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Abstract

Scott noticed in 1969 that in the category of complete lattices and maps preserving directed
joins, limit of a sequence of projections (maps with preinverse left adjoints) is isomorphic to
the colimit of those left adjoints (called embeddings). This result holds in any category of
domains and is the basis of the solution of recursive domain equations. Limits of this kind
(and continuity with respect to them) also occur in domain semantics of polymorphism, where
we find that we need to generalise from sequences to directed or filtered diagrams and drop
the “preinverse” condition. The result is also applicable to the proof of cartesian closure for
stable domains.

The purpose of this paper is to express and prove the most general form of the result,
which is for filtered diagrams of adjoint pairs between categories with filtered colimits. The
ideas involved in the applications are to be found elsewhere in the literature: here we are
concerned solely with 2-categorical details. The result we obtain is what is expected, the only
remarkable point being that it seems definitely to be about pseudo- and not lax limits and
colimits.

On the way to proving the main result, we find ourselves also performing the constructions
needed for domain interpretations of dependent type polymorphism.

1 Filtered diagrams

The result concerns limits and colimits of filtered diagrams of categories, so we shall be interested
in functors of the form

I → FCCatcp

where I is a filtered category and FCCatcp is the 2-category of small categories with filtered
colimits, functors with right adjoints which preserve filtered colimits and natural transformations.
Since we have to perform a lot of manipulation of filtered diagrams, we begin with a short discussion
on them.

Definition 1.1 A category (diagram-type) I is filtered if

(i) it is non-empty,

(ii) it has the amalgamation property for objects, i.e. given i, j ∈ I, there is some k ∈ I and
u : i→ k, v : j → k in I.

(iii) it has the amalgamation property for morphisms, i.e. given a parallel pair u, v : i⇒ j in I,
there is some k ∈ I and w : j → k in I with u ; w = v ; w.

Example 1.2 Any category with finite colimits is filtered, for example ordinals and finite power-set
lattices. The definition says that a filtered category has “weak” finite colimits.

Part of the data for the theorem is that the categories X i “have filtered colimits.” We shall
always take this to mean that there is a functor

colim↑
J

: XJ → X
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which is left adjoint to the “constant functor”; the counit is the colimiting cocone and the unit
(since J is connected) is an isomorphism. Often, however, we can avoid naming the colimit
because we are given a cocone and set out to prove that it is colimiting, i.e. a colimit rather than
the chosen colimit.

Definition 1.3 A functor F : X → Y is continuous if it preserves (commutes with) filtered
colimits up to isomorphism φ:

colim↑
j∈J

FXj

φJ 〈Xj〉
∼=
- F

(
colim↑
j∈J

Xj

)

FXj

σj
6

============== FXj

Fτj
6

XJ
X colim↑

J - X

φ⇒

YJ

FJ

?

Y colim↑
J

- Y

F

?

We shall make several uses of final subdiagrams, which generalise the idea of a cofinal subse-
quence of an ordinal. They is dealt with in [Mac Lane], section 9.3.

Definition 1.4 A functor U : J → I is final if for each i ∈ I the comma category i ↓ U is
connected. This means that there is some j ∈ J and u : i → Uj, and if there is another j′ ∈ J
with u′ : i→ Uj′ then there is a “zig-zag” such that

i ========== i ========== i ========== i ============ i

Uj = Uj0

u = u0

? Uv1- Uj1

u1

?
�Uv2

Uj2

u2

?
· · · Uj2n−1

u2n−1

?
�Uv2n

Uj2n

u2n = u′

?
= Uj′

commutes.

Proposition 1.5 Let D : I → X be a diagram in a category and U : J → I be a final functor.
Suppose that the diagram DU : J → I → X has a colimit with cocone yj : DUj → X. Then
there is a unique cocone xi : Di → X over the given diagram D such that xUj = yj , and this is
colimiting.
Proof For i ∈ I, suppose j ∈ J with u : i→ Uj, and put xi = Du ; yj . We have to check that
this is well-defined, by induction on the length of a zig-zag between two candidates. It suffices to
consider the case of a single “zig”, u′ = u;Uv, where v : j → j′; then xi = Du;yj = Du;DUv ;yj′ =
Du′ ; yj′ . This also shows that xi is a cocone over I. It is clearly also the only one with xUj = yj .

Now let zi : Di → Z be another cocone over I. Then zUj : DUj → Z is a cocone over J
and, since X is the colimit, there is a unique mediator z : X → Z with yj ; z = zUj . Then
xi ; z = Du ; yj ; z = Du ; zUj = zi, so z mediates from I also, and a fortiori it is unique. �

Definition 1.6 We shall need the following constructions on a fixed filtered category I (with
typical objects):

(i) I itself
i

(ii) the coslice i0/I
i0

u- i
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(iii) the double coslice (i0, j0)/I

(iv) the degenerate double coslice (i0, i0)/I

i0

u-

v
-

i

(v) [a construction needed in Lemma 8.2]...

Exercise 1.7 Let I be a filtered category. Verify that the following functors are final:

(a) i0/I → (i0, i0)/I by u 7→ (u, u);

(b) (i0, j0)/I → (v);

(c) i0/I → i1/I by u 7→ p ; u;

(d) (i0, j0)/I → (i1, j1)/I by (u, v) 7→ (p ; u, q ; v);

(e) I → I × I by i 7→ (i, i);

where i0, i1, j0, j1 ∈ I and p : i1 → i0 and q : j1 → j0 in I. �

Exercise 1.8 Suppose I has binary coproducts. Show that the functors

(a) I → i0/I by i 7→ (i0 → i0 + i), and

(a) I → (i0, j0)/I by i 7→ (i0 → i0 + j0 + i← j0)

(the maps being the coproduct inclusions) are final. Hence show that any colimit over i0/I,
(i0, j0)/I or I × I may be calculated as a colimit over I. �

So the above assumptions about “categories with filtered colimits” may be reduced to “cate-
gories with colimits of type I”. Indeed, if we interpret the definition of filteredness constructively,
any filtered category is equivalent (for the purpose of finding colimits) to a category with finite
colimits.

Although we said that we wanted the categories to have all filtered colimits, it turns out
that we only actually make use of colimits of diagrams of the above types. Clearly these are
of essentially the same cardinality as the given diagram I, which allows us to regard filtered
colimits as an algebraic operation of fixed arity. We also never consider the aggregate of all
categories with filtered colimits, or perform constructions worse than products of the cardinality
of I. Consequently we have no problems of size, and may treat the categories as small (or locally
small); this is fortunate, considering the amount of 2-categorical work already cut out for us!

2 Pseudofunctors

In this section we shall examine the notion of pseudofunctor X (−) : Iop → Cat. Although in
the application to the limit-colimit coincidence (sections 5 and 7 onwards) we shall need I to be
filtered, for the time being it may be any category whatever.

The problem is that in general for composable arrows u : i→ j and v : j → k the functors

X u;v and X uX v

cannot be expected to be equal: at best isomorphic. This is because X u is typically defined by
some universal property, such as pullback along u. [More generally, one may study the case where

3



they are related by a non-invertible map one way or the other, and such constructions are called
lax or oplax.] We shall find, however, that in the result which interests us we need an isomorphism

X uX v αu,v- X u;v

Likewise, there is no a priori reason why X id need be the identity, so we also provide an isomor-
phism

idX i
γi- X idi

(We prefer for reasons of symmetry not to put γi = id, although this is possible and quite commonly
done.) Since these maps are isomorphisms, we shall feel free to define compositions involving them
backwards or forwards, without writing α−1.

Definition 2.1 A pseudofunctor Iop → Cat is an assignment of categories X i, functors X u :
X j → X i and natural isomorphisms αu,v and γi as above, subject to the laws

X uX vXw
X uαv,w- X uX v;w

A

X u;vXw

αu,vXw

? αu;v,w
- X u;v;w

αu,v;w

?

associativity

and

X u
γiX u- X idiX u X uX idj �X

uγj
X u

X u

αidi,u

?

LidX u
-

X u

αu,idj

?�

R
id
X
u unit

Lemma 2.2 Any well-formed diagram consisting of α’s, γ’s and their inverses commutes.
Proof By induction on the length of the compositions, using the associativity and unit laws.�

Corollary 2.3 If ~u and ~v are composable strings in I with a common refinement, then there is a
unique canonical isomorphism between X ~u def= X u1 ...X un and X~v. �

This kind of lengthy presentation of data conflicts with the spirit of category theory, and we
have two alternatives: 2-functors and fibrations. (What about sheaves of categories?)

Construction 2.4 A 2-category I whose 0-cells are those of I and whose 1-cells are composable
strings of arrows of I. There is a unique, invertible, 2-cell between any two strings a common
refinement. We then obtain a 2-functor (no longer pseudo)

d : Iop → Cat by (u1, ..., un) 7→ X u1 ...X un

whose effect on 2-cells is well-defined by the corollary. �

Proposition 2.5 There is an isomorphism between pseudofunctors Iop → Cat and 2-functors
Iop → Cat. �
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Notation 2.6 Besides the equations A, L, R, etc., we shall denote the naturality square of φ :
F → G with respect to f : X → Y by

FX
φX- GX

N

FY

Ff

? φY - GY

Gf

?

or

FX
Ff- FY

Z

GX

φX

? Gf- GY

φY

?

3 Fibrations

The other approach, sometimes called the Grothendieck construction, is to form the total category
Σi : I.Xi and display it as a fibration over I.

Construction 3.1 The total category Σi : I.X i.

(i) The objects of the total category are the pairs (i,X) with i ∈ I and X ∈ X i;

(ii) the morphisms from (i,X) to (j, Y ) are the pairs (u, f) where u : i → j in I and f : X →
X uY ;

(iii) the identity on (i,X) is (idi, γ
iX);

(iv) the composite of (u, f) : (i,X)→ (j, Y ) and (v, g) : (j, Y )→ (k, Z) is (u ; v, f ; X ug ; αu,v).

The display functor P : Σi : I.X i → I

(v) takes (i,X) to i and (u, f) to u.

The inclusion functor Ii0 : X i0 → Σi : I.X i

(vi) takes X to (i0, X) and f : X → Y to (idi0 , f ; γi0Y ).

The coherence υu : IiX u → Ij

(vii) at Y ∈ X j is (u, idX uY ) and satisfies the equations

Ii
Iiγ

i
- IiX id

Ii

υid

?

U
id

-

and

IiX uX v
υuX v- IjX v

M

IiX u;v

Iiα
u,v

? υu;v - Ik

υv

?

Proof First, Σi : I.X i is a category. For the identities:

(u, f) ; id(j,Y ) = (u ; idj , f ; X uγjY ; αu,idY )
= (u ; idj , f ; idY )
= (u, f)

using R and

id(i,X) ; (u, f) = (idi ; u, γiX ; X idf ; αid,uY )

= (idi ; u, f ; γiX uY ; αid,uY )
= (u, g ; id)
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using naturality and L. Associativity follows from:

X u(X vh ; αv,wT ) = X uX vh ; αu,vXwT ; αu;v,wT A

= αu,vZ ; X u;vh ; αu;v,wT N

Functoriality of P is obvious, as is the fact that Ii preserves identities; for composition:

Iif ; Iig = (idi, f ; γiY ) ; (idi, g ; γiZ)
=

(
idi, f ; (γiY ; X idg) ; (X idγiZ ; αid,idZ)

)
= (idi, f ; g ; γiZ ; idX idZ) Z, R

Naturality of υ:

X uY
id - X uY

X uY ′

X uy

?
X uY ′

X uy

? X uγjY ′- X uX idY ′

X idX uY ′

γiX uY ′

?

αid,uY
- X uY ′

id

?�

R

α
u,

id Y
′id

L

-

The U equation is essentially just L, and for M:

X uX v
id - X uX v

L

X u;v

αu,v

?
N X idX uX v

αid,uX v-

γ iX uX v
-

X uX v

id

?

A

X idX u;v

γiX u;v

?
id- X idX u;v

X idαu,v

?
αid,u;v

- X u;v

αu,v

?

�

Definition 3.2 Let P : S → I be a functor. A morphism g : Y → Z in S is

(i) vertical if PY = PZ and Pg = idPY , and

(ii) horizontal over (i.e. mapping to) v : j → k (where j = PY , etc.) if for every h : X → Z over
u ; v there is a unique f : X → Y over u with h = f ; g.

The functor P is called a fibration if for every v : j → k and Z with PZ = k there is some
horizontal g : Y → Z over v.

Lemma 3.3 P : Σi : I.Xi → I is a fibration, in which (v, g) is vertical iff v = id and horizontal
iff g is invertible, the horizontal lifting of v at Z being υvZ.

6



Proof The only part which isn’t obvious is that if (v, g) is horizontal then g is invertible (for
the converse recall that αu,v is also invertible); for this we use horizontality twice with u = idi.
First let X1 = X vZ, h1id and derive f1 such that [f1 ; (γjY )−1] ; g = id. Then put X2 = Y , h2g;
now id and g ; [f1 ; (γjY )−1] both serve for f2. �

Lemma 3.4 If P : S → I is a fibration then there is a factorisation system in S consisting of the
(*pseudo!)vertical and horizontal maps.
Proof Let h : X → Z over u : i → j. Let g : Y → Z be a horizontal lifting of u at Z and
f : X → Y the unique vertical map with h = f ; g. Now if we are given v ; h = k ; g with v vertical
and g horizontal, then h is over Ph = Pk ; Pg and so there is a unique f over Pk with f ; g = h;
likewise v ; h is over Ph = Pk ; Pg and v ; f and k both serve as the mediator, so v ; f = k. �

Exercise 3.5 Conversely, if P is any functor satisfying the definition of fibration with the word
“horizontal” deleted, and the vertical and horizontal maps in S form a factorisation system, then
P is a fibration.

Proposition 3.6 Σi : I.X i is the lax colimit of the diagram, i.e. if Nj : X j → Y are functors and
nu : NiX u → Nj natural transformations such that

id = Niγ
i ; nid and nuX v ; nv = Niα

u,v ; nu;v

then there is a unique functor N : Σi : I.X i → Y such that

NIi = Ni and Nυu = nu

Proof On objects, we are forced to put N(i,X) = NiX. For morphisms we use the vertical-
horizontal factorisation: (u, f) = Iif ; υuY , so we must put N(u, f) = Nif ; nuY . Universality of
the factorisation makes this *functorial. �

Now for the converse; clearly the category X i has objects those X ∈ S with PX = i and
morphisms the vertical maps over i. However, since horizontal maps are defined by a universal
property, the lifting of v : j → k at Z with PZ = k is defined only up to isomorphism. We
therefore have to make a choice of liftings in order to determine a functor X v : X k → X j .

Lemma 3.7 X v is *pseudofunctorial in v. �

Proposition 3.8 There is a weak equivalence from pseudofunctors Iop → Cat to fibrations
− → I. �

4 Oplax and pseudo limits

Having established what we mean by a (pseudo)diagram of categories, we can now calculate its
pseudolimit. Although we have chosen not to consider lax diagrams, we can still form a lax or oplax
limit of the diagram, which corresponds to a Π-type. This has application to the construction of
filtered colimits in Σ-types.

Construction 4.1 Let X (−) : Iop → Cat be a pseudofunctor. The categories Lim i : I.X i and
Πi : I.X i have

(i) objects the families 〈Xi, xu〉 with Xi ∈ X i for i ∈ I and xu : Xi → X uXj for u : i→ j such
that

Xi γiXi
- X idiXi

Xi

xidi

6
U

id
-

and

X uX vXk αu,vXk
- X u;vXk

M

X uXj

X uxv
6

� xu
Xi

xu;v

6
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commute, where xu is respectively an isomorphism and arbitrary;

(ii) morphisms from 〈Xi, xu〉 to 〈Y i, yu〉 the families 〈f i : Xi → Y i〉 for i ∈ I such that

X uXj X uf j- X uY j

H

Xi

xu

6

f i
- Y i

yu

6

commutes;

(iii) componentwise identities and composition.

(iv) There are projection functors to X i given by the extraction of i-components, for which we
also write X i, and

(v) coherences ξu : X i → X uX j given by extraction of u-components, which satisfy the equations
U and M

γiX i = ξidi and ξu;v = ξu ; X uξv ; αu,vX k

analogous to part (i) above.
Proof Obvious. �

Lemma 4.2 Πi : I.X i is isomorphic to the category of sections of the display functor Σi : I.X i →
I.
Proof A section is a functor S : I → Σi : I.X i → I such that PS = id. This means that

Si = (i,Xi) and Su = (u, xu)

where Xi ∈ X i and xu : Xi → X uXj . Functoriality corresponds exactly to the equations U
and M. Likewise, a natural transformation φ : S → T between sections satisfies Pφ = id, so

φi = (idi, f
i)

where naturality makes f i : Xi → Y i satisfy the equation H. �

Proposition 4.3 Πi : I.X i is the oplax limit and Lim i : I.X i is the pseudolimit.
Proof Given functors F i : A → X i and natural transformations σu : F i → X uF j such that the
equations U and M hold:

γiF i = σidi and σu;v = σu ; X uσv ; αu,vF k

then there is a unique functor F : A → Πi : I.X i such that

X iF = F i and ξuF = σu

On objects we are forced to put FA = 〈F iA, σuA〉, and this is an object of the oplax limit by
equations U and M. Likewise on morphisms we have Fa = 〈F ia〉, with H given by N. Then
F is obviously a functor and unique. Moreover σ are isomorphisms, then F factors through the
inclusion Lim i : I.X i ⊂ Πi : I.X i. �
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Proposition 4.4 The limits are Cat-enriched: if φi : F i → Gi is a compatible family of natural
transformations, i.e. the square

F i
φi - Gi

H

X uF j

σu

? X uφj- X uGj

τu

?

commutes, then there is a unique natural transformation φ : F → G such that φi = X iφ.
Proof Obvious. �

5 Continuous fibrations

In this section we assume that each X j has (filtered) colimits of types I and j/I and that these
are preserved by X u.

Proposition 5.1 The pseudo and oplax limits have filtered colimits, which are computed com-
ponentwise and preserved by the projection functors X i.
Proof Let J be a filtered diagram for which each X i has and X u preserves colimits. For j ∈ J
let 〈Xi

j , x
u
j 〉 be an object of the oplax or pseudo limit, and for v : j → j′ let 〈f iv : Xi

j → Xi
j′〉 be a

morphism, so that we have a diagram of type I in the limit. Then we also have diagrams in each
X i, and we may let f ij : Xi

j → Xi be a colimiting cocone.
Define xu as the unique map making

Xi xu- X uXi′

Xi
j

f ij

6

xuj- X uXi′

j

X uf i′j

6

commute for each j ∈ J . If each xuj is invertible then so is xu, so the result specialises from
the oplax to the pseudo limit. Once we have shown that 〈Xi, xu〉 is an object of the limit, this
diagram immediately makes fj a morphism, and it belongs to a cocone because each f ij does.

The *equations U and M for the object 〈Xi, xu〉 are simply the colimits of the same equations
for 〈Xi

j , x
u
j 〉.

If 〈gij : Xi
j → Zi〉 is another cocone, then by the componentwise colimits we have a unique

mediator gi : Xi → Z, and this is a *morphism g = 〈gi〉 by uniqueness of mediators Xi → X uZi′ .
�

Construction 5.2 Let 〈Xi, xu〉 ∈ Πi : I.X i. A diagram of type i/I in X i which takes

(i u→ j)
v- (i

u;v→ k) to X uXj X
uxv- X uX vXk αu,vXk- X u;vXk

Proof We have to check functoriality:

X uXi X uxid
- X uX idXi

X uXi

id U

6

id -

γ
i

R

-

X uXi

αu,idXk

?
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and

X uXj X uxv- X uX vXk αu,vXk
- X u;vXk

M N

X uX vXwX l

X uX vxw

?
αu,vXwX l

- X u;vXwX l

X u;vxw

?

A

X uX v;wX l

X uxv;w

?
αu,v;wX l

-
� X

u α
v,
w X

l

X u;v;wX l

αu;v,wX l

?

�

Definition 5.3 Let Y i be the colimit with cocone zu : X uXj → Y i, i.e.

X uXj zu - Y i

E

X uX vXk

X uxv

?
αu,vXk

- X u;vXk

zu;v

6

commutes for all u ∈ i/I.

Construction 5.4 An isomorphism yt : Y i
′ ∼= X tY i.

Proof Let t : i′ → i in I. There is a diagram of type i/I given by applying X t to the
previous construction, and since this functor is continuous, X tzu is a colimiting cocone. Using
ZA, αt,uXj ; zt;u : X tX uXj → Y i

′
is a cocone, so there is a unique mediator X tY i → Y i

′
. Now

(αt,uXj)−1 ; X tzu : X t;uXj → Y i is a cocone over a final subdiagram of the diagram defining
Y i
′

and so extends to a cocone over the whole diagram, whose mediator yt : Y i
′ → X tY i is the

inverse. This is the unique map such that

Y i
′ yt - X tY i

F

X t;uXj

zt;u

6

�α
t,uXj

X tX uXj

X tzu
6

over j/I

commutes for all u : i→ j, the vertical maps forming colimiting cocones.

Lemma 5.5 〈Y i, yu〉 is an object of Lim i : I.X i ⊂ Πi : I.X i.
Proof For the U equation:

Y i
yid =?
γiY i

- X idY i

N

X uXj

zu

6

�α
id,uXj

γiX uXj
-
X idX uXj

X idzu

6
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which is the colimit of U, and the associative law is obtained in the same way:

X uX vY k
αu,vY k - X u;vY k

N

X uX vXwX l α
u,vXwX l

-

� X uX v
z w

X u;vXwX l

X
u;
v z
w -

F A F

X uX v;wX l

X uαu,vX l

?
αu,v;wX l

- X u;v;wX l

αu;v,wX l

?

F

X uY j

X uyv

6

� yu� X
u z
v;
w

Y i

yu;v

6

z u;v;w
-

�

Construction 5.6 Morphism ζ : 〈Xi, xu〉 → 〈Y i, yu〉 by ζi = γiXi ; zidi .
Proof It is a morphism:

Xi xu - X uXj ========= X uXj ========= X uXj

Z L R

X idXi

γiXi

? X idxu- X idX uXj

γiX uXj

?
αid,uXj

- X uXj

id

?
�α
u,idXj

X uX idXj

X uγiXj

?

E

Y i

zidi

?

=========================== Y i

zu

?
yu - X uY j

X uzidj

?

�

Lemma 5.7 ζ is universal into the pseudolimit.
Proof Suppose 〈bi〉 : 〈Xi, xu〉 → 〈Ai, au〉 is a morphism with au invertible, so the square

Xi bi - Ai

H

X uXj

xu

? X ubj- X uAj

au

?
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commutes. I claim that X ubj ; (au)−1 is a cocone for the diagram defining Y i:

X uXj X ubj - X uAj �
au

Ai

H

X uX vXk

X uxu

? X uX vbk- X uX vAk

X uav

?

M

Z

X u;vXk

αu,vXk

? X u;vbk- X u;vAk

αu,vAk

?
�a
u;v

Ai

wwwwwwwwwwwwwwwwwwwwwwww

Hence there is a unique mediator ci : Y i → Ai such that

Y i
ci - Ai

G

X uXj

zu

6

X ubj- X uAj

au

?

commutes. Finally the following diagram shows that c : Y → A is a morphism:

Y i
ci - Ai

G

F X uXj X ubj -

�

z u

X uAj

au

?

X uX idXj

αu,idXj

6

U X uγjXj

? X uX idbj - X uX idAj

Z X uγjAj

?

G

X uY j

yu

? X ucj -
�

X
u z

id

X uAj

X uaid X uγjAj
6

�

Proposition 5.8 The full inclusion functor Lim i : I.X i ⊂ Πi : I.X i is continuous and has a
reflection (left adjoint post-inverse).
Proof The first part is immediate from Proposition 5.1; note also that the inclusion is full
because the two categories have the same definition of morphisms. We have just found the unit
of the adjunction; observe that if ~x are already isomorphisms then ζ is also an isomorphism. �

There is an application of these results to finding filtered colimits in Σ-types.

Definition 5.9 A functor P : S → C is a continuous fibration if

12



(i) it is a fibration,

(ii) the fibres X i have, and the functors X u preserve, filtered colimits (of types J ),

(iii) C has filtered colimits (of types I), and

(iv) if ci : Ci → C is a colimiting cocone for a diagram cu of type I then X ci is a pseudolimiting
cone.

Lemma 5.10 An object over a colimit is the colimit of its liftings.
Proof Let ci : Ci → C be a colimiting cocone in C and X ∈ XC . Let υciX : 〈Ci, Xi〉 → 〈C,X〉
be the horizontal lifting of ci, where Xi = X ciX; then with xu = υcu we have an object of
Πi : I.XCi . By (iv) this corresponds to an object Y ∈ XC with Xi ∼= X ciY ... �

Proposition 5.11 If P : S → C is a continuous fibration then S has and P preserves filtered
colimits (of type I).
Proof We are given I → S, a diagram of type I, and suppose that the fibration P corresponds
to a pseudofunctor Cop → Cat. Write

C(−) : I → S → C and X (−) : Iop → Sop → Cop → Cat

so that the diagram has vertices Xi ∈ X i. The arrows of the diagram are of the form xu :
Xi → X uXj and satisfy the *equations, and so we have an object of Πi : I.X i. Applying the
reflector yields an object 〈Y i, yu〉 of Lim i : I.X i, which corresponds to a unique object Y (up to
isomorphism) of the fibre over C = colim↑ Ci. By the lemma, Y is the colimit of ~Y , and from the
reflection it is also the colimit of the ~X. (explain why) �

Every object is the colimit of its liftings; the colimiting cocone of a diagram of horizontal maps
is horizontal.

6 Adjunctions

Recall that we call two functors h : A → B, c : B → A adjoint, and write c a h, if there is a
bijection

cB → A

B → hA
which is natural in A and B. In particular, corresponding to id : cB → cB there is the unit
ηB : B → hcB and to id : hA→ hA the counit εA : chA→ A. These are natural in A and satisfy
the triangular identities:

c
cη - chc hch �

ηh
h

c

εc

?

X
id

-

h

cε

?�

Y
id

[Mac Lane 1971], §4.1 shows that (c, h, η, ε) suffice to characterise the adjunction. Since we no
longer have any mention of the objects of the categories A and B, the latter may now be objects
of an abstract 2-category C, and we have an equational definition of an adjunction between two
opposite arrows (1-cells) between two objects (0-cells) of a 2-category.

The above natural bijection is a well-known and easy to remember way of presenting the
adjunction, but it has a less well known dual. Instead of applying c and h to objects of (or functors
into) A and B, we can apply functors out of these categories:

B̂h→ Â

B̂ → Âc

13



naturally in Â : A → X and B̂ : B → X . We could say “h is co-left adjoint to c.”

Construction 6.1 A natural bijection between natural transformations θ : h1 → h2 and φ : c2 →
c1 which identifies identities. Using both correspondences together we obtain

h2c2h1
�η2h1

h1
ιh1- h2c1h1

c2h2 h1c1

h2

θ

?�
h 2
ε 1

h
2 κ

-

c2h1

c2θ

6

κ - id

ε
2

-

h2c1 �
ι�

θc
1

id

η1

6

c1

c1h1

φh1

?

ε 1

-

h2c2

η2

?

�

h
2 φ

c2h1c1 �
c2η1

κc
1

-

c2

φ

6

c2ι- c2h2c1

�

ε
2 c

1

(commutation of one of which suffices) where we can verify θ 7→ ι 7→ φ 7→ κ 7→ θ are bijections
using the triangle laws. �

We shall write

id
η1- h1c1

D

h2c2

η2

? h2φ- h2c1

θc1

?

Lemma 6.2 The bijection respects composition and identites.
Proof It suffices to show that θ ; θ′ and φ′ ; φ satisfy the equation.

id
η1 - h1c1

D

D′ h2c2
h2φ-

η
2

-

h2c1

θc1

?

Z

h3c3

η3

? h3φ
′
- h3c2

θ′c2

? h3φ- h3c1

θ′c1

?

The result for identities is obvious. �

Definition 6.3 The 2-category Ca has the same objects as C; its 1-cells are adjunctions (c, h, η, ε)
and its 2-cells are pairs of natural transformations (φ, θ) satisfying the equations of the construc-
tion. The composition is in the obvious way.
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Proposition 6.4 The forgetful 2-functor Ca → C which extracts the left (or right) part of the
adjunction and natural transformations is full and faithful at the 2-level. Loosely speaking, the
2-categories of left and right adjoints are dual. �

Note carefully that we shall find it convenient to write composition in I both right-handedly
as u ; v and left-handedly v ◦ u: these notations are completely synonymous. We shall also adopt
the convention of writing X u for the functors in the limit diagram (which are contravariant in u)
and Xu for their left adjoints in the colimit diagram (which are covariant in u).

Definition 6.5 Let P : S → C be a functor. A morphism f : X → Y is op-horizontal over
Pf = u : i→ j if for any h : X → Z over u ; v : i→ j → k there is a unique g : Y → Z over v with
h = f ; g. We call P an op-fibration if each u has an op-horizontal lifting at each X with PX = i.
If P is both a fibration and an op-fibration we call it a bifibration.

Lemma 6.6 P : S → C is an op-fibration iff P : Sop → Cop is a fibration.
Proof Obvious. �

Proposition 6.7 Let X (−) : Iop → Cat be a pseudofunctor. Then P : Σi : I.Xi is a bifibration
iff each X u has a left adjoint, written Xu.

Note 6.8 Since the left adjoints (op-substitutions) Xu are covariant in u : i→ j, but we still write
composition of functors from right to left, it is convenient to use the notations

u ; v and v ◦ u

synonymously for the composite i u→ j
v→ k.

Proof

[⇒] Any morphism (u, f) : (i,X)→ (j, Y ) can be factorised as a vertical followed by a horizontal,
or as an op-horizontal followed by a vertical:

(i,X) - (j,XuX)

(i,X uY )
?

- (j, Y )
?

(u, f)
-

where XuX is introduced as the codomain of the op-horizontal lifting. Making such a choice
for all X ∈ X i, we can extend this uniquely to a functor Xu : X i → X j . I claim this is the
left adjoint: f corresponds bijectively to either vertical part X → X uY or XuX → Y . The
unit and counit are given by

X

X uXuX

ηuX

? horiz- XuX

ophoriz
-

and

XuX uY

X uY
horiz -

op
ho

riz
-

Y

εuY

?

and the equations ηuX u ; X uεu = id and Xuηu ; εuXu = id may be verified using the uni-
versal properties of the horizontal map X uY → Y and the op-horizontal map X → XuX
respectively.
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[⇐] I claim that (u, ηuX) : (i,X) → (j,XuX) is op-horizontal. Let (u ; v, f) : (i,X) → (k, Z),
so that f ′ = f ; (αu,vZ)−1 : X → X uX vZ in X i. Let f ′′ : XuX → X vZ be its adjoint
transpose; this is the unique solution of f ′ = ηuX ; X uf ′′. Then (v, f ′′) : (j,XuX)→ (k, Z)
is the required factorisation. �

Lemma 6.9 The functors Xu have coherences δi : Xid → id and βv,u : Xv◦u → XvXu which satisfy
equations dual to those in definition 2.1:

XwXvXu �
Xwβv,u XwXv◦u

A

Xw◦vXu

βw,vXu

6

�βw◦v,u Xw◦v◦u

βw,v◦u

6

associativity

and

Xu �
δjXu XidjXu XuXidi

Xuδi- Xu

Xu

βidj ,u

6
�

LidX
u

Xu

βu,idi

6

R
id
X u

-

unit

Proof Immediate from lemmas 3.7 and 6.8. �

Lemma 6.10 The coherences αu,v, βv,u, γi and δi are related to the units by the *equations

id
ηid
- X idXid

C

id

id

? γk - X id

X idδk

?

and

id
ηw - XwXw

Xwηw′Xw- XwXw
′
Xw′Xw

B

Xw;w′Xw′◦w

ηw;w′

? Xw;w′βw′,w - Xw;w′Xw′Xw

αw,w
′Xw′Xw

?

and to the counits by the equations

id �
εid XidX id

C

id

id

6

� δk Xid

Xidγ
k

6

and

id �
εw′ Xw′Xw

′ � Xw′εwX
w′

Xw′XwXwXw
′

B

Xw′◦wXw;w′

εw′◦w

6

� βw′,wXw;w′

Xw′XwXw;w′

XwXw′αw,w
′

6

�

7 Transfer functors

Now we shall begin the construction of the equivalence between the pseudolimit and pseudocolimit.
Imagining for the moment that we already have this equivalence, we can form

X i Xi- Colim
k∈I

X k ∼ Lim
k∈I
X k X j- X j

16



using the colimiting cocone and limiting cone. It is our purpose now to construct this composite
functor, M j

i . When we have it we can use the universal property of the pseudolimit to construct
functors X i → Lim k : I.X k; these will be left adjoints to X i and will form the colimiting cocone
Xi.

Construction 7.1 A Diagram of type (i, j)/I of functors X i → X j . On objects, (i u→ k
v← j) 7→

X vXu. The image of w : k → k′ is

X vXu
X vηwXu- X vXwXwXu

αv,wXwXu- X v;wXwXu

N

X vXwXw◦u

X vXwβw,u

6

αv,wXw◦u- X v;wXw◦u

X v;wβw,u

6

= X v
′
Xu′

Proof We have to show that we have defined a functor. The effect on the identity idk is the
long anticlockwise route from X vXu on the top left to X vXu on the top right. We use the
correspondence between γk and δk, together with one unit and one counit law.

X vXu
id- X vXu

id- X vXu

C

X vX idXidXu

ηid

?
δk- X vX idXu

γk

?

R
α
v,

id

-

X vX idXu

βid,u

6

R
id

-

For the composite w ; w′,

X vXu =============================================================== X vXu

B

X vXwXwXu

ηw

? ηw
′

- X vXwXw
′
Xw′XwXu

αw,w
′

- X vXw;w′Xw′XwXu �
βw′,w X vXw;w′Xw′◦wXu

ηw;w′

?

Z A Z

X v;wXwXu

αv,w

? ηw
′

- X v;wXw
′
Xw′XwXu

αv,w

?
αv;w,w′

- X v;w;w′Xw′XwXu

αv,w;w′

?
�βw

′,w X v;w;w′Xw′◦wXu

αv,w;w′

?

N N A

X v;wXw◦u

βw,u

6

ηw
′

- X v;wXw
′
Xw′Xw◦u

βw,u

6

αv;w,w′

- X v;w;w′Xw′Xw◦u

βw,u

6

�βw
′,w◦u X v;w;w′Xw′◦v◦u

βw′◦w,u

6

where the left-hand side is the effect on w, the bottom that on w′ and the right-hand side that on
w ; w′. �

Construction 7.2 Functor M j
i : X i → X j is the (pointwise) colimit, with cocone νvu : X vXu →
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M j
i , i.e.

X vXu
νvu - M j

i

K

X vXwXwXu

X vηwXu

? αv,wXwXu- X v;wXwXu �
X v;wβw,u X v;wXw◦u

νv;w
w◦u

6

Proof We know that (i, j)/I is a filtered category, so it is possible to form the colimit M i
jX for

each X; it is standard that this extends to a functor which is the colimit in the functor category.
In detail, for f : X → Y we have a cocone X vXuf ; νvuY : X vXuX → M i

jY by naturality of ηw,
αv,w and βw,u, so M i

jf is the unique mediator and it is automatic that νvu is natural. �

Construction 7.3 Coherences µts : X tM j
i Xs ∼= M j′

i′ for s : i′ → i and t : j′ → j such that

X tM j
i Xs

µts - M j′

i′

P

X tX vXuXs

X tνvuXs
6

αt,vXuXs- X t,vXuXs �
X t;vβu,s X t;vXu◦s

νt;vu;s

6

Proof The lower composite X tX vXuXs → M j′

i′ is a cocone by naturality of α, β and η and
associativity of α and β (the proof is very similar to the diagram in 7.1). Since X t is continuous,
X tνvuXs is colimiting and µts is then defined as the mediator. It is invertible because (i, j)/I →
(i′, j′)/I is final, and natural by the universal property of the colimit. �

Lemma 7.4 The coherences µti = X tM j
i δi ; µtidi : X tM j

i
∼= M j′

i′ for s : i′ → i satisfy U, M and

X tM j
i

µti - M j′

i′

P

X tX vXu

X tνvuXs
6

αt,vXu- X t,vXu

νt;vu;s

6

Proof These are just colim↑ UXu and colim↑MXu. �

Definition 7.5 Xi : X i → Lim k : I.X k such that X jXi = M j
i and ξuXi = µui . We use the

coherences µti and the universal property of the pseudolimit. �

8 Unit and counit

Now we shall show that Xi a X i and that Xi is a colimiting cocone.

Lemma 8.1 The maps

X vXuX i
XvXuξu

∼=
- X vXuX uX k

XvεuXk- X vX k �ξ
v

∼=
X j

form a cocone for the diagram defining M j
i X i.
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Proof Recall that X a,b,cd,e,f
def= X aX bX cXdXeXf , and we also omit the functors applied to natural

transformations. Then the diagram

X vuX i
ξu- X vuX u,k

εu - X v,k �
ξv

X j

Z Z

X v,ww,uX i

ηw

?
ξu- X v,ww,uX u,k

ηw

?
εu - X v,ww X k

�

η
w

N X v,w,l

ξ w
-

M N

X v,ww,uX u;w,l �α
u,w

ξ u;w
-

X v,ww,uX u,w,l
εu-

ξ w
-

X v,ww Xw,l
�

η
w

ξ w
-

Y M

Z B

X v,ww◦uX i

βw,u

6

ξu;w
- X v,ww◦uX u;w,l εw◦u -

�

β
w
,u

X v,w,l

id

?

ε
w

-

Z Z

X v;w
w◦uX i

αv,w

?
ξu;w

- X v;w
w◦uX u;w,l

αv,w

?
εw◦u - X v;w,l

αv,w

?
�ξ
v;w

X j

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
commutes. �

Definition 8.2 Natural transformation εji : M j
i X i → X j is the mediator, the unique map such

that

M j
i X

i εji - X j

Q

X vXuX i

νvuX i
6

X vXuξu- X vXuX uX k
X vεuX k- X vX k

ξv

?

commutes.

Construction 8.3 εi : XiX i → idLim such that εji = X jεi.
Proof The coherence equation H is obtained by varying the above diagram along t : j′ → j,
which is the colimit of three commutative squares which amount to naturality of αt,v and M for
ξ. �
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Lemma 8.4 The diagram

M j
iM

i
i

εji - M j
i

Q

X vuM i
i

νvu

6

µui- X vuX uMk
i

εu- X vMk
i

�

µ
v
i

P N P

X vuX u,idu

ν id
k

6

εu- X v,idu

ν id
u

6

N

X vuX uu

νuu

6

id-
�

α
u,

id

R

X vuX uu

γk
6

εu - X vu

γk
6

id - X vu

νvu

6

α v,idR

-

commutes. �

Lemma 8.5 εi : XiX i → 1L is a colimiting cocone.
Proof *Cocone (over what?) Colimiting: use finality.[

colim↑
i∈I

XiX i
]j

- Xj ================================ Xj

X jXiX i

6

====== X jXiX i

εji

6

X vX k

ξj

?

X vXuX i

νvuX i
6

=======
u = idk X vXidX k

X vXidξ
id
- X vX idXidX k

X vεidX k
6

The details are in the diagram defining εji . *Cocones, *coherences. �

Lemma 8.6 ηu ; νuu : idX i →M i
i = X iXi is independent of the choice of u : i→ j.

Proof It suffices to show that ηu ; νuu = ηidi ; ν idi
idi

. This follows from definition 7.2 (of ν) with
w = id, together with the U and C equations for γi and δi. �

Definition 8.7 ηi = ηu ; νuu .

Lemma 8.8 ηiX i ; X iεi = idX i .
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Proof

M i
iX i

εii = X iεi - X i

Q

X idiXidiX i

ν idi
idi
X i

6

X idiXidiξ
idi
- X idiXidiX idiX i

X vεidiX i- X vX k

ξidi

?

Z

X i

ηidiX i

6

ξid
- X uX i

ηidiX idiX i

6

Y
id

-

�

Lemma 8.9 Xiηi = εiXi.
Proof By enrichment of the pseudo limit, it suffices to verify componentwise that M j

i η
i ; εjiXi =

idMj
i
. The diagram

M j
i

M j
i η

i
- M j

iM
i
i

εjiXi- M j
i

Z

X vuM i
i

νvuM
i
i

6

X vu

νvu

6

η-

η

-

X vuX uu

X vu νuu

6

X vεuXu- X vu

νvu

6

commutes for all (u, v) ∈ (i, j)/I; the bottom row is the identity by X. The left-hand side is part
of a colimiting cocone, and the diagram and provides another cocone for which the top row and
the identity both serve as the mediator. �

Lemma 8.10 Lim i : I.X i is the pseudo-colimit, with cocone Xi.
Proof Let Gi : X i → A be another cocone for this diagram with coherences ... Consider the
diagram of type I of functors Lim i : I.X i → A with i 7→ AiX i which takes u : i→ j to

Functoriality... Let A be the colimit. Then

AXi = colim↑
j

AjM
j
i = colim↑

j
colim↑

(u,v)∈I/(i,j)
AjX vXu ∼= colim↑

u:k→i
AkXu = Ai

*Uniqueness. �
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9 Pseudolimit of adjunctions

Finally we shall show that we have the limit in the category of homomorphisms. Let Gi : X → X i
be a cone of homomorphisms and Fi a Gi be the corresponding comparisons, with units υi and
counits δi. Since L is the limit we have a unique mediating functor G : X → L with Gi = GX i,
and similarly, since it is also the colimit, F : L→ X with Fi = FXi.

Construction 9.1 Natural transformations υ : idL → GF and δ : FG→ idX , by the diagrams

idL
υ - GF

XkX k

εk

6

XkυkX k- XkGkFkX k

εkGFεk

6
sFG

δ - idX

FkG
k

FεkG

6

δ k

-

Lemma 9.2 F a G with unit υ and counit δ.
Proof The two triangle laws follow from these diagrams:

F
Fυ - FGF

δF - F

FkX k

6

XkυkX k- FkG
kFkX k

6

δkFkX k- FkX k

6

and

Gj
X jυG - GjFG

Gjδ - Gj

M j
i G

i

6

- M j
i G

iFiG
i

6

- M j
i G

i

6

X vXuGj

6

X vXuυiGi- X vXuGiFiGi

6

X vXuGiδi- X vXuGi

6

�

Theorem 9.3 For any cofiltered diagram of homomorphisms, the limit of the homomorphisms
quâ continuous functors, the colimit of the comparisons quâ continuous functors and the limit of
the homomorphisms quâ homomorphisms exist and are naturally equivalent.
Proof It only remains to formulate and prove naturality. One way of stating this is that the
forgetful functors FCCathm → FCCat and FCCathm → FCCatop create limits. �

We call L the bilimit of the diagram.
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10 Notes

Definition 8.2:

X k
ξv - X vX l

Q

Mk
j X j

εki

6

�
νvw;uX j X vXw◦uX j

X vXw◦uξu - X vXw′Xw
′
X l

�

X v
εw ′X l

N M

Mk
j X uX i

Mk
j ξ

u

?
�

νvw;uX uX i X vXw◦uX uX i

X vXw◦uξu

?
ξ - X vXw◦uX uXwX l

α

6

P

X idMk
i XuX uXi

X idνvu -

µ
k
u
X
u X

i
-

X idX vwX vXuX uXi
α - X vXwXuX uX i

β

6

N

Z

Mk
i XuX uX i

6
............................................

νvuXuX uXi -

�

γ k

X vXwXuX uX i

id

6

X vwuX uwξw-

�

γ

X vXwXuX uXwX l

β

?

N Z

Mk
i X i

Mk
i εuX i

6

� νvuX i X vXwX i

X vεwεuX i
6

X vXwξw - X vXwX l

X vXwεuXwX l
6

Q

X k

εki

?
ξv - X vX l

�

X
v εwX

l

B

Construction 9.1:

id �
δ

FG

FkG
k = FkX kG

δk

6

- FXkXkG

FεkG

6

X i

σu ⇓ A

A
i

-

X j

Xu

?
A j

-
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LimX i - A

X i

A i
-

X i

-

====
ξu
⇒ ====

σu ⇒

- X j

X u
6

Xu
?

Ai

6
AiX i

AjXuX uX j

σu · ξu

?

A

τ
i

-

AjX j

AjεuX j

?
τ j

-

AXi

AiX iXi
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σuX uXu
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AiXiX i
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AXjXu
Aιu- AXi

AjXu
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�
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� σiX i
AXiX i

�

Aεi
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AiXuX uX i

AiεiX i
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�σiXuX
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AXiXuX uX i

AXiεiX i
6

pseudo− colim

AjX j

σuξ
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6

� σjX j
AXjX j

Aιuξ
u

6

υiF i ; F iδi = idF i υi : idX i → F iGi δi : GiFi → idA θi : Gi → GXi
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F i
υiF i - F iGiF

i F iδi - F i

def def

adj X iXiF i

ηiF i

? X iυXiX iF- X iFGXiX iF

X iFθiX iF

? X iFGεiF- X iFGF

X jFδ
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? X iυF - X iFGF
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?
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-
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X i
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-
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a F
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idX i
υi - X iFGi

def

X iXi

ηi

? X iνXi- X iFGXi

X iFθi
?

X vXu

νvu

6

GiF
i δi - idA

def

GXiF i = GXiX iF

θiF
i = θiX iF

?
GεiF

colimiting
- GF

δ

6
................

Gi
Giυ

i
- GiF

iGi
δiGi - Gi

Z def

GXi

θi

? GXiυi - GXiX iFGi

θiF
iGi

?
GεiFGi- GFGi

δGi

6

def N N

GXiX iXi

GXiηi

?
GXiX iυXi- GXiX iFGXi

GXiX iFiθi
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GεiFGXi- GFGXi

GFθi

?
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- GXi
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? GυXi - GFGXi
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?
�
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