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The result concerns limits and colimits of filtered diagrams of categories, so we shall be interested
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Scott noticed in 1969 that in the category of complete lattices and maps preserving directed
joins, limit of a sequence of projections (maps with preinverse left adjoints) is isomorphic to
the colimit of those left adjoints (called embeddings). This result holds in any category of
domains and is the basis of the solution of recursive domain equations. Limits of this kind
(and continuity with respect to them) also occur in domain semantics of polymorphism, where
we find that we need to generalise from sequences to directed or filtered diagrams and drop
the “preinverse” condition. The result is also applicable to the proof of cartesian closure for
stable domains.

The purpose of this paper is to express and prove the most general form of the result,
which is for filtered diagrams of adjoint pairs between categories with filtered colimits. The
ideas involved in the applications are to be found elsewhere in the literature: here we are
concerned solely with 2-categorical details. The result we obtain is what is expected, the only
remarkable point being that it seems definitely to be about pseudo- and not laz limits and
colimits.

On the way to proving the main result, we find ourselves also performing the constructions
needed for domain interpretations of dependent type polymorphism.

Filtered diagrams

in functors of the form

where Z is a filtered category and FCCat® is the 2-category of small categories with filtered
colimits, functors with right adjoints which preserve filtered colimits and natural transformations.
Since we have to perform a lot of manipulation of filtered diagrams, we begin with a short discussion

7 — FCCat®

on them.

Definition 1.1 A category (diagram-type) Z is filtered if

(iii) it has the amalgamation property for morphisms, i.e. given a parallel pair u,v : 4 = j in Z,

Example 1.2 Any category with finite colimits is filtered, for example ordinals and finite power-set

(i) it is non-empty,

(ii) it has the amalgamation property for objects, i.e. given i,j € Z, there is some k € Z and

u:i—k,v:j—kinZ.

there is some k € Z and w: j — k in Z with u;w = v ; w.

lattices. The definition says that a filtered category has “weak” finite colimits.

Part of the data for the theorem is that the categories X* “have filtered colimits.” We shall

always take this to mean that there is a functor

colim' : x¥7 — x
J



which is left adjoint to the “constant functor”; the counit is the colimiting cocone and the unit
(since J is connected) is an isomorphism. Often, however, we can avoid naming the colimit
because we are given a cocone and set out to prove that it is colimiting, ¢.e. a colimit rather than
the chosen colimit.

Definition 1.3 A functor F : X — )Y is continuous if it preserves (commutes with) filtered
colimits up to isomorphism ¢:

X colim!
X. colim
colim! Fx; 225} F( colim' ;) xJ T . x
jed = jeT
gj FTj Fj :¢> F
FX; FX; »—
yco[iymT

We shall make several uses of final subdiagrams, which generalise the idea of a cofinal subse-
quence of an ordinal. They is dealt with in [Mac Lane], section 9.3.

Definition 1.4 A functor U : J — T is final if for each i € Z the comma category i | U is
connected. This means that there is some j € J and u : ¢ — Uj, and if there is another j' € J
with «’ : i — Uj’ then there is a “zig-zag” such that

’
U = Ug Uy U2 U2n—1 U2n = U

. . Uv ) Uv ) ) Uvsp, ' )
Uj= Ujo L Ujy 2 Ujy, -+ Ujopoy ~—2 Ujon =Uj'

comimutes.

Proposition 1.5 Let D : 7 — X be a diagram in a category and U : J — 7 be a final functor.
Suppose that the diagram DU : J — I — & has a colimit with cocone y; : DUj — X. Then
there is a unique cocone z; : Di — X over the given diagram D such that xy; = y;, and this is
colimiting.
Proof For i€ Z, suppose j € J with v : ¢ — Uy, and put ; = Du ; y;. We have to check that
this is well-defined, by induction on the length of a zig-zag between two candidates. It suffices to
consider the case of a single “zig”, v’ = w;Uv, where v : j — j’; then x; = Du;y; = Du;DUv;y; =
Du';y;. This also shows that z; is a cocone over Z. It is clearly also the only one with zy; = y;.
Now let z; : Di — Z be another cocone over Z. Then zy; : DUj — Z is a cocone over J
and, since X is the colimit, there is a unique mediator z : X — Z with y; ; 2 = zy;. Then
xi32=Du;y; ;2= Du;zy; = 2, so z mediates from T also, and a fortiori it is unique. O

Definition 1.6 We shall need the following constructions on a fixed filtered category Z (with
typical objects):

(i) Z itself

(ii) the coslice ig/T

. u .
g —> 1



(iii) the double coslice (ig,j0)/L

(iv) the degenerate double coslice (ig,i0)/T

(v) [a construction needed in Lemma 8.2]...

Exercise 1.7 Let 7 be a filtered category. Verify that the following functors are final:
(a) i0/Z — (d0,10)/Z by u > (u,u);
(b) (i0,Jo)/T — (v);

i0/Z — i1/ by u— p;u;

(d) (do,jo)/T — (i1, j1)/T by (u,v) = (p5u,q;v);

)
(©)
)
() T—IxTbyir (i,i);

where ig,%1,J0,71 € Z and p: i1 — g and q : j1 — jo in Z. O

Exercise 1.8 Suppose Z has binary coproducts. Show that the functors
(a) T —ig/T by i (ig — ip + 1), and
(@) Z — (0, jo)/Z by i — (io — io + jo + i < jo)

(the maps being the coproduct inclusions) are final. Hence show that any colimit over ig/Z,
(i0,70)/Z or T x T may be calculated as a colimit over Z. O

So the above assumptions about “categories with filtered colimits” may be reduced to “cate-
gories with colimits of type Z”. Indeed, if we interpret the definition of filteredness constructively,
any filtered category is equivalent (for the purpose of finding colimits) to a category with finite
colimits.

Although we said that we wanted the categories to have all filtered colimits, it turns out
that we only actually make use of colimits of diagrams of the above types. Clearly these are
of essentially the same cardinality as the given diagram Z, which allows us to regard filtered
colimits as an algebraic operation of fixed arity. We also never consider the aggregate of all
categories with filtered colimits, or perform constructions worse than products of the cardinality
of Z. Consequently we have no problems of size, and may treat the categories as small (or locally
small); this is fortunate, considering the amount of 2-categorical work already cut out for us!

2 Pseudofunctors

In this section we shall examine the notion of pseudofunctor X(~) : Z°° — Cat. Although in
the application to the limit-colimit coincidence (sections 5 and 7 onwards) we shall need Z to be
filtered, for the time being it may be any category whatever.

The problem is that in general for composable arrows u : i — j and v : j — k the functors

X*%Y and X*XY

cannot be expected to be equal: at best isomorphic. This is because X'™“ is typically defined by
some universal property, such as pullback along u. [More generally, one may study the case where



they are related by a non-invertible map one way or the other, and such constructions are called
laz or oplax.] We shall find, however, that in the result which interests us we need an isomorphism

u,v
o

XUXY Xwv

Likewise, there is no a priori reason why X' need be the identity, so we also provide an isomor-
phism

id i ——> X

(We prefer for reasons of symmetry not to put 4¢ = id, although this is possible and quite commonly
done.) Since these maps are isomorphisms, we shall feel free to define compositions involving them

backwards or forwards, without writing a=?.

Definition 2.1 A pseudofunctor I°° — Cat is an assignment of categories X?, functors X' :
X7 — X" and natural isomorphisms a*" and 4" as above, subject to the laws

X’LLX'UXU) Xu v X'U.X’U,w
a™rxv A a™vv associativity
WY yw att X wviw
and , ;
Xu ,leu Xidi Xu XuXidj ;)('u,y] Xu

/é, < aidi,u au,idj <& unit

ir o ‘\QL

X X

Lemma 2.2 Any well-formed diagram consisting of a’s, 7’s and their inverses commutes.

Proof By induction on the length of the compositions, using the associativity and unit laws. O

Corollary 2.3 If & and ¢ are composable strings in Z with a common refinement, then there is a

. . . . i def T
unique canonical isomorphism between X% = X"1.. X% and A". O

This kind of lengthy presentation of data conflicts with the spirit of category theory, and we
have two alternatives: 2-functors and fibrations. (What about sheaves of categories?)

Construction 2.4 A 2-category I whose 0-cells are those of Z and whose 1-cells are composable
strings of arrows of Z. There is a unique, invertible, 2-cell between any two strings a common
refinement. We then obtain a 2-functor (no longer pseudo)

d:I°°? — Cat by (w1, ..oy tty) — X4
whose effect on 2-cells is well-defined by the corollary. O

Proposition 2.5 There is an isomorphism between pseudofunctors Z°? — Cat and 2-functors
I°P — Cat. O



Notation 2.6 Besides the equations A, L, R, etc., we shall denote the naturality square of ¢ :
F — G with respect to f : X — Y by

Fx %, ax rx T gy
Ff N Gf o ¢X Z oY
ry — Y gy ax %, ay

3 Fibrations

The other approach, sometimes called the Grothendieck construction, is to form the total category
i : Z.X* and display it as a fibration over Z.

Construction 3.1 The total category ¥i : T.X".
(i) The objects of the total category are the pairs (i, X) with i € Z and X € X,

(ii) the morphisms from (¢, X) to (j,Y) are the pairs (u, f) where w : 4 — jinZ and f: X —
XY

(iii) the identity on (i, X) is (id;, 7' X);

(iv) the composite of (u, f): (4, X) — (4,Y) and (v,g): (j,Y) — (k, Z) is (u;v, ;X% ;a™?).
The display functor P:%i:T.X* — T

(v) takes (i, X) to 7 and (u, f) to u.
The inclusion functor I;, : X% — i : T.X*

(vi) takes X to (ig, X) and f: X — Y to (id;,, f;7°Y).
The coherence vy, : X" — I;

(vii) at Y € X7 is (u,idX*Y) and satisfies the equations

Liv' id Uy XY
I, —— Ii)(l IiXuXv Yut IjX”
/C.}' ¢ vig and La™" M Vo
Ii IiXuW Uz Ik
Proof First, ¥i : Z.X? is a category. For the identities:
(u, f);idjyy = (usidy, f;X%7Y ;a"Y)
= (usidj, f;idy)
= (uf)
using R and
Id(lvx) ) (U, f) = (ldZ s U, "Y’LX ; X'df : aid,uy)
= (idi;u, f YUY ; aid’uy)
= (u,9;id)



using naturality and L. Associativity follows from:

XX R T) = XUXUh; " XVT ;o T
= a%'Z : XWVh ; QBvwT

Functoriality of P is obvious, as is the fact that I; preserves identities; for composition:

LfiLg = (idi, f57'Y);(idi,g57'2)
= (idi, 5 (Y'Y 5 X) 5 (X199 Z; a4 2))
= (idi, f59:7'Z ;idyuzy)
Naturality of v:
id
xvy S yuy
X%y
xvy’
. 7
,YZXU,Y/ ( (y
XiquY/ i Xuy/
a|d7uY
The U equation is essentially just L, and for M:
id
XX : XX
a™v L id
aid,uxv

Xwv N XiquXv XUxY

,inu;v Xidau,v A a®v

id aid.,u;v

Xiqu;v Xiqu;v Xwv

Definition 3.2 Let P : S — 7 be a functor. A morphism ¢g:Y — Z in S is
(i) wertical if PY = PZ and Pg = idpy, and

(ii) horizontal over (i.e. mapping to) v : j — k (where j = PY, etc.) if for every h : X — Z over

u ;v there is a unique f: X — Y over v with h = f; g.

The functor P is called a fibration if for every v : j — k and Z with PZ = k there is some

horizontal g : Y — Z over v.

Lemma 3.3 P: %i:Z.X" — T is a fibration, in which (v, g) is vertical iff v = id and horizontal

iff g is invertible, the horizontal lifting of v at Z being v, Z.



Proof The only part which isn’t obvious is that if (v, g) is horizontal then g is invertible (for
the converse recall that o*? is also invertible); for this we use horizontality twice with u = id;.
First let X; = XVZ, hyid and derive f; such that [f1; (v/Y)~!]; g = id. Then put Xo =Y, hag;
now id and g; [f1 ; (7/Y) 1] both serve for f,. O

Lemma 3.4 If P: S — T is a fibration then there is a factorisation system in S consisting of the
(*pseudo!)vertical and horizontal maps.

Proof Let h: X — Zoveru:i — j. Let g : Y — Z be a horizontal lifting of u at Z and
f X — Y the unique vertical map with h = f;g. Now if we are given v;h = k; g with v vertical
and ¢ horizontal, then h is over Ph = Pk ; Pg and so there is a unique f over Pk with f ;g = h;
likewise v ; h is over Ph = Pk ; Pg and v ; f and k both serve as the mediator, so v ; f = k. O

Exercise 3.5 Conversely, if P is any functor satisfying the definition of fibration with the word
“horizontal” deleted, and the vertical and horizontal maps in S form a factorisation system, then
P is a fibration.

Proposition 3.6 i : Z.X" is the laz colimit of the diagram, i.e. if N; : X7 — Y are functors and
ny : N; X" — Nj natural transformations such that

id=N;v';nig and n XY 5m, = N;a™ 5 Ny

)

then there is a unique functor N : i : Z.X* — Y such that

NI, =N; and Nuv, = n,

Proof On objects, we are forced to put N(i, X) = N;X. For morphisms we use the vertical-
horizontal factorisation: (u, f) = I;f ; v,Y, so we must put N(u, f) = N;f ; n, Y. Universality of
the factorisation makes this *functorial. O

Now for the converse; clearly the category X has objects those X € S with PX = 4 and
morphisms the vertical maps over <. However, since horizontal maps are defined by a universal
property, the lifting of v : j — k at Z with PZ = k is defined only up to isomorphism. We
therefore have to make a choice of liftings in order to determine a functor XV : X* — X7,

Lemma 3.7 X7 is *pseudofunctorial in v. O

Proposition 3.8 There is a weak equivalence from pseudofunctors Z°? — Cat to fibrations
- —17. O

4 Oplax and pseudo limits

Having established what we mean by a (pseudo)diagram of categories, we can now calculate its
pseudolimit. Although we have chosen not to consider lax diagrams, we can still form a lax or oplax
limit of the diagram, which corresponds to a II-type. This has application to the construction of
filtered colimits in Y-types.

Construction 4.1 Let X(=) : 7°° — Cat be a pseudofunctor. The categories Limi : Z.X* and
IIi : 7.X7 have

(i) objects the families (X?, z%) with X* € X for i € 7 and 2% : X* — X" X/ for u : i — j such
that S k
S C wo X
xi T2, yidixi xuxvxh LD, e xk

% ¢ 29 and  Xuav M v

u

X xuxi U xi



commute, where z" is respectively an isomorphism and arbitrary;

(ii) morphisms from (X% z%) to (Y y*) the families (f*: X* — Y?) for i € Z such that

XU .
XU X7 X xvyd
¥ H yt
Xt : y?
f7,

commutes;
(iii) componentwise identities and composition.

(iv) There are projection functors to X'* given by the extraction of i-components, for which we
also write X'*, and

(v) coherences&® 1 X' — XUX7 given by extraction of u-components, which satisfy the equations
Uand M
’)’i‘)(i _ é‘idi and Su;v — é-u : Xué-v ;Oéu’UXk

analogous to part (i) above.
Proof Obvious. O

Lemma 4.2 IIi : Z.X" is isomorphic to the category of sections of the display functor i : Z.X* —
T

Proof A section is a functor S :Z — ¥i: Z.X%* — 7 such that PS = id. This means that
Si=(i,X") and Su= (u,z")

where X € X% and 2% : X' — X“XJ. Functoriality corresponds exactly to the equations U
and M. Likewise, a natural transformation ¢ : S — T between sections satisfies P¢p = id, so

¢i = (id;, f*)
where naturality makes f?: X* — Y7 satisfy the equation H. O

Proposition 4.3 IIi : Z.X? is the oplaz limit and Lim+i : Z.X? is the pseudolimit.

Proof Given functors F* : A — X* and natural transformations o* : F? — X%FJ such that the
equations U and M hold:

,Y'L'Fi _ Uid,v, and o%¥ = g% X4 : au,ka
then there is a unique functor F : A — IIi : Z.X'* such that
X'F=F" and &“F=o"

On objects we are forced to put FA = (F'A,0"%A), and this is an object of the oplax limit by
equations U and M. Likewise on morphisms we have Fa = (F’a), with H given by N. Then
F is obviously a functor and unique. Moreover ¢ are isomorphisms, then F' factors through the
inclusion Lim4d : Z.X% C i : Z.X". O



Proposition 4.4 The limits are Cat-enriched: if ¢' : F' — G’ is a compatible family of natural
transformations, i.e. the square

o2 g
o H T
XU

XURd 0 xvGd

commutes, then there is a unique natural transformation ¢ : F' — G such that ¢' = X?¢.
Proof Obvious. U

5 Continuous fibrations

In this section we assume that each X7 has (filtered) colimits of types Z and j/Z and that these
are preserved by X™“.

Proposition 5.1 The pseudo and oplax limits have filtered colimits, which are computed com-
ponentwise and preserved by the projection functors X™*.

Proof Let J be a filtered diagram for which each X% has and X% preserves colimits. For j € J
let (X7, 2%) be an object of the oplax or pseudo limit, and for v : j — j' let (f} : X} — X7,) be a
morphism, so that we have a diagram of type Z in the limit. Then we also have diagrams in each
X, and we may let f; : X]l: — X' be a colimiting cocone.

Define z* as the unique map making

xu

Xi XuXZ/

5 xeff
xu

i J u i’
X]- X Xj

commute for each j € J. If each x} is invertible then so is z“, so the result specialises from

the oplax to the pseudo limit. Once we have shown that (X% z%) is an object of the limit, this
diagram immediately makes f; a morphism, and it belongs to a cocone because each f; does.
The *equations U and M for the object (X z%) are simply the colimits of the same equations
for (X7, x¥).
If (¢; : X — Z') is another cocone, then by the componentwise colimits we have a unique

mediator g : X? — Z, and this is a *morphism g = (g*) by uniqueness of mediators X* — xXuzi,
O

Construction 5.2 Let (X %) € ITi : Z.X*. A diagram of type i/Z in X* which takes
N v ;WY wyy XwY wvo vk U XE e vk
(55— (k) to  AUXT I yuxvxh LS, yuvy

Proof We have to check functoriality:
uxid

XU Xid Xl

XXt




and

) XU u,vXk '
xuxi =, yeavxt 2 xvv xk
M XuxvzY N Xwvg®
u,vxle .
Xupviw XuXvaXl o Xu’vaXl
A au;v,le
' . au;u;le . .
Xux’v,’wX X'Uavwa

Definition 5.3 Let Y? be the colimit with cocone 2% : X*XJ — Y, i.e.

Zu

xUX7 Y?
Xvz? E ZW
u,vxk
Xuvak « Xu;vXk

commutes for all u € i/7.

Construction 5.4 An isomorphism y' : V' =~ Xty

Proof Let t : i’ — 4 in Z. There is a diagram of type i/Z given by applying X! to the
previous construction, and since this functor is continuous, X¢z% is a colimiting cocone. Using
ZA, bt X3zt xYtxeXi — Y is a cocone, so there is a unique mediator X*Y? — Y. Now
(abuXxi)=L, xtzv o XHuXJ9 — Y? is a cocone over a final subdiagram of the diagram defining
Y? and so extends to a cocone over the whole diagram, whose mediator y* : Y — X'Y?is the
inverse. This is the unique map such that

y? Xy’
2w F Xtz over j/T
t,u j
ytuxd XDyt ypux

commutes for all v : ¢ — j, the vertical maps forming colimiting cocones.

Lemma 5.5 (Y%, y“) is an object of Limi: Z.X" C Ili : Z.X".

Proof For the U equation:
gyl =7 .
YZ —_— X'dYZ
,.YZYZ
LU . N 4 Xidzu
ald,uX]

XUX7 Xid v xi

~ XU XI

10



which is the colimit of U, and the associative law is obtained in the same way:

au,vyk _ Xu;vyk
N
&7
N £
XUXUX”LUXZ aU’UXle Xu;UXle
Xuyv F Xuau,le A au;v,le F yu;v
u,v;le o
XuXU;le o Xu,v,le
F
yu

Construction 5.6 Morphism ¢ : (X%, z%) — (Y y%) by ¢! = ' X ; 219,

Proof It is a morphism:

X' XX = A" X =——= XX
yiXi 2 XX L id R~y X7
il M iy aidu xI yux aid X7 e xid i
ids E Z¥ Xuzids
yi Y? v xXuyd

Lemma 5.7 ( is universal into the pseudolimit.

Proof Suppose (b*) : (X% z%) — (A% a%) is a morphism with a invertible, so the square

. bt .
X A
Tt H a*
XUy

XuXI T xu Al

11



commutes. I claim that X% ; (a*)~! is a cocone for the diagram defining Y

i MY e
Xu$u H X“a“
xuexvxk m X“XV”A’“ M
awv Xk 7 ot Ak
yuv xk Xvp yuv gk f‘u;v Al

Hence there is a unique mediator ¢’ : Y* — A such that

)

yi & L4
z* G a®
Xubl

XuXi T yv Al

commutes. Finally the following diagram shows that ¢: Y — A is a morphism:

i

Y ‘ Al
<&
G a®
A xupl :
F XUX7 - XA
y* a®d X7 | U | Xy XI Z | XTI AT
. ) XuXxidpi o
X XX xtxid Al
O
b . L
i G Xuald | Xt A
_ Xupi _
xuyd ¢ XA

Proposition 5.8 The full inclusion functor Limi : Z.X* C IIi : Z.X? is continuous and has a

reflection (left adjoint post-inverse).

Proof The first part is immediate from Proposition 5.1; note also that the inclusion is full

because the two categories have the same definition of morphisms. We have just found the unit

of the adjunction; observe that if & are already isomorphisms then ( is also an isomorphism.
There is an application of these results to finding filtered colimits in X-types.

Definition 5.9 A functor P : S — C is a continuous fibration if

12



(i) it is a fibration,
(i) the fibres X* have, and the functors X'* preserve, filtered colimits (of types J),

(i) C has filtered colimits (of types Z), and
) if ¢; : C; — C'is a colimiting cocone for a diagram ¢, of type Z then X is a pseudolimiting
cone.

(iv

Lemma 5.10 An object over a colimit is the colimit of its liftings.

Proof Let ¢; : C; — C be a colimiting cocone in C and X € X¢. Let v., X : (C;, X?) — (C, X)
be the horizontal lifting of ¢;, where X? = X% X; then with z" = v, we have an object of
i : .X%. By (iv) this corresponds to an object Y € X with X! = x¢Y... O

Proposition 5.11 If P : § — C is a continuous fibration then S has and P preserves filtered
colimits (of type T).

Proof We are given Z — S, a diagram of type Z, and suppose that the fibration P corresponds
to a pseudofunctor C°? — Cat. Write

C) T -8 —-C and X :7°P S _, C°P _, Cat

so that the diagram has vertices X; € X?. The arrows of the diagram are of the form z* :
X! — X“XJ and satisfy the *equations, and so we have an object of IIi : Z.X*. Applying the
reflector yields an object (Y% 4*) of Limi : Z.X?, which corresponds to a unique object Y (up to
isomorphism) of the fibre over C' = colim' C;. By the lemma, Y is the colimit of )7, and from the
reflection it is also the colimit of the X. (explain why) O

Every object is the colimit of its liftings; the colimiting cocone of a diagram of horizontal maps
s horizontal.

6 Adjunctions

Recall that we call two functors h : A — B, ¢ : B — A adjoint, and write ¢ 4 h, if there is a
bijection

cB— A

B — hA
which is natural in A and B. In particular, corresponding to id : ¢B — c¢B there is the unit
nB : B — heB and to id : hA — hA the counit €eA : chA — A. These are natural in A and satisfy
the triangular identities:

h
che heh 1 p,

c
+ ec ce n 4

c

[Mac Lane 1971], §4.1 shows that (c, h,n,€) suffice to characterise the adjunction. Since we no
longer have any mention of the objects of the categories A and B, the latter may now be objects
of an abstract 2-category C, and we have an equational definition of an adjunction between two
opposite arrows (1-cells) between two objects (0-cells) of a 2-category.

The above natural bijection is a well-known and easy to remember way of presenting the
adjunction, but it has a less well known dual. Instead of applying ¢ and h to objects of (or functors
into) A and B, we can apply functors out of these categories:

Bh— A
B — Ac

13



naturally in A: A — X and B : B — X. We could say “h is co-left adjoint to ¢.”

Construction 6.1 A natural bijection between natural transformations 6 : hy — hy and ¢ : co —
c1 which identifies identities. Using both correspondences together we obtain

n2hy thy

hQCth hl hQClhl
coh 0 hic
2h2 /{% \@@ 1C1
N
629 g h2 %C m
K L
cohy —— id hocy —— id
ohy C1 . 2
> P
~N [
c1hy & ] N haca
c Col
62h161 2 C2 2 CQhQCl

(commutation of one of which suffices) where we can verify 6 — ¢ — ¢ — £ +— 0 are bijections
using the triangle laws. O
We shall write

id — "M hie
T2 D 901

2
hacg ——— hacy

Lemma 6.2 The bijection respects composition and identites.
Proof It suffices to show that 6 ;6" and ¢’ ; ¢ satisfy the equation.

id n - hicy
2 p by
3 D' hacy M» hacy
0’ co Z 0c
h3¢' h3¢

hzcz —— hzcg —— hacy

The result for identities is obvious. O
Definition 6.3 The 2-category C™ has the same objects as C; its 1-cells are adjunctions (c, h, 7, €)

and its 2-cells are pairs of natural transformations (¢, #) satisfying the equations of the construc-
tion. The composition is in the obvious way.

14



Proposition 6.4 The forgetful 2-functor C* — C which extracts the left (or right) part of the
adjunction and natural transformations is full and faithful at the 2-level. Loosely speaking, the
2-categories of left and right adjoints are dual. O

Note carefully that we shall find it convenient to write composition in Z both right-handedly
as u ;v and left-handedly v o u: these notations are completely synonymous. We shall also adopt
the convention of writing X* for the functors in the limit diagram (which are contravariant in u)
and X, for their left adjoints in the colimit diagram (which are covariant in u).

Definition 6.5 Let P : S — C be a functor. A morphism f : X — Y is op-horizontal over
Pf=wu:i— jifforany h: X — Z over u;v :4i — j — k there is a unique g : Y — Z over v with
h = f;g. We call P an op-fibration if each u has an op-horizontal lifting at each X with PX = 1.
If P is both a fibration and an op-fibration we call it a bifibration.

Lemma 6.6 P: S — C is an op-fibration iff P : S°? — C°P is a fibration.
Proof Obvious. O

Proposition 6.7 Let X(=) : 7°° — Cat be a pseudofunctor. Then P : ¥i : 7.X" is a bifibration
iff each X" has a left adjoint, written X,.

Note 6.8 Since the left adjoints (op-substitutions) &, are covariant in u : ¢ — j, but we still write
composition of functors from right to left, it is convenient to use the notations

u;v and wou

synonymously for the composite i — j — k.
Proof

[=] Any morphism (u, f) : (i, X) — (4, Y) can be factorised as a vertical followed by a horizontal,
or as an op-horizontal followed by a vertical:
C
N

(4, XY) — (4,Y)

where X, X is introduced as the codomain of the op-horizontal lifting. Making such a choice
for all X € X%, we can extend this uniquely to a functor X, : X* — X7. I claim this is the
left adjoint: f corresponds bijectively to either vertical part X — X*Y or X, X — Y. The
unit and counit are given by

X X, XY

horiz
XX, X —— X, X

and the equations n* X" ; X%¢, = id and X, n* ; €, X, = id may be verified using the uni-
versal properties of the horizontal map XY — Y and the op-horizontal map X — X, X
respectively.

15



[<] I claim that (u,n*X) : (i, X) — (j, X, X) is op-horizontal. Let (u;v, f) : (i,X) — (k, Z),
so that f' = f; (a*?Z)™! : X — XuXZ in X% Let f"’ : X, X — X"Z be its adjoint
transpose; this is the unique solution of f' = n*X ; X" f”. Then (v, f") : (j, XuX) — (k, Z)
is the required factorisation. O

Lemma 6.9 The functors X, have coherences 9; : Xig — id and 3, : Xyoy, — XAy which satisfy
equations dual to those in definition 2.1:

X} v, u
XvaXu - U/B . Xu}Xvou
Bw,vXu A ﬁwﬂ)ou associativity
Xwov-)(u ‘ﬂwm}’u Xwovou
and
Xu 'Xidj Xu Xu‘Xidi Xu
’c‘z'{“ < Bidju  Buiid; Q“. E;Zw unit
& N
X, X,
Proof Immediate from lemmas 3.7 and 6.8. O

Lemma 6.10 The coherences a*?, 3, ,, 7* and §; are related to the units by the *equations

id ] w xw w’X ,
id — 1+ xidy, id U XX, 2y poxe' x,,x,
id C X5, and puv’ B Xy, Xy,
7k i ’ Xw;w/ﬁw’ w ’
id X XYY Xow : XU X X
and to the counits by the equations
, . w P T ,
id 9y, xi id " P AL VIV VR R
id C Xgr®  and  ewow B XX,y W
6 ’ w’ wa;w/ wany!
id < k 'X‘id leowa;1u » 6 ) leXwa,w

7 Transfer functors

Now we shall begin the construction of the equivalence between the pseudolimit and pseudocolimit.
Imagining for the moment that we already have this equivalence, we can form

. X; . i X7 P
Xt Ckollka ~ %.mxk BRSNS ¢/
€T (S

16



using the colimiting cocone and limiting cone. It is our purpose now to construct this composite
functor, M. When we have it we can use the universal property of the pseudolimit to construct
functors X* — Limk : Z.X%; these will be left adjoints to X* and will form the colimiting cocone

X;.
Construction 7.1 A Diagram of type (i, 5)/Z of functors X* — X7. On objects, (i — k <~ j)
X?X,. The image of w: k — k' is
X'nv X, avY X, X, )
XX, ——— XXX, X, ————— XV A
XX By N X By

" Xyou

XvaXwou Xv;waou = Xv/')(u’

Proof We have to show that we have defined a functor. The effect on the identity idy is the
long anticlockwise route from X*X, on the top left to X*X, on the top right. We use the
correspondence between v* and 8y, together with one unit and one counit law.

id id
XXy — e XX, — e XX,
77id C ’)/k < @'?b
o
X”Xid)(id)(u Ok Xinqu
) <
Bld,u .\b
xexdx,
For the composite w ; w’,
XX, X'X,
0" B Ui
v pw nw' v pw pw’ aw,w' v pwiw’ ﬁw’,w v pwiw’
XXX, X, — X' XYXY Xy Xy Xy —— XPXYY Xy Xy Xy = XUV XYY Xy ow X

cap’ i
avv Z ¥ A QlWw Z QU Ww

Y
777““/ ’ au;w,w' ’ ﬁw’ w 4
X?},UJXwXu Xi),wxw Xw’XwXu Xv,w,w Xw’XwXu 47’ XU,U),U) Xw’owXu

ﬂw,u N ﬂw,u N 5w,u A 6w’ow,u

’ !
w VW, w

. n . ’ cww’ ﬁw’ wou cwiw’
XU7waou - XU XY Xw’Xwou AU Xw'Xwou < : AU Xw’ovou

where the left-hand side is the effect on w, the bottom that on w’ and the right-hand side that on

w;w. O

Construction 7.2 Functor M7 : X' — X7 is the (pointwise) colimit, with cocone v : X" X, —

17



MY

5, e
XUX, Yu . MY
XWX, K Voo,
vexvy,x, XX pew g v vy

Proof We know that (i,7)/Z is a filtered category, so it is possible to form the colimit M} X for
each X it is standard that this extends to a functor which is the colimit in the functor category.
In detail, for f : X — Y we have a cocone X" X, f ;LY : XX, X — M}Y by naturality of n,
a® and By .y, SO M;f is the unique mediator and it is automatic that v, is natural. O

Construction 7.3 Coherences ! : X' M7 X, = Mi];/ for s:4 — ¢ and t: 5 — j such that

t

XtM:ZXb s Mbj//
XY X, P v
. At XX XBus oy,
XXX, X XUV, Xy ——— XV Xyos

Proof The lower composite X*X*X, X, — MZ-J;/ is a cocone by naturality of «, 8 and n and
associativity of o and 3 (the proof is very similar to the diagram in 7.1). Since X* is continuous,
XY X, is colimiting and p! is then defined as the mediator. It is invertible because (i,7)/Z —
(7',4")/Z is final, and natural by the universal property of the colimit.

Lemma 7.4 The coherences pf = X*M/§; kg, XM =~ Mij,/ for s : 4" — i satisfy U, M and

i

XM M7

t,,v tiv
X' Xy P vy

t,'uX
xtavx, L0 ytoy,
Proof These are just colim' UX, and colim! MX,. O
Definition 7.5 X; : X' — Limk : Z.X* such that X7X; = MZJ and £'X; = p'. We use the
coherences p! and the universal property of the pseudolimit. O

8 Unit and counit

Now we shall show that X; 4 X* and that X; is a colimiting cocone.

Lemma 8.1 The maps

k
*, xvxk

XvXuXZ X_fﬁg» X’UXuXuXk- XVey

IR

form a cocone for the diagram defining MZJ X

18



Proof Recall that X“ -5, C def XX XX, X, Xy, and we also omit the functors applied to natural

transformations. Then the diagram

AP X! & AP xwk - X0k o X7
Xowx = & = Xywxwk ey xk ol
\ N X /

Buo xpw gt & o yreywl y g M

Xygu X! S \&Zoﬁixuwl Gwou\ vl

a’v Z a¥v Z a¥v

Xy X & - U sl Cwou oyl & i

commutes. 0

Definition 8.2 Natural transformation eg : Mlj X? — X7 is the mediator, the unique map such
that

o e ,
MIX : .y
VZXZ Q Ev
) XUXu u XV uXk
PUP T ST PP TS AP P

commutes.

Construction 8.3 ¢; : X; X" — idLim such that eg = Xg;.

Proof The coherence equation H is obtained by varying the above diagram along ¢ : j' — 7,
which is the colimit of three commutative squares which amount to naturality of a*¥ and M for
&. O
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Lemma 8.4 The diagram

M]M; : - M/

SRS

2
“<.
2

commutes. O

Lemma 8.5 ¢; : X; X% — 1 is a colimiting cocone.

Proof *Cocone (over what?) Colimiting: use finality.

J
[coan Xié\fi] — ] X;
i€ .
eg 5]’
XIX, X —— XXX XU xk
A
VEXi Xveika
Cu=id XV Xy&Hd .
XUXuxz :k XU)(ika —dg> XUXId.X'ika
The details are in the diagram defining eg . *Cocones, *coherences. O

Lemma 8.6 n"; v¥ :idy: — M} = X'X; is independent of the choice of u : i — j.
Proof It suffices to show that n* ; v = nidi ; I/Ili This follows from definition 7.2 (of v) with

u

w = id, together with the U and C equations for v* and §;. O
Definition 8.7 1’ = n“; v

Lemma 8.8 X% ; Xie; = id y:.
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Proof

MiX? AR - X

. Xidi/Yi ) id; ) ]
dei‘)(idi‘)(z dzf dei‘)(idi‘)cvldi)(z

A

X”eidiXi vak

id; yi id; pid; i <
nidi X Zyidi xidi x €S

id
Xi f _ Xu/‘t‘z

Lemma 8.9 X;n' = ¢;X;.

Proof By enrichment of the pseudo limit, it suffices to verify componentwise that MZJ n'; eg X, =
id,;s. The diagram

wg M gy S
Z Ve M}
vl XM} Ve
Sxy
i XV, X,

X

xrxr N xY

commutes for all (u,v) € (¢,7)/Z; the bottom row is the identity by X. The left-hand side is part
of a colimiting cocone, and the diagram and provides another cocone for which the top row and
the identity both serve as the mediator. O

Lemma 8.10 Limi : Z.X? is the pseudo-colimit, with cocone &;.

Proof Let G; : X* — A be another cocone for this diagram with coherences ... Consider the
diagram of type Z of functors Limi : Z.X* — A with i — A; X" which takes u : i — j to

Functoriality... Let A be the colimit. Then

AX; = colim" A;M7 = colim”  colim’  A;XVX, = colim! A, X, = A
J J (u,w)ET/(i,5) uik—i

*Uniqueness. 0O
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9 Pseudolimit of adjunctions

Finally we shall show that we have the limit in the category of homomorphisms. Let G : X — X
be a cone of homomorphisms and F; 4 G? be the corresponding comparisons, with units v’ and
counits &;. Since L is the limit we have a unique mediating functor G : X — L with G* = GX?,
and similarly, since it is also the colimit, F': L — X with F; = FAj.

Construction 9.1 Natural transformations v : idy — GF and § : FG — idx, by the diagrams

v

idL GF sFG idX
€L ekGFek FEkG (-
Xokxk
X0 ST G Rk F,G*
Lemma 9.2 F 4 G with unit v and counit §.
Proof The two triangle laws follow from these diagrams:
F oF
F Y FGF F
Xpvk Xk 51 Fp Xk
Rk SR pah Rk SRR gk
and XIvG GI§
. J . J .
G Y GIFG el
A
MG M]G'FG’ MG
A
X8 ST yox iR Gt STy, G

O

Theorem 9.3 For any cofiltered diagram of homomorphisms, the limit of the homomorphisms
qua continuous functors, the colimit of the comparisons qua continuous functors and the limit of
the homomorphisms qud homomorphisms exist and are naturally equivalent.

Proof It only remains to formulate and prove naturality. One way of stating this is that the
forgetful functors FCCat"™ — FCCat and FCCat"™ — FCCat®? create limits. O
We call L the bilimit of the diagram.
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10 Notes

Definition 8.2:

A
er Q
V;jrqu ; XUXwou “ /
MyXI ’ XY Xpou X’ _ A weu® | XX,y XV XY
keu v u
ME¢ N XV Xpoul® M a
o vy XX _ ¢ l
Mrx“xt XY Xpou XX XV Xpou XXV X
A
P B
Xid v ) ‘
XYMEx,X X, Y XXX XXX, XXX, X X! N & B
2 Z N id
k : u pi I/ZXHX“X v u 1 X;})u‘)(uwgw v u pw pl
MFX, XX XUX, X, e > YU, X, XXX
A
MFe, X' N XVep e, Xt Z XV'X,e, XX
h VUXY , XV X, Ev .
MFX! XX, X! XX, X
X\
el Q X«J [\
v v
Construction 9.1:
Xi
)
id FG Z
6k FGkG Xu Oy U .A
FG* = FX*G — FxXRG <
X7
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Lim X? - A A X

x / oy - " G

'’ A XX X A
& Ou ,
= x| X, ——|A,; Aje, X “
Y
- X7 Aij
AX; %
v
2
A; X0
ou Ty X" X, Oy
A X" Aie X
Ax, A x aex, T A,
Al
AX; X, — AX A
o; X, o; “
u iXi
Aqu o o

A, AX; X
A
A;e; X0 N AXie; X'
) iXuXuXZ' .
Ax,xmxt T T A, XX
A
o & pseudo — colim A, &
. O'j X] .
AjX‘] -« AXjX‘]

VIF: Fig; =idF o' tidye — FUG; 8 : GiF; — ida 0, : Gy — GA;
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F P g T
W F def  XFO,X'F  def XIFS
d adqp viap SN ipgy i YECSE yipgp
e F N XiFGe,F 3
cxir —XF | vipaE Lim
id yi i X'FG,
7 def XiFg; G F' % , ida
vix, XN vipga, 0,F =|0,X'F def 5
vy GX,F' = GX,X'F mf%ﬁng»
XUX,
e Git G FiG, %G G
0; z 0,F'G; def 3G,
G, — G | grairg -S9PG Gre,
GX def  GXXFH, N GFo; N
GXi;\fiXi GX X cxxirgy, GG GFlGX,»
GeX; z GeFGX; SGA;
. G, Gudi | GFlGXi G |, G,
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