find a formal point p with a ∈ p ⊂ r, where r is rounded and located by Proposition 12.6. We use
Kleene’s Theorem to modify the enumeration assumption at the beginning of the proof and then
the construction proceeds in the same way from a0 ≡ a. That is, except that:
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At the ith stage, if WB(i, ai, ki) is false (even though some later WB(j, ai, ki) and hence ai ≺≺ ki
may be true) then we just let ai+1 ≡ a′ for any r 3 a′ ≺≺ ai by roundedness of r.

If WB(i, ai, ki) is true then a′ ≺≺ ai ≺≺ ki and as before a′ ≺≺ k′ ≺≺1 ai, ki and there is some
ai+1 ∈ r ∩ k′ by locatedness of r.

Such choices can be made because the sets are recursively enumerable, as is the resulting
p ≡ {b | ∃i. ai ≺≺ b}. This is also a ≺≺-filter as before.

For locatedness, if ai ≺≺ a′ ≺≺ k then, by assumption on the enumeration of Fin (A), we have
k ≡ kj and WB(j, a, k) for some j with i < j. This means that aj ≺≺ ai ≺≺ a′ ≺≺ k ≡ kj and then
aj+1 ≺≺ b ∈ kj , so b ∈ k ∩ p.

Hence we have a ≡ a0 ∈ p ⊂ r as required. �

We regard this proof as defining a function that takes the starting point a and (deterministi-
cally) yields a formal point pa. This is justified in the same way as in Remark 11.12.

Theorem 12.16 Every recursively enumerable overt subspace is the image of some (non-unique)
sequence f : r → X, where r is the corresponding positivity, as in Example 12.4.

Proof For each a ∈ r, let pa be the formal point that is constructed in the Lemma starting from
a ∈ r. Then 〈

a
∣∣ f ∣∣ b 〉 ≡ (b ∈ pa)

defines a matrix for a ∈ r ⊂ A and b ∈ A because
(a) it is trivially contravariant, rounded and saturated in a because we regard r ⊂ A as a space

whose basis has trivial v, ≺≺ and /;

(b) it has the partition property because pa is located with respect to ≺≺;

(c) it is rounded, bounded and strongly filtered in b because pa is a ≺≺-filter;

(d) a ∈ r =⇒
〈
a
∣∣ f ∣∣ a 〉 because a ∈ pa; and

(e) a ∈ r ∧
〈
a
∣∣ f ∣∣ b 〉 =⇒ b ∈ r because pa ⊂ r by construction.

Then Theorem 4.22 defines a continuous function f : r → X and Example 12.4 gives an overt
subspace � where

�Ub ≡ ∃a ∈ r. fa ∈ Ub ≡ ∃a ∈ r.
〈
a
∣∣ f ∣∣ b 〉 ⇐⇒ b ∈ r,

so � agrees with the given operator ♦ by Proposition 12.6. �

Remark 12.17 We claim that this result makes overtness the gateway between topology and
computability. Any program that takes (necessarily discrete) input data and yields (approxima-
tions to) a point of a space X is of the form in Example 12.4. Conversely, by Lemma 12.15, every
definable inhabited overt subspace has a computable point. Whilst the former may be trite and
the latter spectacularly infeasible as they stand, they do at least establish a purely topological
characterisation of what can be done computationally.

This becomes a little less far-fetched when we restrict attention to Rn and its usual basis
with U〈x,r〉 ≡ B(x, r) ≡ {y | |x− y | < r}. It turns out that d(x) < r is a reasonable notation
for ♦B(x, r) because it says how far x is from the nearest accumulation point. This relates
overtness to locatedness in Constructive Analysis [Spi10], but familiar numeral algorithms such
as Newton–Raphson iteration are also very similar to this [work in progress].

Therefore we may think about problems such as solving equations mathematically by adding
this concept to our usual topological repertoire. Then we may hand over the resulting λ-term to
a computational proof-theorist, who may be able to discover the accumulation points in a more
efficient way.
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13 Examples

I need more examples. What are the applications of local compactness in other mathematical
disciplines, besides real manifolds? I intend to re-write these in traditional notation instead of
that of ASD.

Example 13.1 The integers provide a basis for themselves in which n v m iff n = m, whilst
n ≺≺ ` iff n ∈ ` and n / u iff n ∈ u. Then any ξ is trivially covariant, rounded and located. It is
bounded and filtered iff

∃n. ξn and ξn ∧ ξm =⇒ (n = m)

respectively, so it is a formal point iff it is a description [Pea97] [A]. �

There are similar representations for numerals (finite sets) 0, 1, 2, . . . , and indeed any set
with decidable equality or any overt discrete Hausdorff space.

The previous incarnation of this work included two sections on prime bases and the generalised
interval domain. I don’t intend to include the whole of these, but some précis would be appropriate.

Example 13.2 A topological space is a continuous dcpo iff it has a prime basis, which is one
that satisfies the strong intersection rule and

a ≺≺ ` =⇒ ∃b. a ≺≺ b ∈ `.

Example 13.3 Given any abstract basis (A,v,≺≺) that satisfies the strong intersection rule,
(A,v,≺≺1) is a prime basis. We call this the (generalised) interval domain of the space X
whose basis was given.

The ASD nucleus corresponding to ≺≺1 is

E1Φξ ≡ ∃ab. ξa ∧ (a ≺≺ b) ∧ Φ(λc. b v c).

We saw this in Lemma 10.15 and [I].
Beware that this definition depends on the basis: isomorphic spaces with different bases may

have non-isomorphic interval domains.
This is because a continuous function f : X → Y need not lift to their interval domains. In

particular, the matrix
〈
a
∣∣ f ∣∣ b 〉 is bounded and filtered, but not necessarily uniformly, whilst any

matrix for a function between continuous dcpos is uniformly bounded and filtered. �

Example 13.4 If however the given basis is directed then its interval domain is the Smyth
powerdomain and its points correspond to the saturated compact subspaces of the given space.

�

By way of a more powerful worked example, here is

Proposition 13.5 The exponential 2N (Cantor space) exists as an ASD object and as a locally
compact space.

Proof The basis A consists of finite strings of 0s and 1s, with a v b if b is an initial segment
of a. Some examples of the way below relation are

a ≺≺ a, a ≺≺ {a0, a1}, a ≺≺ {a00, a010, a011, a10, a11},
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so interpolation, Wilker and roundedness are trivial, but, as in Example 1.6, we leave the interested
reader to formulate a ≺≺ ` explicitly. Also, (a w c v b) =⇒ (a = c)∨ (c = b), so if ξ is a filter with
ξa ∧ ξb then (a v b) ∨ (b v a). This makes ξ essentially a finite or infinite sequence of 0s and 1s.

It is located iff it is an infinite such sequence, because

Γ ` ξa ∧ a ≺≺ {a0, a1} =⇒ ξ(a0) ∨ ξ(a1).

The Γ emphasises that parameters are allowed, so the disjunction says that Γ = Γ0 + Γ1 (as a
disjoint union of spaces) where Γ0 ` ξ(a0) and Γ1 ` ξ(a1).

We have therefore described morphisms ξ : Γ→ X, where X is the space defined by the basis,
and shown that these are bijective with f : Γ × N → 2, as required for the universal property of
X ∼= 2N.

For the interval domain, the relations ≺≺1 and v are the same, so roundedness is trivial. Hence
a generalised interval is encoded by a sequence that may be finite or infinite, but it must be defined
on an initial segment of N. These intervals are some of the compact subspaces. �

Now we turn to (Dedekind) real intervals and numbers:

Proposition 13.6 A term ξ : ΣA is rounded, bounded and filtered with respect to the basis for R
defined by intervals (d, u) ⊂ [d, u] iff there are disjoint lower and upper reals (δ, υ) with

ξ(d, u) ⇐⇒ δd ∧ υu.

Therefore X1 is the (usual) interval domain [Sco72, ES98], as presented in Section I 7.

Proof Let A be the set of pairs with d < u rational. Without imposing any conditions on ξ : ΣA

and δ, υ : ΣQ, they satisfy the adjunction

ξ(d, u) =⇒ δd ∧ υu
====================================
∃u′. ξ(d, u′) =⇒ δd ∧ ∃d′. ξ(d′, u) =⇒ υu.

One of these transformations takes rounded ξ as above to rounded (δ, υ) in the sense of Section I 6,
and the other does the converse. Likewise for boundedness. If ξ is filtered then

δd ∧ υu ≡ ∃et. ξ(d, t) ∧ ξ(e, u)

⇒ ∃efst. ξ(f, s) ∧ d ≤ f < s ≤ u =⇒ d < u,

so δ and υ are disjoint. Conversely,

ξ(d, t) ∧ ξ(e, u) ≡ δd ∧ υt ∧ δe ∧ υu =⇒ δc ∧ (c < v) ∧ υv ≡ ξ(c, v),

where c ≡ max(d, e), v ≡ min(t, u) and so (c, v) = (d, t) ∩ (e, u).
When ξ is filtered we recover ξ 7→ (δ, υ) 7→ ξ, whilst if δ and υ are bounded then (δ, υ) 7→ ξ 7→

(δ, υ). Hence when all of these conditions hold on either side we have a bijection and (δ, υ) is an
interval or Dedekind pseudo-cut. �

Proposition 13.7 An interval given in this way by ξ is located in the sense of this paper iff the
corresponding (δ, υ) is located in the sense of [I]. In this case they define a real number in the form
of a Dedekind cut.

Proof Given e < t, there are c < d < e < t < u < v with ξ(d, u) and [d, u] ⊂ (e, v) ∪ (c, t), so
by locatedness ξ(e, v) ∨ ξ(c, t), whence δe ∨ υt. The converse is more complicated, involving
the reorganisation of a conjunction (over the list `) of binary disjunctions, but is essentially
Lemma I 6.16. �
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14 Conclusion

We have proved several weak equivalences of categories.

Definition 14.1 In the category of weak abstract bases and matrices,
(a) an object is an abstract basis (A,v,≺≺) that satisfies the principal axioms of Definition 1.8

(co- and contravariance, Wilker and weak intersection) and the roundedness properties of
Definition 1.10 (single interpolation, rounded union and boundedness above and below);

(b) a morphism
〈 ∣∣ f ∣∣ 〉 : (A,v,≺≺) → (B,v,≺≺) is a matrix that satisfies Definition 1.13 (co-

and contravariance, roundedness on both sides, partition, boundedness, weak filteredness and
saturation);

(c) the identity map on (A,v,≺≺) is the way-below relation,
〈
a
∣∣ idX ∣∣ b 〉 ≡ (a ≺≺X b); and

(d) morphisms are composed using the saturated composition operation in Notation 4.6:〈
a
∣∣ f ; g

∣∣ c 〉 ≡ ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b.
〈
a′
∣∣ f ∣∣ b 〉 ∧ 〈 b ∣∣ g ∣∣ c 〉.

Definition 14.2 The category of strong abstract bases and matrices is the full subcategory
of the previous one consisting of bases that also obey the strong or rounded intersection rule. By
Lemma 3.3 or 4.20, the matrices are strongly filtered.

The concrete category of “locally compact spaces and continuous maps” is weakly equivalent
to one or both of these abstract categories. This is the case for each of the four formulations of
topology that we have considered, in the mathematical foundations that are appropriate to that
subject. We begin with Formal Topology because it is the most similar to our abstract bases.

Theorem 14.3 The category of locally compact formal topologies and continuous functions is
weakly equivalent to the strong abstract category, in Martin-Löf type theory.

Proof Definition 6.4, Lemma 6.17 and Remark 7.14 discussed how locally compact formal covers
are defined. Proposition 7.3 and its preceding two lemmas derived an abstract basis � from a
locally compact cover / and Lemmas 7.5 to 7.7 did the converse.

Proposition 7.17 translated between matrices for ≺≺ and /, the latter being the definition of
continuous functions between covers that the Formal Topologists use.

The results of Sections 3 and 11, regarded solely as operations on abstract bases, show how to
add the extra properties to them; we may assume Dependent Choice in doing this because it is a
feature of Martin-Löf Type Theory. �

Theorem 14.4 The category of locally compact locales and continuous functions is weakly equiv-
alent to the category of weak abstract bases and matrices, in the logic of an elementary topos.
If the topos satisfies the axiom of Dependent Choice then the category is also equivalent to the
strong one.

Proof Definitions 6.1 and 6.2, Lemma 6.14 and Corollary 6.15 explained what locally compact
locales and continuous lattices are and Proposition 6.16 obtained an abstract basis from them.

The converse construction turns the formal cover in the previous result into a frame or locale
using Lemma 6.6 and Theorem 6.7; Proposition 7.8 characterised this using ≺≺. Then Lemma 7.9
provides the Scott-open family (Ka) such that Ka 3 U` ⇐⇒ a ≺≺ `.

Continuous functions, which are defined as reverse frame homomorphisms, correspond to ma-
trices by the arguments in Section 4, with

⋃
, ∩ and Ka⊂ replaced by

∨
, ∧ and Ka3. Bases may

be improved to obey the single interpolation and rounded union rules by a similar translation of
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Lemma 3.4. If Dependent Choice is available, Section 11 showed how use it to impose the strong
intersection rule. �

Theorem 14.5 The category of locally compact sober topological spaces and continuous functions
is weakly equivalent to the strong category of abstract bases and matrices, in a set theory with
excluded middle and the Axiom of Choice.

Proof Sections 1, 2, 3 and 11 showed how concrete bases using compact subspaces or Scott-
open families yield abstract bases and can be improved to have all of the additional properties.
Conversely, Section 5 defined a locally compact sober space from any countable abstract basis.

For the general case, we turn the locale in the previous result into a sober topological space.
Lemma 7.11 showed that formal points for the abstract basis (Definition 5.1) agree with those for
the locale and formal cover (Proposition 6.10). By Theorem 7.12 there are enough of them to make
the extent (Proposition 6.11) an isomorphism between the abstract frame and the lattice of open
sets of formal points (Definition 5.2). Then the Scott-open families in Lemmas 5.4 and 7.9 agree
and satisfy the basis expansion. We also obtain Ka ⊂ U` ⇐⇒ a ≺≺ ` from Lemma 7.9 instead of
Lemma 5.8 and its preceding results. The space is sober by Lemma 5.9 without the countability
restriction and in the strong case Theorem 5.10 describes the basic compact subspaces.

Section 4 showed how matrices correspond bijectively to continuous functions between sober
spaces and deduced the saturated composition operation. �

Remark 14.6 Our development in Point–Set Topology in Section 5 was interrupted by the need
to find enough formal points to characterise the way-below relation. We eventually proved this in
Theorem 7.13, once we had the benefit of the concept, structure and properties of the / relation.
In particular, we now see that we needed to apply Lemma 3.12 about maximal filters, not in the
concrete frame of open sets of points (cf. Lemma 5.9), but in the abstract one that is defined
directly from the abstract basis (Theorem 7.12). Only after doing so can we deduce that these
two frame are isomorphic and hence prove the Theorem.

Remark 14.7 In Abstract Stone Duality, Proposition 9.10 showed that every concrete basis using
λ-terms defines an abstract one. Conversely, the results of Section 10 constructed a nucleus E from
any abstract basis.

Our introduction to ASD relied on the equivalence with the other formulations of topology,
whereas the appropriate notion of “set” for ASD is either an object of an arithmetic universe or
an overt discrete space in ASD. The construction of the strong abstract category really belongs in
this much weaker logic. However, the axioms of both the topology and the foundations are then
so weak that we have a whole paper’s [work in progress] worth of work to do to construct the
category, its products and its exponentials, but the outcome of this is that it is a model of ASD.

Remark 14.8 The main outcome of this lengthy investigation is that the same structure, at least
as far as its topological description is concerned, is equivalent to the category of locally compact
spaces in all four formulations, whereas each of those accounts has its own ad hoc features.

This is possible because, in the four kinds of abstract basis, the words “set” and “relation” are
understood in different ways, since we are working in different logical foundations.

Consequently, the meaning of the notion of “continuous function” varies with logical strength.
Indeed, we have a precise way of saying this: a continuous function in Point–Set Topology is a
matrix (a certain kind of logical predicate on sets) that is definable in set theory with Excluded
Middle and Choice, whereas a continuous function in Formal Topology is a matrix that is definable
in Martin–Löf Type Theory, etc.
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This is an observation that is already logically relevant for familiar spaces such as N and R
that have homes in all four worlds. There are, for example, faster growing continuous real-valued
functions in traditional topology than in the other subjects.

Remark 14.9 Cutting the full power of Section 4 down to just Proposition 4.13, we have a weak
equivalence between the categories of
(a) locally compact spaces and operators that preserve all joins (but not necessarily meets) and

(b) bases and matrices that are co- and contravariant, rounded, saturated and have the partition
property (but need not be bounded or filtered).

Again, there are results for each of the four kinds of topology. There are also further generalisations
to (not necessarily distributive) continuous lattices and to bases and covers without the intersection
rules.

Remark 14.10 In particular, by Proposition 12.6 overt subspace operators ♦ are in bijection with
positivities (certain subset of the basis) in each of the four forms of topology. It is in this application
that we see the most dramatic differences amongst the four logical settings, ranging from the
classical one, where overtness is useless, to ASD, where in principle it provides an algorithm for
solving a problem.

Remark 14.11 This range of different logics has a bearing on what constitutes “constructive”
mathematics. Unfortunately, there is a tendency of mathematicians working on one camp to
claim a monopoly on this word to the exclusion of the others. In this paper we have seen three
approaches to topology that live in “constructive” worlds, by which we mean not the classical one.

If we are going to forbid excluded middle and the Axiom of Choice, why allow impredicativity?
But if you are going to adopt that position, how do you justify the infinite subsets that are

needed in Formal Topology?
Our ≺≺ has the advantage that its theory only uses finite subsets and coherent logic: entail-

ments between existentially quantified formulae. Further work will show that matrices or ASD
terms that are definable in our weakest logic are computable. According to the Church–Turing the-
sis, there is only one notion of computability, whereas the question of which axioms and arguments
count as “constructive” is open to debate.

After that, we can try to do computation with matrices for continuous functions between locally
compact spaces.

Remark 14.12 In a different direction, we may see the axiomatisation of abstract bases as the
notion of local compactness stripped of the cultural baggage of the different approaches to topology.
We simply have relations between sets.

They’re not just sets. We have used lists or finite sets, whilst Fin (A) is the free algebra
(semilattice) for a functor on sets. The categorical mind will be able to ring many changes on this
idea. In fact, this is the reason for keeping the preorder v even though Lemma 3.6 showed that
it is redundant: it is a clue to possibly more general structure, such as a category.

Maybe the notion of locally compact space will be even more of a discovery than our already
diverse opening diagram suggests.
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