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Abstract

One of the objectives of category theory is to provide a foundation for itself in particular and mathematics in general
which is independent of the traditional use of set theory. A major question in this programme is how to formulate
the fact that Set is “complete”, i.e. it has all “small” (i.e. set- rather than class-indexed) limits (and colimits). The
answer to this depends upon first being able to express the notion of a “family” of sets, and indexed category theory
was developed for this purpose.

This paper sets out some of the basic ideas of indexed category theory, motivated in the first instance by this
problem. Our aim, however, is the application of these techniques to two categories of “domains” for data types in
the semantics of programming languages. These are Retr(Λ), whose objects are the retracts of a combinatory model
of the λ-calculus, and bcContω, which consists of countably-based boundedly-complete continuous posets. They are
(approximately) related by Scott’s [1976] Pω model.

In the case of Set we would like to be able to define an indexed family of sets as a function from the indexing set
to the “set” of all sets. Of course Russell showed long ago that we cannot have this. However there is a trick with
disjoint unions and pullbacks which enables us to perform an equivalent construction called a fibration.

Retr(Λ) and bcContω do not have all pullbacks. This of course means that they’re not strictly speaking complete
however we formulate smallness: what we aim to show is that they have all “small” products. More importantly, this
pullback trick is on the face of it not available to us. They do, on the other hand, have a notion of “universal” set (of
which any other is a retract), and indeed of a “set” of sets, though space forbids discussion of this. These we use in
stead to provide the indexation.

Having constructed the indexed form of Retr(Λ) we discover that it does after all have enough pullbacks to present
it as a fibration in the same way as Set. However whereas in Set any map may occur as a display map, in this case
we have only a restricted class of them. We then identify this class for bcContω and find that it consists of the
projections (continuous surjections with left adjoint) already known to be of importance in the solution of recursive
domain equations.

We formulate the abstract notion of a class of display maps and define relative cartesian closure with respect to it.
The maximal case of this (as applies in Set, where all maps are displays, is known as local cartesian closure. The
minimal case (where only product projections are displays) is known in computer science as (ordinary) cartesian
closure, though in category theory it is now more common to use this term only when all pullbacks exist, though not
necessarily as displays.

This work will be substantially amplified (including discussion of the “type of types”) in [Taylor 1986?].



1. Indexed Families

We begin by formalising the notion of an indexed family of objects. For basic category theory see [Arbib and Manes
1975], [Mitchell 1965] or [Mac Lane 1971]. This account of indexed categories is very loosely based on [Johnstone et

al. 1978] and [Johnstone 1983]. [Kock and Reyes 1977] and [Lawvere 1969] provide excellent introductions to some
of the underlying ideas of categorical logic.

Let S be some category, whose objects we are thinking of as sets — in the first instance S = Set. In order to talk
about products, coproducts and so on in S we need some notion of an A-indexed family of objects of S, for each
A ∈ obS. A naive notation for such a thing might be (Xa : a ∈ A). Between these there are A-indexed functions,
(fa : Xa → Ya : a ∈ A), so that we have a category SA. In the basic example this category is simply the A-fold power
of the category S = Set.

As well as A-indexed families, we have substitution or relabelling functors. If α : B → A is any S-map and Xa : a ∈ A)
is an A-indexed family, we have a B-indexed family (Xαb : b ∈ B). The same applies to morphisms, so this is in
fact a functor Sα : SA → SB . The assignment α 7→ Sα is itself (pseudo) (contra) functorial, in that Sid ∼= id and
Sαβ ∼= SβSα. These natural isomorphisms will have to satisfy some coherence conditions, but we shall not pay too
much attention to them.

(Xa : a ∈ A) appears to be a function from A to the class of all sets, which is a very troublesome notion. As has been
remarked, we shall be able to think in this way in Retr(Λ), but not in Set. The trick in Set is to code this up using
the disjoint union, making use of our a priori knowledge of the structure of the category but quietly subsuming the
Axiom of Replacement. The indexed set (Xa : a ∈ A) is represented by its disjoint union together with the display
map which identifies the index:

X =
∐
a∈A

Xa x ∈ Xa

A
?

a
?

An object of SA is therefore just a function, or S-morphism; Xa is picked out as the inverse image of a, i.e. the
pullback of the singleton function a : 1 → A against the display map. In the case S = Set any map may occur as a
display map.

The substitution functor Sα : SA → AB over α : B → A is easily seen to be given by pullback along α and is
consequently written Pα or α∗: ∐

b∈B

Xαb
∼= X ×A B - X ∼=

∐
a∈A

Xa

B
? α - A

?

There is an alternative description of this set-up in terms of fibrations. The objects over A ∈ S are the S-maps with
codomain A, but besides forming categories over each A (called fibres) all the objects together form a category called
S2 because it is the category of functors from 2 = (• → •) to S; the morphisms are just the commutative squares
in S. There is then a functor cod : S2 → S with the property that X ∈ SA iff cod(X) = A and the maps X → Y

over α : B → A (i.e. the squares whose lower side is α) correspond bijectively to the maps X → PαY in SB . The
maps within a single fibre (i.e. the squares with an identity along the bottom) are (for obvious reasons) called vertical
whilst those which give pullback squares are called horizontal or cartesian.

The fibred (as opposed to indexed) approach was pioneered by Bénabou [1975] in recognition of the fact that substi-
tution is in practice defined only up to isomorphism.

The fibre over A is in this case may be seen as either the A-fold power of S or as the slice category S/A whose objects
are the S-morphisms with codomain A and whose morphisms are the S-morphisms making the triangles commute.
In the relative case the objects of the slice will be display maps but the morphisms will still be arbitrary maps.



There is, however, nothing in the definition of a general fibration to require the fibre over an arbitrary A to be the
A-fold power of that over the terminal object of S. Indeed the difference is quite crucial to this and many other
applications. We shall denote the fibre over A by PA and the substitution functor over α : B → A by Pα.

Let us conclude this introduction by considering the form of (binary) products in the fibre categories. Let X and Y

be objects over A, presented either as A-indexed things or as displays (S-morphisms with codomain A), and write
X ×A Y for their product according to either interpretation. Naively this is (Xa × Ya : a ∈ A), but as a display it
turns out to be precisely the pullback, hence the alternative name fibre product for the latter. In English we may
therefore say “fibre products are pullbacks”, although the (Gaullist) French can’t make the a priori distinction! Fibred
equalisers can also be described quite straightforwardly.

2. Indexed Products

In this section we shall look at products in Set from the “indexed family” point of view and justify the Lawvere
[1969] dictum that quantification is adjoint to substitution. This gives us a notion of “internal product” applicable to
bcContω and Retr(Λ).

Given an B-indexed family of sets, (Xb : b ∈ B), their product has elements the indexed families (xb : b ∈ B) where
(∀b)(xb ∈ Xb). This is a B-indexed family of choices of elements, which is the same as specifying a B-indexed family
of maps from the (constant) singleton to the Xb, i.e. a map 1B → X from the terminal object in the fibre over B.
Now the display map of the terminal object over B is precisely (as an S-morphism) the identity on B (which to some
extent excuses the ambiguous notation 1B) so this is just a section or splitting of the display map.

Write
∏
B X for the product set, and think of it as an object of the fibre over the terminal object (i.e. of the category

of single sets). It has elements 11 →
∏
B X, and these are to correspond to the maps 1B → X over B. Now 1B is the

pullback of 11 against the terminal projection α =!B : B → 1, i.e. its image under the substitution functor Pα. Thus∏
B is the right adjoint of Pα:

1B ∼= Pα11 → X over B

11 →
∏
B

X over 1

Now let us do this indexedly. So given ((Xb : b ∈ Ba) : a ∈ A), an A-indexed family of Ba-indexed families of objects,
we need to show how to construct the ath product, (

∏
b∈Ba : a ∈ A), and present it as a member of an A-indexed

family.

To do this we begin by displaying the Ba’s over A, i.e. we construct a morphism α : B → A, where B =
∐
Ba;

then we present the objects ((Xb : b ∈ Ba) : a ∈ A) as a B-indexed family (Xb : b ∈ B). The elements of the
member (ΠαX)a =

∏
b∈Ba Xb of the product are maps to 1 → (ΠαX)a which are to correspond to indexed families

(1→ Xb : b ∈ Ba) and so the maps 1B → ΠαX over A correspond to those 1B → X over B. In other words Πα (or
α∗ is the right adjoint to the substitution or pullback Pα (or α∗).

1B ∼= Pα1A - X overB

1A - ΠαX ∼= (
∏
b∈Ba

Xb : a ∈ A) overA

Definition An internal product in an indexed category is a right adjoint to substitution over a display map.

The are no conceptual difficulties in doing this for Set: collections of maps may be understood naively, and any

morphism in the base category S occurs as a display map. This is not so in bcContω or Retr(Λ): we have to make
our indexing “continuous”, and not every map occurs as a display map (though we have yet to define them).

Likewise the collections of maps (cones) in the definition of product have to be “continuously varying”. Whilst clearly
Retr(Λ) and bcContω, being (very) small, do not have all products externally, they still “think” they have them
in this sense. Where the “continuously varying” is taken to mean computable or definable we have the appropriate
restriction on the definitions to make them appropriate to programming or intuitionistic type theory.



Let us consider the corresponding notion to product for Natural Deduction, which is universal quantification. In
order to prove (∀b)Y (b) from X, where the bound variable is of type B and there are no free variables, it is necessary
and sufficient to prove Y (b) from the same hypotheses (in which the variable b does not occur freely). This rule
corresponds formally to the natural bijection

X ⇒ Y (b) over B

X ⇒ (∀b)(Y (b)) over 1

(in which, as is usual, we have written in invisible ink above the line the substitution functor which gives X an
invisible free variable) which says that (∀b) is right adjoint to the substitution.

If we had allowed Y to have other free variables besides b, we should have been performing the same argument
indexedly over the type(s) of these other free variables, and the relevant substitution functors would have been over
product projections in the base category. Now a product projection is the display of a constant family; in the case of
a general display map α : B → A the quantifier becomes (at a) (∀b)(αb = a⇒ ...).

There is a mild technicality in this called the Beck condition. We want to be sure that substitution and quantification
interact properly, in the sense that if Pα is the introduction of a variable b and Πβ the quantification over c (where
α : B × A → A and β : C × A → A) we have Pα(ΠβY ) = Πβ(PαY ). More generally, if the left-hand figure is a
pullback in the base category then the right-hand square must commute (at least up to isomorphism):

C ×A B
γ - C

B

δ

? α - A

β

?

P(C ×A B)
Πγ- PC

PB

Pδ
6

Πα- PA

Pβ

6

Seely [1983] has given a detailed discussion of the meaning of the Beck condition. Since our interest is in certain
concrete examples (where it holds automatically) rather than the abstract formulation, we shall pay little attention
to it.

Now let us consider this adjoint to substitution in the context of the fibration cod : S2 → S, in which the substitution
functors are pullbacks. Take first the case of the terminal projection α : B → 1; pulling X → 1 back along this yields
simply the product X ×B, so Pα = (−)×B. The right adjoint to this is quite familiar and is written (−)B :

X ×B → Y over B

X → Y B over 1

Thus S (qua indexed category cod : S2 → S) has global products iff it (qua category) has exponentials. We have
deliberately avoided the discussion in terms of fibrations, but more generally,

Proposition The fibration cod : S2 → S is complete (has all indexed limits) iff S is locally cartesian closed.

This at first struck me as somewhat remarkable, but of course it is because of the idea (which there is a tendency to
push to the back of one’s mind as too childish) that powers are iterated products.

In fact the above result is really a definition of local cartesian closure since we haven’t yet formally given one.



3. Indexed Coproducts

The case for sums is very similar, although we are not allowed to argue in terms of elements any more. The
corresponding deduction rule for the existential quantifier is formally the same as the definition of left adjoint to
substitution For the cod fibration the following easily-overlooked triviality is appropriate:

Proposition For an S-morphism α : B → A, the pullback functor Pα : S/A → S/B along α has a left adjoint Σα
(or α!) given by postcomposition with α.

Definition An internal coproduct or sum in an indexed category is a left adjoint to substitution over a display map.

Proposition The fibration cod : S2 → S is cocomplete iff S has all finite (limits and) colimits.

Starting from the indexed approach we now have a direct route to the display map: recall that this was originally
given as a disjoint union. Let X be an A-indexed family (object of the fibre over A). It has a terminal projection
X → 1A in this fibre, and the image of this under the sum functor is of course

∑
AX →

∑
A1A over 1; but

∑
A 1A is

(isomorphic to) A (in the canonical identification of S with the fibre over 1).

Proposition In the fibration cod : S2 → S, the fibre over the terminal object is equivalent to S and the display
X → A corresponds to the map

∑
AX →

∑
A 1A in this fibre.

This is the method by which we shall identify displays of retracts.

The analogue of coproducts or sums in natural deduction is existential quantification; the reader is invited to demon-
strate that this is indeed left adjoint to substitution. The ordinary case (∃c)(φ) arises as before from a product
projection C × A→ A; for a general morphism α : B → A in the base category we have the idiom (∃b)(αb = a ∧ φ).
We also need a Beck condition, but those for Σ and Π (or ∃ and ∀) are equivalent (so long as they both exist) because
a diagram of left adjoints commutes up to isomorphism iff the corresponding diagram of right adjoints does so.

4. Local Cartesian Closure

So far we have been using the term “locally cartesian closed” to mean having right adjoints to pullback functors, with-
out giving any explanation of what it has to do with “ordinary” cartesian closure in the sense of having exponentials.
In this section we shall rectify this omission.

Recall that for an object Y in the fibre over A in cod : S2 → S, the product with Y in this fibre, and substitution
from the fibre over A to that over Y , are both given by pullback along the display map Y → A.

Lemma The object Y in the fibre over A of cod : S2 → S is exponentiable iff pullback along Y → A has a right
adjoint; moreover in this case exponentiation by Y is preserved by any pullback.

Proof Let β : Y → A be the display of Y and Πβ be the right adjoint to the pullback Pβ; then

X ×A Y → Z over A

X ×A Y ∼= PβX → PβZ ∼= Y ×A Z over Y

X → Πβ(PβZ) ∼= ZYA over A

Conversely suppose (−)YA is right adjoint to −×A Y in the fibre over A and let W be over Y . Then

X ×A Y ∼= PβX → W over Y

X ×A Y → W ×A Y over A

X → (W ×A Y )YA ∼= ΠβW over A



By preservation we mean that Pα(ZYA ) ∼= (PαZ)(PαY )
B for any map α : B → A.

U → Pα(ZYA ) ∼= ZYA ×A B over B

U → ZYA over A

U ×A Y → Z over A

U ×A Y ∼= PαY ×B U → PαZ over B

U → (PαZ)(PαY )
B over B

The particularly alert reader will have noticed in following this an implicit use of the Beck condition, which is
essentially equivalent to the preservation of exponentials, but is of course a theorem in this case.

Proposition The fibres of cod : S2 → S are cartesian closed and substitution preserves arbitrary limits and
exponentials iff S is locally cartesian closed. In this case substitution also preserves any colimits which exist.

It is essential here to include the condition that exponentials be preserved, since otherwise we have a strictly weaker
notion.

5. Local Smallness and other Internal Notions

The word “local” is used in the context of (indexed) category theory with reference to the fibres or slices S/A. This
is a generalisation of the fact that for the open set lattice of a topological space (considered as a poset and hence
a category), the slice over (i.e. open subsets of) an open set gives (the open set lattice of) the corresponding open
subspace. A local notion in category theory is therefore one which is preserved by pullbacks, so that it happens in
the fibres (slices) and is preserved by substitution.

We can use these methods to formulate definitions and constructions internally (say in a locally cartesian closed
category). This usually takes the form of finding a generic construction, of which any other is obtained by substitution
(pullback), preferably uniquely.

We shall illustrate this by formulating the idea of a category having small hom-sets or being locally small. Since
cartesian closure is concerned with exponentials, i.e. sets of functions, it will not come as a surprise that these are
equivalent. We can formulate local smallness as having a generic morphism, i.e. one from which any other may be
obtained by substitution (pullback).

Thus if Y ∈ PB and X ∈ PA with α : B → A, by a generic morphism from Y to X over α we mean a diagram of the
form

Y ′ - Y

Pα′X ′
?

- PαX

X ′ -

--

X

-

B′
?

- B
?

A′
?

-

-

A
?

-



in which the squares are pullbacks, which is generic in the sense that any other diagram of the same shape (but with
′′ for ′ ) is obtained by pulling back this one by a unique A′′ → A′.

Proposition S is locally small iff it is locally cartesian closed.

Proof Suppose Y is exponentiable in its fibre. Put B′ = (PαX)YB and A′ = A×B B′. Then

Y ′′ → X ′′ over α′′

Y ×B B′′ ∼= Y ′′ → Pα′′X ′′ ∼= PαX ×B B′′ over B′′

B′′ ×B Y → PαX over B

B′′ → (PαX)YB =def B′ over B

and it’s not difficult to see that the correspondence is obtained by pullback.

Conversely if B′ is generic then

B′′ ×B Y → X over B

B′′ ×B Y → B′′ ×B X over B′′

B′′ → B′ =def XY
B over B

The same approach gives a notion of a generic subobject. A category with finite limits and generic subobjects is
called an elementary topos. Unfortunately, although bcContω does have something which might serve as an object-
of-subobjects, the display of a generic subobject is (not surprisingly) a mono, whilst the displays in Retr(Λ) and
bcCont are all epi because of global habitation. Consequently we shall not discuss these ideas.

Finally we might ask for a generic family of objects, i.e. a display map of which any other is a pullback. The codomain
of this would be a “type of types”, each type occurring as the inverse image of an element of it. From any family of
objects (display map G→ V ) we may construct the full subcategory whose objects are in the family; its object set is
V and its morphism set GGV×V over V × V . The inverse image of 〈X,Y 〉 ∈ V × V is just Y X = homS(X,Y ).

However it may be shown that if a locally cartesian closed category has a generic family then it has both a generic
subobject, {true} ⊂ Ω, (making it a topos) and a “universal set”, G, (of which any other, in particular its own
powerset ΩG, is a subobject). Cantor’s theorem shows that this is impossible. But if we drop the requirement for
equalisers we find the paradox disappears, and indeed more or less any category of domains has this property.



6. The Category of Retracts of a Combinatory Model

We now introduce the first of our two categories of domains, which may be constructed from any combinatory model
of the λ-calculus, Λ. For a comprehensive account see [Barendregt 1981] or [Curry and Feys 1958].

A combinatory model is a set Λ with a binary operation (application) and constants K, S satisfying Kab = a,
Sabc = ac(bc) and five other equations originally formulated by Curry. We adopt the usual convention for omitting
brackets, so abc means (ab)c. This enables us to interpret λ-terms in Λ by the scheme

[λx.x] = SKK
[ab] = [a][b]

[λx.a] = K[a] if x is not free in a
[λx.ab] = S[λx.a][λx.b] otherwise

Given a combinatory model Λ, we can define a cartesian closed category Retr(Λ) in which any term is typable,
called the category of retracts. I shall now use the term cartesian closed in the weak sense of having products and
exponentials, not necessarily all finite limits.

The combinators I = λx.x = SKK and P = λxyz.y(xz) define a monoid M ⊂ Λ as follows. M = {f : PI(PfI) = f},
the composition is f · g = Pgf and the identity is I.

An object of Retr(Λ) is an idempotent of M, i.e. an element A ∈ Λ satisfying PAA = A. Unfortunately this operation
is not itself idempotent: indeed in general there is no retract of Λ whose image is obRetr(Λ) ⊂ Λ. The morphisms
α : A → B are the elements α ∈ Λ with α = PAα = PαB. The identity on A is A itself, whilst the composite of
α : A→ B and β : B → C is PPαβ : A→ C.

Notice that we have dropped the category-theoretic convention that the various hom-sets be disjoint, so we do not
have functions dom and cod; however it is a straightforward but unenlightening exercise to code these things in if
they are required.

Idempotents split in Retr(Λ), so if α : A→ A satisfies α2 = α, i.e. Pαα = α, then there is an object B and a pair of
maps B→←A such that B → A→ B is the identity and A→ B → A is α; in fact of course both B and the two maps
are represented by α. B is then both the equaliser and the coequaliser of α with the identity. Idempotents split in a
category iff it has all finite filtered colimits (or limits).

Retr(Λ) is in fact the universal idempotent splitting category containing the monoid M (considered as a category
with one object, identified with I ∈ Retr(Λ)). So if M → D is a functor to a category in which idempotents split
then there is a unique (up to unique isomorphism) functor Retr(Λ)→ D making the triangle commute. This means
that if M is the (external) endomorphism monoid of an object in a category in which idempotents split (as they will
if the category has all finite limits) then Retr(Λ) is embedded “concretely” as the category of retracts of the object.

Retr(Λ) has a terminal object T = K⊥, where we choose ⊥ = (λx.xx)(λx.xx) = (SII)(SII), and this also denotes the
terminal projection, the unique map A → T. If Λ is a model (Koymans [1984]) then T is in fact a generator, i.e. if
α, β : A→→B are two maps whose composites with all maps T→ A are equal then α = β.

The type A can be interpreted as the set ‖A‖ = {a : a = Aa} ⊂ Λ and the map α : A→ B as the function a→ αa.
The type T has a unique set-theoretic element, viz. ⊥ ∈ ‖T‖, so we may think of T as the one-element set. An arrow
T → A is called a global (category-theoretic) element of A. The set-theoretic and category-theoretic elements of A
now correspond using K and ⊥ (“dropping a variable”): given a ∈ ‖A‖ we have KaT→ A, and given α : T→ A we
have α⊥ ∈ ‖A‖.

That T is a generator for Retr(Λ) means exactly that functions are extensional, i.e. they are equal iff they have the
same effect on elements. Finally every type A has at least one element, A⊥ ∈ ‖A‖. This is the property of global
habitation which is an important feature of these models. The representation of A by ‖A‖ makes Retr(Λ) into a
concrete category, i.e. ‖ − ‖ : Retr(Λ))→ Set is faithful.

For an arbitrary a ∈ Λ, we call Aa a reduced to A; many constructions are of the form of general or untyped
constructions reduced to appropriate types.



We shall construct finite products and exponentials in Retr(Λ), and show that its objects have internal fixpoints. It
is a consequence of this that Retr(Λ) cannot have binary coproducts or all finite limits.

We now have to choose pairing and unpairing combinators 〈〉 = λxyz.zxy, 0 = λxy.x = K and 1 = λxy.y = KI, so
that 〈〉ab0 = a and 〈〉ab1 = b for all a, b ∈ Λ. Write 〈a, b〉, c0 and c1 for 〈〉ab, (c0), (c1) respectively, noting carefully
the positions of the digits.

The product A× B of A and B in Retr(Λ) is λc.〈Ac0, Bc1〉, which is our abbreviation for λc.〈〉(A(c0))(B(c1)), with
projections π0 = λc.Ac0, π1 = λc.Bc1, i.e. 0 and 1 reduced to (domain A×B and) codomain A or B. Given α : D → A

and β : D → B, 〈α, β〉 = λd.〈αd, βd〉 is the unique map (pair) D → A×B making the two triangles commute. There
is a combinator × = λAB.A × B which, when restricted to obRetr(Λ) × obRetr(Λ) → Λ, yields (idempotents
representing) products. The forgetful functor ‖ − ‖ : Retr(Λ) → Set creates finite products and preserves all limits
which exist in Retr(Λ).

Retr(Λ) also has function spaces, because λf.PAf and λf.PfB are commuting idempotents (assuming A = PAA
and B = PBB) so that their composite, BA = λf.PA(PfB) = λf.P(PAf)B, is (idempotent, i.e. ) a type. Given
α : C×A→ B we have the exponential transpose α̃ = λca.α〈c, a〉 : C → BA and conversely α = λd.α̃d0d1; this is the
ancient trick of Currying. The evaluation map ev : BA ×A→ B is given by λd.C(d0(Bd1). Again there are obvious
combinators doing these things. BAf is called f reduced to domain A and codomain B, but one should beware that
this reduction is not functorial (it does not preserve identity and composition).

Each type A ∈ obRetr(Λ) has internal fixpoints: put

YA = λf.(λx.xx)(λx.A(f(A(xx))))

Then YA : AA → A makes a certain diagram commute, which says f(YAf) = YAf for all f ∈ ‖AA‖. This is just the
reduction of Y to AA → A. Observe that the canonical fixpoint of the identity is the “bottom” element, A⊥, of the
type; this is a deliberate and crucial choice.

7. Indexed Category of Retracts

The method used in the opening sections for making Setinto an indexed category over itself requires the existence
of all pullbacks, which are not available in the categories which interest us. On the other hand, this pullback trick
was required for Set because of the size problem with Cat, in other words we have no universal set. In Retr(Λ), the
category of retracts of a combinatory model of the λ-calculus, we do have a kind of universal set, namely the model
itself. In the large category bcCont there is no “global” universal set, but there is a sense in which it has “local”
ones. In this section we shall construct the indexed category of retracts, then in section 9 the display maps will be
identified (along with some of the indexed sums and products).

For A ∈ Retr(Λ), an A-indexed type is a (“continuous”) function X : A → Λ taking type values, i.e. X = PAX =
PXΛ (although, since Λ = I, PXΛ = X is tautologous) such that P(Xa)(Xa) = Xa for all a ∈ ‖A‖. We may rewrite
this as X = PAX = QXX where Q = λwxyz.xy(wyz). Thus obP(A = {X : PAX = X = QXX}.

The structure of P(A) is given in the same fashion as that of Retr(Λ), except that the combinators take an extra
argument (this is only a notational complication, but it provides an ample supply of pitfalls). Again, as with our
presentation of Retr(Λ), there is no information coded in to define domain, codomain and fibration, but these may
be recoded as before. As before, note that Q has four variables and that Q(Q)fg)h = Qf(Qgh) and Q(Pαf)(Pαg) =
Pα(Qfg).

The objects of P(A), for A ∈ obRetr(Λ), are those X ∈ Λ with X = PAX = QXX. The morphisms X → Y are
those f ∈ Λ with f = PAf = QXf = QfY ; these conditions say respectively that f is fibred over A and that in each
fibre a ∈ A it has domain Xa and codomain Y a. The identity on X is X itself, and the composite of f : X → Y

and g : Y → Z is Qfg : X → Z. Note that PA preserves the fixed points of λx.Qxx and that λf.PAf, λf.QXf and
λf.QfY are commuting idempotents for A ∈ obRetr(Λ) and X,Y ∈ obP(A).

P(A) has terminal object U = K(K⊥), and this also represents the terminal projection X → U. As before we may
consider (A-indexed) elements: x ∈A X is a function A→ Λ such that xa ∈ Xa for each a ∈ A; the type of all such
indexed elements of X is the (global) product,

∏
X = λpa.Xa(p(Aa)).



The product X ×A Y of X and Y over A is given by λaz.〈Xaz0, Y az1〉; the projection maps are π0 = λaz.Xaz0 and
π1 = λaz.Y az1, and if f : Z → X, g : Z → Y are two maps in PA then the pair is 〈f, g〉 = λaz.〈faz, gaz〉 : Z →
X ×A Y .

Because of the observation about commuting idempotents, we have fibred exponential types.

Y XA = λaf.P(Xa)(P(fa)(Y a)) = λaf.Q(QY f)Za = λaf.QY (QfZ)a = λafx.Y a(fa(Xax))

This is obtained by an interchange of variables from the reduction of f to a solution of f = PAf = QXf = QfY ; the
latter is a “global section” of the former. The evaluation map ev : Y XA → Y is given by λap.Y a(p0(Xap1)) and the
transpose identifies f : W ×A X → Y with g : W → Y XA by g = λawx.fa〈w, x〉 and f = λap.gap0p1.

Now let α : B → A be any map in the base category Retr(Λ); what is the corresponding substitution functor
P(α) : P(B) → P(A), and does it have adjoints? The first question has an easy answer, which gives a pleasing
consonance of notation: P(α) = Pα. In the same way as the naive indexing of Set over itself performed substitution
by composition, so does this.

Thus P(α)(X) is simply PαX and P(α)(f) = Pαf ; moreover PαU = U , PαX ×A Y = (PαX) ×B (PαY ) and
Pα(Y XA ) = (PαY )(PαX)

B exactly. The product projections, pairings, evaluation maps and transposes are also preserved
exactly. Because of this notational coincidence (which I hope justifies the switch of variables in the combinator P to
the even the most uncompromising users of left-handed notation), P(A) and P(α) will in future be written PA and
Pα respectively.

The fibration cod : Set2 → Set of the category of sets over itself had the property that the fibre PT over the singleton
(terminal object) T was equivalent to Set itself, and the fibre PA over A was its A-indexed power. The former remains
the case for indexed retracts (by dropping a variable, i.e. A ∈ Retr(Λ) corresponds to KA ∈ PT and X ∈ PT to
X⊥ ∈ Retr(Λ); but not the latter.

In fact PA should be regarded as the category of continuously A-indexed types, where continuously may in suitable
circumstances be interpreted as definably or computably. If A is in fact some kind of “type of types” the way is
open for the interpretation of polymorphic languages, or of type expressions (not functors) of which fixpoints might
be sought, i.e. the solution of recursive domain equations.

To sum up, we have a fibration p : P→ Retr(Λ) (or indexed category P : Retr(Λ)op → Cat) over a cartesian closed
category, such that each fibre is itself cartesian closed and this structure is preserved exactly by the substitution
functor. The fibre PT over the terminal object is isomorphic to Retr(Λ) itself.



8. Relatively Cartesian Closed Categories

We have now seen a category without all pullbacks ostensibly indexed over itself, and so not by the cod : S2 → S

fibration we used for Set. We now introduce the notion of relative cartesian closure, which enables us to unify these
constructions. In the next section we identify the display maps in Retr(Λ).

In the sections 2 and 4 the (well-known) connection between internal completeness and local cartesian closure was
described. Throughout the account, however, it has been hinted that there is a more general construction in which
not all maps map occur as display maps, and that this applies to our Retr(Λ) and bcCont. In this section this more
general version will be formulated.

Recall that the slice category C/A has objects the C-morphisms with codomain A and morphisms the C-morphisms
making the triangle commute. If α : B → A is a C-morphism there is a functor α! : C/B → C/A given by
postcomposition with α. The right adjoint to α!, if it exists, is called Pα and is given by pullback along α. If Pα
itself has a right adjoint, written Πα, then α is said to be exponentiable.

More generally let D be a class of C-maps the relative slice C/DA has objects the D-maps with codomain A but still
all C-maps as morphisms (so long as the triangle still commutes in C). Thus C/DA is a full subcategory of C/A.

Definition A category C is said to be cartesian closed relative to a class of (display) maps D ⊂ C if

(i) The pullback of any D-map against any C-map exists and is in D,

(ii) The composite of any two D-maps is in D,

(iii) C has a terminal object and any terminal projection is in D, and

(iv) For α : B → A in D, pullback Pα : C/DA→ C/DB has a right adjoint Πα.

Examples

(i) Set, or any locally cartesian closed category, is cartesian closed relative to all maps.

(ii) Any cartesian closed category is cartesian closed relative to the class of all product projections.

From these data we can construct a fibred category p : P → C, where the objects over A ∈ C are the display maps
X → A with codomain A, and the morphisms over α : B → A from Y → B to X → A are the commutative squares
of which three sides have already been given. The fibre PA over A is therefore C/DA.

Lemma If (C,D) satisfy axiom (i) above, then this is a fibration; the fibres are relative slices and the horizontal
maps are the pullback squares.

This coincides with the standard construction in the case of Set; for the minimal class of display maps the families
are all “constant” ones, so this isnt very interesting.

Axiom (ii) serves a dual role: it performs mundane categorical bookkeeping, but also provides indexed sums. The
purpose of axiom (iii) is that we should be able to speak of the fibration as actually being the indexed form of the
original category. Henceforward (C,D) are assumed to satisfy axioms (i) to (iii).

Lemma C is canonically identified with the fibre over its terminal object.

Lemma C has finite products, and their projections (including all isomorphisms) are in D

Lemma The fibres have finite products (given by pullback) and these are preserved (up to isomorphism) by arbitrary
pullback functors.

Lemma Pullback along display maps has a left adjoint (namely postcomposition with the display map). The display
map in the sense constructed at the end of section 2 coincides with that defining the indexed type.



Finally axiom (iv) deals with products and exponentials, as was proved in section 4.

Lemma The fibres are cartesian closed (and this structure is preserved (up to isomorphism) by pullback functors)
iff axiom (iv) holds.

Theorem A relatively cartesian closed category gives rise to an indexed category whose fibres are cartesian closed
and whose substitution functors preserve this structure. It is complete and cocomplete in the sense that substitution
along display maps has adjoints on both sides which satisfy the Beck condition.

Proof It remains only to show that the Beck condition holds, but this is yet another application of the definitions
of pullbacks.

Having now set up the theoretical machinery for talking about internal products, sums and function spaces in categories
we devote the remainder of the paper to the identification of the display maps in Retr(Λ) and bcCont, showing that
these categories are relatively cartesian closed.

9. Displays of Retracts

The next objective is to identify and construct the display maps in Retr(Λ) and hence show that this has indexed
products and sums. For this it will be enough to know (in the first instance) about global sums, although in fact we
shall need to do the local (indexed) case implicitly in the course of the proof of the final lemma of this section; we
have already done the work for the indexed products in our study of exponentials.

Recall that the substitution functor over α : B → A is written Pα and is given by precomposition with α; its adjoints
(where they exist) are called Σα and Πα for reasons which were discussed in sections 2 and 3. These take values
in the fibre over A. The “global” sum and product functors, which take values in C itself (but recall that this is
canonically identified with PT, the fibre over the terminal object) will be written simply

∑
and

∏
, so (under this

identification),
∏

= ΠT = Π!B in the various notations, and likewise with Σ.

Let B ∈ C and Y ∈ PB. The basic idea of
∏
Y is the set

{p : B → Λ | (∀b)(pb ∈ Y b)}

which is the set of solutions of p = PBp = SY p; these are commuting idempotents (given that B = PBB and
Y = PBY = QY Y ), so their composite gives the required type. Likewise

∑
Y is based on

{〈b, y〉 | b ∈ B ∧ yb ∈ Y b}

so the corresponding retract is λp.〈Bp0, Y p0p1〉.

Instead of tryingto specify those adjoints which exist in terms of combinators, we rely on the general theorem of
the previous section. Unfortunately we have lost the preservation of structure “on the nose” because of the need to
choose representations for these functors; in particular the global sum and product for the terminal object (singleton
family) are not identities because they include redundant coding which is residual from the structure of the indexing
set. The remainder of this section concerns the properties of display maps.

Recall that the indexing of Set over itself used disjoint unions together with their indicator maps. As a result of
section 3 we can describe this in terms of the global sum. If X = (Xa : a ∈ A) is an A-indexed set, the display map
occurs as both the left and top sides of the following commutative square:

X =
∐
a∈A

Xa
- A

A
?

- A
?



The significance of this banal observation is that this square represents a morphism of S2, specifically one over A,
and the right-hand map is the terminal object of A. Composing below with the terminal projections from A, we get
a morphism over the terminal object 1, which is the global sum applied to X →A 1A.

The same can of course be done in our case, so

Definition A display map in Retr(Λ) is the composite of an invertible followed by a map of the form π0 :
∑
Y → A

where Y ∈ PA. π0 is in fact λp.Bp0.

We shall take as read a number of trivial properties of pullbacks, including the fact that this definition allows invertibles
to be “passed through” display maps.

Lemma The pullback of a display map exists and is a display map.

Proof Let α : B → A in C and X ∈ PA. Put Y = PαX; then the following is a pullback square:

∑
Y = λq.〈Bq0, Y q0q1〉

λq.〈αq0, Y q0q1〉-
∑

X = λp.〈Ap0, Xp0p1〉

B

π0

? α - A

π0

?

Given any other β : C → B and γ : C →
∑
X making the square commute, the pair is λc.〈βc, (γc)1〉.

Lemma Any terminal projection is a display map.

Proof Given B → T, put X = KB and A = T. Then X ∈ PA and
∑
X = λp.〈⊥, Bp1〉 ∼= B.

Lemma Any composite of display maps is a display map.

Proof Given X ∈ PA and Y ∈ PB where B =
∑
X we want to construct Z ∈ PA with

∑
Y ∼=

∑
Z over A. Put

Z = λap.〈Xap0, Y 〈a, p0〉p1〉; then i :
∑
Z →

∑
Y and j :

∑
Y →

∑
Z are mutually inverse where

i = λu.〈〈Au0, Xu0u10〉, Y 〈u0, u10〉u11〉

j = λv.〈Av00, 〈Xv00v01, Y v0v1〉〉

Lemma Pullback against a display map, considered as a functor between relative slices, has a right adjoint.

Proof This is equivalent by section 4 to the fact (which we have already proved) that the fibres have exponentials
which are preserved by substitution.

Theorem Retr(Λ) is cartesian closed relative to the class of display maps identified above; consequently it has
internal sums, products and function spaces.

The class of display maps constructed is the largest possible in the following sense. Suppose some map α : B → A

in C has a pullback against any map with the same codomain, and that this can be done internally. By this we
must mean (restricting to the case of maps from the terminal object, i.e. elements of A) that there is a continuous
function assigning to each a ∈ A a type Xa and a pair of maps forming a pullback square. Then X would itself be an
A-indexed type and B ∼=

∑
X.



10. Continuous Lattices

Continuous lattices are a generalisation of algebraic lattices (which occur as lattices of subobjects in finitary algebraic
theories such as groups and modules), making the notion of finiteness or compactness a relative one. They provide
the answers to a number of questions in general topology relating to injectivity and exponentiability as well as “nice”
behaviour in the theory of topological (semi)lattices. For an authoritative discussion see Gierz et al. [1980]. Johnstone
and Joyal [1981] have given a generalisation to categories which answers the corresponding questions for toposes.

Let A be a poset with directed sups. We say a is well below b (notation a � b) if whenever b ≤
∨↑
U for some

(directed, which is what the arrow means) set U , there is some c ∈ U with a ≤ c. In the case of the lattice of open
sets of the real line, R, this means that there is a compact set lying between a and b. Then A is called a continuous
poset if b =

∨↑{a : a � b} for all b ∈ A. Scott [1972] gave an argument that continuous posets are the appropriate
notion of approximate computation, although most of his followers have since retreated to the algebraic condition.

There is a topology, the Scott topology, which is appropriate for A, in which the basic open sets are those of the form
↑
↑a = {b : a � b} (likewise we write ↓↓b = {a : a � b}). Conveniently, a function f : A → B between two continuous
posets is continuous w.r.t. this topology iff it preserves directed sups, whilst separate and joint continuity coincide for
functions of two variables.

The previous remark gives a topology from an order: there is also a converse operation called the specialisation order
on a topological space. Let x ≤ y if y lies within any open set which contains x; this relation is antisymmetric iff the
space is T0 and discrete iff it is T1. The specialisation order on a sober space has directed sups, but the converse is
false [Johnstone 1982].

We say that a topological space I is injective if given any subspace inclusion A ⊂ B and a continuous map f : A→ I,
there is some (not necessarily unique) continuous g : B → I making the triangle commute. Likewise I is densely
injective if this holds for dense subspace inclusions. An easy (but important) example of an injective space is the
Sierpinski space, which has two points exactly one of which is open.

Proposition The following are equivalent for an ordered T0 space I:

(i) I is injective

(ii) I is a continuous lattice with the Scott topology

(iii) I is a retract of a (Tychonov) power of the Sierpinski space

(iv) I is has arbitrary infs (
∧

) which distribute over directed sups (
∨↑)

(v) I is an algebra for the filter monad.

Pω is the first infinite example of part (iii); it carries a well-known combinatory algebra structure [Scott 1976] and
Retr(Pω) ' ContLatω, the category of countably based continuous lattices and Scott continuous maps.

We shall have occasion to make extensive use of these characterisations. In particular, part (iv) suggests that there
is another class of maps of importance between continuous lattices. These are the homomorphisms of the (

∨↑
,
∧

)
structure, i.e. functions preserving these operations. Of course these are just continuous functions with left adjoint,
so a surjective homomorphism is the same as a projection. Write CL for the algebraic category of continuous lattices
and homomorphisms. Part (v), due to Day [1975], identifies the free functor Set→ CL, left adjoint to the forgetful
functor.

We shall need a few fragments of universal algebra for the proofs in the next section (see, for example, [Cohn 1965]
or [Manes 1975]). In particular the forgetful functor CL→ Set creates arbitrary limits (i.e. we calculate them at the
level of Set and impose the obvious algebra structure); this means we can talk about pullbacks of continuous lattices
and homomorphisms.

Secondly, a congruence on an algebra A is a reflexive, symmetric and transitive subalgebra of A×A, i.e. a subset R
containing the diagonal and closed under the operations such that (a, b) ∈ R iff (b, a) ∈ R and if (a, b), (b, c) ∈ R then



(a, c) ∈ R. In Set, Gp, K −Vect and Rng these are usually presented as equivalence relations, normal subgroups,
subspaces and ideals, respectively. Given a congruence, we may construct the quotient, A/R, whose elements are the
classes [a] = {b : (a, b) ∈ R}, together with the function A→ A/R by a 7→ [a]. A/R carries a unique algebra structure
making this a homomorphism.

Slightly more generally, a partial congruence is the same thing but without reflexivity, so the union of the classes may
be a proper subalgebra. We can still construct A/R, but now it is a subquotient, i.e. a quotient of a subalgebra.

Finally, a poset is boundedly-complete if any bounded (but possibly empty) set has a least upper bound; equivalently
any nonempty set has a greatest lower bound. We shall assume the posets to be inhabited (nonempty) and so
have a least element, although this conflicts with the definition naturally provided by universal algebra. An easy
generalisation of the characterisation of continuous lattices, as it turns out more appropriate to our studies, is

Proposition The following are equivalent for an inhabited T0 space I:

(i) I is densely injective

(ii) I is a boundedly complete continuous poset (with the Scott topology)

(iii) I is a closed subset of some continuous lattice.

11. bcCont is Relatively Cartesian Closed

In this section we shall show that bcCont, the category of inhabited boundedly complete continuous posets and
Scott-continuous maps, has a nontrivial relatively cartesian closed structure, in which D is the class of projections,
i.e. surjective maps with left adjoint.

In order to avoid developing a separate theory for boundedly complete continuous posets we shall add top elements
where convenient (denoted by X>) and make extensive use of the algebraic and topological characterisations of
continuous lattices. We shall work in the category IPO of posets with directed sups and least element and Scott-
continuous maps.

Lemma Suppose α : B → A in bcCont has a pullback against any map f : X → A. Then α is a projection.

Proof Consider the special case of the inclusion of the element a ∈ A. By hypothesis the pullback

α−1(a) ⊂ - B

1
? a - A

α

?

exists in bcCont, so in particular α−1(a) has a least element. Write β(a) for the corresponding element of B. Then
β(α(a)) = a and α(β(b)) ≤ b so β is left adjoint to α (and so preserves all sups, in particular directed ones) and α is
surjective.

If we were to insist on working with (total) continuous lattices, we should have to have right as well as left adjoints
in order to preserve top. Intuition seems, however, to suggest on the one hand that top is a red herring and on the
other that the projections are the important class of maps.

Write −−−. for projections. We shall show that C = bcCont is cartesian closed relative to the class D of projections.
Conditions (ii) and (iii) are trivial.

Proposition The forgetful functor CL→ IPO has a left adjoint F.

Proof Recall that CL, the category of continuous lattices and homomorphisms, is algebraic and in particular there
is a free algebra functor Set → CL and CL has all limits. If X ∈ IPO then we may take the continuous lattice



generated by the elements of X subject to the equations that directed sups in X remain so in the continuous lattice.

Lemma Let X ∈ C. Then X is a (Scott-continuous) retract of a (Scott-) closed subset of FX.

Proof Consider the map X → X>; then X> ∈ CL so by the universal property of FX there is a unique homomor-
phism FX → X> making the triangle commute. Let W v FX be the inverse image under this of the closed subset
X v X>.

W ⊂ - FX

X
?
⊂ -

-

X>
?

Clearly X → FX factors through this so X is a retract of W .

Lemma A closed subset or a retract of a boundedly complete continuous poset is another such.

We now have the machinery to prove axiom (i) for relative cartesian closure.

Proposition Pullbacks of D maps against C maps exist and are in D.

Proof Let α : B → A in D and f : X → A in C; let β : A → B be the left adjoint to α. There is no difficulty in
constructing the pullback X×AB in IPO ; it consists of the pairs (x, b) ∈ X×B with fx = αb and by the continuity
of f and α this equation respects directed sups. Moreover it has a least element (⊥X , β(f⊥X)) and the left adjoint
to the projection onto X takes x to (x, β(fx)). The problem is to show that X ×A B is continuous.

By the universal property of FX and the fact that A> ∈ CL, there is a unique homomorphism FX → A> making
the base of the following pentagonal prism commute; the top of the prism is given by pulling back along B> → A>.
The aim is to show successively that FX ×A> B>, W ×A> B> and X ×A> B> ∼= X ×A B are continuous.

B ⊂ - B>

X ×A B ∼= X ×A> B> ⊂ -

-

W ×A> B> ⊂ - FX ×A> B>

-

A
5

- A>
5

X
5

⊂ -

-

W
5

⊂ - FX
5

-

The right-hand square forms a pullback in CL because the bottom and right-hand maps are homomorphisms. Next
we have the inverse image of the closed set W v FX under a continuous map, so by the lemma this is continuous.
Finally the required pullback is the fixed-point set of the image under the pullback functor of the retract of W which
gives X.

Finally we prove axiom (iv).

Lemma Let A and B be continuous lattices and [A→ B] the poset of Scott-continuous functions from A to B with
the pointwise order (arising from that on B). Then [A→ B] is a continuous lattice in which

∨↑ and
∧

are evaluated
pointwise.

Proposition Let α : B → A in D. The pullback functor α∗ : CDA→ C/DB has a right adjoint, (−)BA .

Proof Let ξ : X → B in D. Working in Set and then in IPO , XB
A has to be

{(a, f : α−1(a)→ X) | (∀b.αb = a)(ξ(fb) = b)}



Indeed for υ : Y → A in D we have a bijection

Y ×A B →B X (y, b) 7→ g(y, b)

Y →A XB
A y 7→ (υy, g(y,−))

which preserves directed sups and is natural in X and Y . The bottom element of XB
A is (⊥A, ζ

∣∣
α−1(⊥)

) where
ζ : B → X is the left adjoint to ξ. Once again, the problem is in showing that this is a continuous poset.

Again it is convenient to move to continuous lattices, but this time in order to make use of the injectivity. Then any
continuous map α−1(a) → X can be extended to one B> → X>, and we can recover the information we want by
identifying functions which agree on α−1(a).

α−1(a) ⊂ - B>

X
?
⊂ - X>

Let U be the continuous lattice A> × [B> → X>] and R ⊂ U × U be the subset

{(a1, f1, a2, f2) : a1 = a2 6= > ∧ (∀b.αb = a1)(f1b = a2b ∧ ξ(f1b) = b)}

This is symmetric, transitive and closed under directed sup and nonempty inf, i.e. it is a partial congruence of
(
∨↑
,
∧ 6=∅-algebras. Thus the subquotient U/R which consists of the equivalence classes under R (which do not

exhaust U) carries a (
∨↑
,
∧ 6=∅-algebra, i.e. boundedly-complete continuous poset, structure.

But this is isomorphic as a poset to the required XB
A which is therefore in C as required.

Theorem bcCont is cartesian closed relative to the projections, and is therefore fibred over itself so that each fibre
is cartesian closed, this structure is preserved up to isomorphism by pullback against arbitrary maps, and pullback
against projections has adjoints on both sides.

This theorem is true in rather greater generality. We have implicitly proved it for IPO already (just delete the
“difficult” bits), but inclusion of categories is not the same as specialisation of proof. To demonstrate it for, say,
retracts of Plotkin’s “SFP” objects, requires more conceptual technology.

The intuition behind this result is that a display of domains is given by a “patchwork” of components (each of which
has a least element). In order for the component posets to be “continuously indexed” it is sufficient that the composite
be itself continuous (qua domain). In fact these display maps are themselves fibrations of domains, as will be shown
in [Taylor 1986?].

By way of a corollary, “raised sums” of domains (in which we take the disjoint union of two domains and add a
new bottom element) are seen as a special case of indexed sums in which the indexing domain is

∨
-shaped and the

⊥-component is the singleton.
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