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Abstract

The recursive construction of a function f : A → Θ consists, paradigmatically, of finding
a functor T and maps α : A→ TA and θ : TΘ→ Θ such that f = α ; Tf ; θ. The role of the
functor T is to marshall the recursive sub-arguments, and apply the function f to them in
parallel. This equation is called partial correctness of the recursive program, because we have
also to show that it terminates, i.e. that the recursion (coded by α) is well founded. This may
be done by finding another map g : A→ N , called a loop variant, where N is some standard
well founded srtucture such as the natural numbers or ordinals. In set theory the functor T
is the covariant powerset; in the study of the free algebra for a free theory Ω (such as in proof

theory) it is the polynomial Σr∈Ω(−)ar(r), and it is often something very crude.
We identify the properties of the category of sets needed to prove the general recursion

theorem, that these data suffice to define f uniquely. For any pullback-preserving functor T ,
a structure similar to the von Neumann hierarchy is developed which analyses the free T -
algebra if it exists, or deputises for it otherwise. There is considerable latitude in the choice
of ambient category, the functor T and the class of predicates admissible in the induction
scheme. Free algebras, set theory, the familiar ordinals and novel forms of them which have
arisen in theoretical computer science are treated in a uniform fashion.

The central idea in the paper is a categorical definition of well founded coalgebra α :
A . TA, namely that any pullback diagram of the form

TU ⊂
Ti

> TA

H

∧

⊂ > U ⊂
i
> A

α
∧

is degenerate, i.e. U ∼= A.

This paper was available on my web page from 1996 to 2003. The work was presented at

• Category Theory 1995, Cambridge (UK), 7 August 1995;

• Logical Foundations of Mathematics, Computer Science and Physics — Kurt Gödel’s Legacy
(Gödel ’96), Brno (CZ), 28 August 1996.

Summaries of the results were published in Sections 2.5, 6.3, 6.7 and 9.5 of my book [Tay99] and
in an Extended Abstract that was circulated at the Brno meeting and elsewhere, and also available
on my web page.

1 Introduction

The finite ordinals and (though not necessarily by this name) the term algebra for a finitary free
theory have been familiar throughout the history of mathematics.
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The geometrical form of Euclid’s algorithm was perhaps the first statement of induction: an
infinite sequence of numbers is found, each less than the one before, which, as Elements VII 31 says
quite clearly, is impossible amongst whole numbers [[check Euclid]]. Jakob Bernoulli (1686) stated
an inductive principle in terms of the base case and the induction step in order to verify formulae
for

∑n
r=1 r

k etc. Newton, Pascal and Wallis studied similar iterative problems and may have been
aware of the logical principle. However Pierre de Fermat had been the first to make non-trivial use
of the method of infinite descent to obtain positive results in number theory (1659). Gottlob
Frege used his Begriffschrift (1879) to study iterative processes, introducing second order logic,
and Bernoulli’s induction principle became the definition of the natural numbers in the work of
Richard Dedekind (1888) and Giuseppe Peano (1889).

However it is a commonplace in proof theory that infinitary operations also admit induction
and recursion (at least, as long as there are no laws), and Cantor showed how to define transfinite
ordinals (1883). Indeed more careful consideration shows that notions of induction are needed to
capture finiteness and not vice versa.

In order to study the essence of induction, infinitary term algebras and the ordinals, a näıve
metalanguage is therefore inadequate to measure arities. In the symbolic tradition, a set theory
with the axiom of choice has been used. However set theory is itself a term algebra, a kind
of ordinal, and admits ∈-induction. The Zermelo-Fraenkel axioms, regarded either as a first or
second order system, describe a relation called ∈ between entities from a universe which must
already have some of the properties we’re trying to axiomatise. Whether the logical circularity
about which Poincaré and Gödel warned us is a real threat we do not know, but the conceptual
circularity is the subject of this paper.

Set theory as Zermelo formulated it in 1908 dealt with the “algebraic” operations forming
new sets from old by powerset, comprehension, etc. Only later did Mirimanoff, Skolem, Zermelo
himself and von Neumann consider the rank of a set, the process of recursion used to build it and
the solution of the Russell and Burali-Forti paradoxes.

The notion of well-foundedness was originally restricted to ordinals, which are said to be well
ordered. According to Cantor’s definition, every non-empty subset has a least element. Progress
was hindered by the traditional requirement that order relations be total (or, better, trichotomous:
∀x, y. x < y∨x = y∨x > y); this was dropped by Montague, replacing least by minimal. However
working with this formulation forever relies on excluded middle: what the examples (such as the
natural numbers) satisfy is the induction scheme, and this is what is used to prove the theorems.

The break-through in the algebraic structure of sets was made not by set theorists but by
analysis of the increasingly complicated algebraic tools employed by topologists and geometers.
The exactness properties (relating images, kernels and their duals) of vector spaces were identified
in the 1950s, using diagrams [[book]], and then formulated for sets in the 1960s by Giraud, Lawvere
and Tierney. Lawvere’s ambition was “to do set theory without elements” and in particular we
learnt from him that the quantifiers are the left and right adjoints to substitution. On the basis
of Lawvere’s inspiration, Martin-Löf returned to the symbolic tradition and modern type theory
was set out in a style originally used by Gentzen. We now have a very thorough understanding of
type theory and the relationship between its symbolic and diagrammatic forms.

The inductive properties of sets are more difficult to axiomatise than the algebraic ones. They
are needed to construct free algebras, which are the basis of syntax. In writing the chapter on
induction in my book Practical Foundations I felt embarrassed how old fashioned the material was
in comparison to that on type theory. At the very least, I needed the general recursion theorem
for free theories instead of ordinals. Well founded relations reek of set theory. One reason for the
difficulty was that the traditional theory of the ordinals depends very heavily on classical logic.
Only very recently was this constraint removed, by Joyal and Moerdijk and by myself, to reveal
not a single intuitionistic system of ordinals, but a complex family of systems.

The first remark the diagrammatic tradition had to offer about a term algebra was that it is the
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initial object in the category of all algebras. The very general nature of universal properties — the
fact that this mode of description applies to so many other mathematical phenomena, including
the quantifiers — means that we no longer have a “hands on” appreciation of the parsing and
induction properties of the term algebra. These two features (which, in fact, characterise term
algebras) drive the unification algorithm used in logic programming.

In theoretical computer science, idioms of induction have also arisen which cannot be expressed
straightforwardly as instances of well founded relations. The fixed point theorem which Tarski
proved is demonstrated using closure conditions, whilst the form popular in denotational semantics
has been adapted to an idiom known as Scott induction, by specialising to predicates which are
ā priori closed under directed joins. My own work on The fixed point property in synthetic domain
theory employed a corresponding notion of “finite ordinals” which, unlike Cantor’s, stop at ω, and
domains of this kind have been generalised by Crole and Pitts to “FIX objects” in more complicated
inductive structures.

In the symbolic tradition, the initiality property (known as recursion) is derived from the
induction condition characterising the term algebra, by means of the general recursion theorem,
which was originally stated for ordinals. The proof is by pasting together “attempts” (partial
solutions). After packaging the data for the free algebraic theory or notion of ordinal under
consideration as a functor, we give a categorical proof of this theorem. This is based on a new
definition of well founded coalgebra. The style of argument was first used by Osius, although
unfortunately this work was not followed up at the time.

With the exception of Osius’ work, categorists seem invariably to have presupposed the ex-
istence of the initial algebra. In theoretical computer science, Jo Goguen, J.W. Thatcher, Eric
Wagner and J.B. Wright in particular have rightly emphasised adjunctions in the algebraic method-
ology of programming (and are known as the ADJ group) [[write to them]]. But this is at the cost
of the important parsing properties mentioned above.

Here, and also for finitary algebraic theories, the functor T preserves filtered colimits, and
iteration over N gives the initial algebra. For infinitary theories, transfinite iteration is needed,
raising the question of when to stop. The traditional notion of the “rank” of a functor, which is
needed to answer this question, depends on a (hitherto classical) theory of cardinals and ordinals,
and so is not available to us. However the general recursion theorem was formulated for the
theory based on the covariant powerset functor, which has no rank. The von Neumann hierarchy
deputises for the missing initial algebra, and this is what we construct for general functors in this
paper. In set theory it collects the admissible (set) approximations to the proper class algebra,
and in arithmetic the finite approximations to the infinite algebra of natural numbers. In the
approximations, the algebraic operations are not everywhere defined: they may over-flow.

By varying the underlying category we are then able to treat two branches of the intuitionistic
multifurcation of the ordinals discovered by Joyal and Moerdijk, and my finite ordinals with a
stationary point at ω, in the same framework as the set theory and free algebras resident in the
category of sets and functions.

Ordinals, unlike free algebras, support successor, predecessor, union and other arithmetic op-
erations. In fact it was these, rather than the well founded relation, which underlay the work
of Joyal and Moerdijk. This extra structure is attributable to the fact that the functor which
encodes the notion of ordinal is part of a monad. Although general algebras for the functor need
not satisfy the additional laws required of algebras for the monad, on the initial algebra for the
functor we may define a new structure which does. Indeed it is the initial such algebra equipped
with an endofunction (obeying no more laws). In this way we obtain a notion of ordinal for any
monad.

The diagrammatic version of the general recursion theorem identifies just how much of the
logic of sets à la Lawvere is needed.
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2 Free algebraic theories

In this section and the next we collect some basic symbolic ideas about algebra and set theory and
express them in diagrammatic form. Both the notions of algebra and coalgebra for a functor arise,
together with their homomorphisms; this seems incongruous at first, but we shall make sense of
it in Section 5.

In order to define the structure of an algebra for theory with one sort, two constant-symbols
0 and 1, a unary operation-symbol − and two binary operation-symbols + and ×, we have to
provide a set A together with “multiplication tables”

0A : 1→ A 1A : 1→ A −A : A→ A +A : A×A→ A ×A : A×A→ A.

(Be careful not to confuse the cartesian or categorical product A×A with the name of the symbol
which might be used for arithmetical multiplication, or the singleton 1 = {?} with the name of a
constant. We shall also use + for coproduct or disjoint union.)

If this were arithmetic we would then impose laws such as commutativity, associativity and
distributivity, but we shall not consider these as we are interested in free (law-less) theories and
their free algebras. Such algebras are sometimes called absolutely free. Besides raw formulae,
free theories also describe trees, formal proofs and programs. We do not need to consider free
algebras with generators, because these may be treated as additional constants (operation-symbols
with arity zero) of the theory.

These five operations may be summed up as one using disjoint union (+):

[0A, 1A,−A,+A,×A] : 1 + 1 +A+A×A+A×A→ A

i.e. ∑
r∈Ω

Aar(r) → A

where Ω = {0, 1,−,+,×} is the set of operation-symbols and ar(r) is the arity of the operation-
symbol r, in these cases 0, 0, 1, 2, 2 respectively.

In order to extract the individual operations from this amalgam, the sum must be stable
and disjoint [BW85, Joh77]. This is one of the exactness conditions of the category of sets and
functions, first identified (for sheaves) by Jean Giraud; for a slicker re-formulation, under the name
of extensive category, see [CLW93, Tay99]. In fact the individual algebraic operations are of
no further interest to us, so we do not make extensivity an Assumption (but see 6).

Interpreting Aar(r) as the set of functions ar(r)→ A instead of an ar(r)-fold product, the arity
of each operation-symbol need not be a number, but can be an arbitrary set. Indeed the set Ω of
operation-symbols need not be enumerated either: the arity-assignment is then itself a function
defined on Ω and taking a set as its value at each point.

Thus a (possibly infinitary) free algebraic theory can be expressed by the functor

T =
∑
r∈Ω

(−)ar(r)

and the data for an algebra are encoded as an arbitrary function α : TA→ A.
In this formulation, the assumption that there are no laws in the theory may be relaxed to

some extent. For example, a commutative binary operation may be expressed by a function whose
input is not an ordered pair (a, b) ∈ A2 but an unordered pair. We write, suggestively, A2/2! for
the set of unordered pairs, where / indicates not numerical division but the set of orbits in A2

of the action of the permutation group, so 32/2! has six elements. Further modifications of the
functor, which we leave the reader to describe, may be used to express idempotence in the sense
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r3(a, a, b) = r2(a, b). These are the algebraic properties of the (finitary) set-forming operation
{−,−, · · · ,−}. When programming data-structures, the notions of bag and list are at least as
useful as set; algebraically, these are obtained by dropping the idempotence and commutativity
requirements. The restriction to finite sets may be weakened: Joyal and Moerdijk [JM95] have
provided categorical technology for handling subsets of specifically restricted size.

If (and only if) the function α : TA ↪→ A is injective, we can say whether two values in A
arose as expressions with the same outermost operation-symbol and sub-arguments. Of course in
arithmetic we cannot distinguish between 5×2 and 7+3, but term algebras do have this property.
In general we shall call the algebra α : TA ↪→ A equationally free if α is mono. Notice that
algebras for theories with laws can never be equationally free: indeed this property says that no
non-trivial individual instances of equations ever hold (the commutative and idempotent laws give
rise to weaker but more complicated notions of equational freedom which we leave the reader to
formulate).

In the case where α is a bijection, every value in A arises in a unique way as an expression, i.e. as
a particular constant or as a particular operation applied to particular arguments. Recognising it
as such is called parsing. Of course, the arguments themselves can be parsed, and so on. We shall
characterise the term algebra by the property that parsing is possible, but eventually terminates
(at constant-symbols).

A function f : A→ B between algebras is a homomorphism if the law

f(rA(a
→
)) = rB(f(a

→
))

holds for each operation-symbol r and tuple a
→
∈ Aar(r) of values. This means that the square on

the left commutes for each r ∈ Ω:

a
→
∈ Aar(r) f

ar(r)

> Bar(r) TA =
∑
r∈Ω

Aar(r) Tf>
∑
r∈Ω

Bar(r) = TB

A

rA

∨ f
> B

rB

∨
A

α

∨ f
> B

β

∨

Putting the operation-symbols together, the condition is expressed by commutation of the right-
hand square, which makes use of the covariant action of the functor T on morphisms.

If B is an equationally free algebra (and the sum over the set of operation-symbols is disjoint)
then we can only have

f(r(a
→
)) = f(s(a

→

′))

if r and s are the same operation-symbol and f(ai) = f(a′i) for each of its arguments. The
search for such an f : A → B identifying given pairs of terms in A in some term- (and therefore
equationally free) algebra B to be found is called unification and is part of the computation
engine of a logic programming language. We see here how the basic step arises — deducing a

→
= a

→

′

from r(a
→
) = r(a

→

′), which is plainly not valid in arithmetic — together with the clash error, if we
try to identify terms with different outermost operation-symbols (r 6= s). The other type of failure,
x = r(x), for which the occurs check is made, is related to the well-foundedness of parsing in
the target structure B. See [Tay99] for a more detailed treatment.

These ideas no longer rely on the logic of sets and can be formulated for any category:

Definition 2.1 Let S be any category and T : S → S an endofunctor. Then a T -algebra is an
object A ∈ obS together with a morphism α : TA→ A in S. It is called equationally free if α is
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a mono, and parsable if α is an isomorphism. A S-morphism f : A → B is a homomorphism
of T -algebras if the square above commutes, i.e. Tf ; β = α ; f .

Lemma 2.2 If (as we shall later assume) T preserves monos, then any subalgebra of an equation-
ally free algebra is equationally free.
Proof

TA ⊂
Tf
> TB

A

α

∨
⊂

f
> B

β

∨

∩

By the cancellation property of monos, α : TA ↪→ A. �

Definition 2.3 The algebra α : TA → A is called initial if for every algebra θ : TΘ → Θ there
is a unique homomorphism f : A→ Θ. In particular, Bill Lawvere [[ref]] characterised the natural
numbers as the initial algebra for the Peano theory (with one constant and one unary operation).
Thinking of A as the set of syntactic terms, the unique homomorphism is defined by structural
recursion, and interprets the syntax using the semantic operations of Θ. We shall spell this out
in Definition 3.6. This idiom is central to giving the definition of models of type theory. As for all
universal properties, it is easy to show that the initial algebra, if it exists, is unique up to unique
isomorphism.

Proposition 2.4 (Lambek) The initial algebra α : TA→ A is parsable.
Proof First observe that Tα : T 2A → TA is a T -algebra and α : TA → A a homomorphism.
But since A is initial, there is a unique homomorphism f : A→ TA.

TA <
Tα

......
Tf

.....> T 2A

A

α

∨
<

α
........

f
......> TA

Tα

∨

Then f ; α : A→ A is an endomorphism of the initial algebra, so by uniqueness f ; α = id. But as
f is a homomorphism, α ; f = Tf ; Tα = id, so f = α−1 [Lam68, Lam70]. �

Parsability is not sufficient to characterise the initial algebra: somehow we have to capture
termination as well-foundedness or induction. In the case of the natural numbers, the first two
of Giuseppe Peano’s five axioms say that they form an algebra (with one constant and one unary
operation), and the next two that this is equationally free. However N + Z is also a parsable
algebra, but fails the last axiom: the induction scheme. We can state this as follows:

Proposition 2.5 (Lehman,Smyth) The initial algebra has no proper subalgebra.

TA <
Ti

⊃
......
Tf

......> TU

A

α

∨
<

i
⊃

........
f
........> U

∨
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Proof By a similar argument, f ; i = idA, but i is mono, so U ∼= A [LS81, §5.2]. �

We shall show in Section 9 that a minimal parsable algebra is initial.

Remark 2.6 The categorical description is not particularly helpful in showing that free algebras
exist. Since the forgetful functor which extracts the carrier A from an algebra α : TA → A
preserves arbitrary limits, some version of the adjoint functor theorem ought to provide free
algebras. But the covariant powerset functor P (Definition 3.1) shows that some restriction must
be put on T .

One such hypothesis is the solution-set condition of the general adjoint functor theorem
[Mac71, §6.6]. In this case we would need to find an admissible set G of algebras such that for any
algebra Θ there is some homomorphism A→ Θ with A ∈ G. The general adjoint functor theorem
is silent on the subject of how to find such a set G of algebras.

The traditional way a categorist might look for the free T -algebra is by iteration. Starting
with the unique map e : Z → TZ, where Z is the initial object (such as ∅), we form the sequence

Z
e
> TZ

Te
> T 2Z

T 2e
> T 3Z > · · · > colim

n∈N
TnZ

and its colimit. If T preserves this colimit then it gives the free algebra. Otherwise, we must
iterate transfinitely, but this begs several questions:

• We must go outside the diagrammatic idiom to use a set-theoretic and until recently classical
theory of ordinals.

• We do not know a priori when to stop iterating. The functor is said to have rank if
there is some ordinal κ at which TκZ is a fixed point; in particular, for a free theory,
κ = sup {ar(r) : r ∈ Ω}. On the other hand, the covariant powerset functor (Definition 3.1)
does not have rank, and the corresponding process gives the von Neumann hierarchy. When
the category is a small ipo, i.e. a poset with least element and arbitrary directed joins,
one might expect this process to converge; indeed it does, classically, but the intuitionistic
question without additional hypothesis (Tarski’s theorem) remains open [Tay96, §9].

• The formation of infinite colimits involves the axiom of replacement [Tay96, 3.17ff].

The purpose of the present work is to turn these techniques in to respectable category theory. We
aim to give an intrinsic description of the diagram, without ā priori indexing: the rank will be
obtained from the diagram, and not vice versa.

What we shall use is the special adjoint functor theorem [Mac71, §6.8], which is a dia-
grammatic manifestation of second order logic. We may form the union or intersection of all
subsets satisfying certain properties. In the situation at hand, if there is some equationally free
algebra then there is a minimal one, given by the intersection of all subalgebras. In Assumption 1ff
we shall similarly form unions. In this paper we do not have very much to add on the subject of
the special adjoint functor theorem — we are interested in other aspects of the construction —
but see [PS78], particularly Theorem 2.2.2, for an account of the existence of adjoints in terms of
indexed category theory. [[Peter Johnstone on Giraud’s theorem.]]

To show that the term algebra exists, it only remains to prove the

Proposition 2.7 Any free theory has an equationally free algebra in Set (or in any topos with a
natural numbers object).
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Proof In the case of the theory of lists (with the empty list as constant and some “alphabet”
X whose elements we treat as unary operation-symbols) the set (X + 1)N of streams provides an
equationally free algebra.

For a general free theory with a set Ω of operation-symbols, let A = P(L), where L is the set
of lists of the form

[r0, j0, r1, j1, . . . , rn−1, jn−1, rn]

each ri ∈ Ω being an operation-symbol, and ji ∈ ar(ri) a position in its arity. We write r :: j :: `
for the operation (cons) of appending two terms to the front (head) of the list `.

For x
→
∈ Aar(r), define α(r, x

→
) = {r} ∪ {r :: j :: t | j ∈ ar(r), t ∈ xj}, making α : TA → A an

algebra.
Then r is characterised in this subset as the unique list of length 1 and

xj = {t | r :: j :: t ∈ α(r, x
→
)},

so this algebra is equationally free. �
The idea of this construction is that the terms are (infinitely branching) trees, and are de-

termined by the set of paths through them from the root. Imagine a term being processed by a
program; at any moment it is at a certain point in the tree, with the path stored on its stack, i.e. as
a list. Corresponding to the root there is an operation symbol, r0, with a co-ordinate j0 ∈ ar(r0);
the next stage is a similar pair (r1, j1) with j1 ∈ ar(r1) and so on. At the last stage (which is the
top of the stack or the head of the list) we have only an operation-symbol rn without any specified
co-ordinate. Otherwise we would not be able to handle the nullary operations, without which the
free algebra would be empty.

For finitary free theories there is an alternative construction, using Jan  Lukasiewicz’s (“Polish”)
notation, in which operation-symbols precede their lists of arguments. By keeping tally of the
number of pending sub-arguments it is easy to identify which lists of these symbols are well
formed terms in the free algebra. This notation, in “reversed” form, with the operation-symbols
after their arguments, is used by compilers and some pocket calculators to evaluate arithmetic
expressions stored on a stack.

3 The ∈ relation as a coalgebra

Here we shall recall some of the basic definitions of set theory and show how they can be expressed
in terms of coalgebras for the powerset functor. The idea is that the von Neumann hierarchy is
the free algebra. Of course, the hierarchy is a proper class, and this functor has no free algebra in
the standard sense.

Many of these ideas are due to Gerhard Osius [Osi74], though unfortunately they were not
followed up at the time. The reason for this is that set theory was intended by Zermelo as a type
theory, and attention has normally been focused on this aspect. This was especially so in the
1970s, when Osius was writing, as the priority then was to show that toposes could do the same
job (but better). Osius himself, who now studies statistics, seems not to have appreciated the
value of his own work to induction rather than type theory. See also [Tay96] for an iconoclastic
account of the interpretation of type theory in sets and vice versa. Familiarity with these two
papers is not essential to follow the present work, but references to the analogous results in them
will be given in order to trace the history of the argument.

Definition 3.1 The covariant powerset functor P : Set → Set is defined on a function
f : A→ B by

P(f)(U) = {f(a) : a ∈ U} = {b ∈ B : ∃a ∈ A. b = f(a) ∧ a ∈ U} ⊂ B
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for U ⊂ A. We shall also need to define, for V ⊂ B,

f∗V = {a ∈ A : f(a) ∈ V }
f∗U = {b ∈ B : ∀a ∈ A. f(a) = b⇒ a ∈ U}.

These also provide the morphism parts of functors Set→ Set which are respectively contravariant
and covariant, since (g ◦ f)∗W = f∗(g∗W ) and (g ◦ f)∗U = g∗(f∗U), but these will not arise in
this paper. What is of more interest is to consider the adjunctions

U ⊂ > X P(X)

V ⊂ > Y

f

∨
P(Y )

P(f)
∧
a f∗

∨
a f∗

∧

order-theoretically. Diagrammatically, P(f) and f∗ are given by composition and pullback respec-
tively. Symbolically, P(f)(U) and f∗U are defined by similar formulae, except that one involves
an existential and the other a universal quantifier [Law69]. We shall take these up in section 7.

Definition 3.2 A coalgebra for an endofunctor T : S → S of any category is an object A ∈ obS
together with a morphism α : A . TA.

TA
Tf

. TB

A

α

4

f
. B

β

4

A homomorphism of coalgebras is a function f : A . B making the square commute. We shall
use the triangle arrowhead for maps which are coalgebra homomorphisms, although this fact will
not always be proved in sitū. (Beware that this is not the same use of the triangle arrowhead as in
[Tay99]. [[E in [Tay96]]]) The structure map α : A . TA is easily seen to be a homomorphism if
we equip A and TA with the structures α and Tα; this may perhaps overcome any confusion which
may arise from considering both algebras and coalgebras, and using similar notational conventions
for both. In later parts of the paper, most of the arrows will actually be coalgebra homomorphisms.

Remark 3.3 Any binary relation whatever is a P-coalgebra, and vice versa, where

x ≺ a ⇐⇒ x ∈ α(a) α(a) = {x : x ≺ a}.

We write (≺) ⊂ A×A for the binary relation because we intend it to be well founded (and therefore
irreflexive in this case), or in particular to be the set-theoretic membership relation, but we avoid
the notation ∈ as a source of confusion. This relation need not be transitive in the order-theoretic
sense.

The structure map α : A ↪→ P(A) is mono iff the rule

∀x ∈ A. x ≺ a ⇐⇒ x ≺ b

a = b

holds for all a, b ∈ A, in which case ≺ and α are said to be extensional.
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In set theory a carrier A equipped with a well founded extensional relation is called a transitive
set: transitive because the elements and elements of elements etc. of the elements are also needed
in order to specify the structure fully. This should be thought of as a model of a fragment of set
theory, specifically of the axioms of foundation and extensionality. Following [Tay96] we call such
a structure an ensemble.

Transitivity in the usual order-theoretic sense provides the simplest notion of ordinal [Tay96,
§4]. It is characterised diagrammatically by α ; Tα ; µ ⊂ α, where µ : T 2A→ TA is union.

Remark 3.4 Before characterising P-coalgebra homomorphisms, consider the situation where
α ; P(f) ⊂ f ; β.

P(A)
P(f)

> P(B)

⊂

a ∈ A

α

4

f
> B

β

4

This inclusion holds iff
∀a, x ∈ A. x ≺A a⇒ f(x) ≺B f(a)

i.e. f is “strictly monotone” — it preserves the binary relation.
The reverse inclusion says

∀a ∈ A. ∀y ∈ B. y ≺B f(a)⇒ ∃x ∈ A. y = f(x) ∧ x ≺A a,

which is a “lifting” property similar to that defining a fibration:

∃x ................
≺A

> a A

y

f

∨

.............. ≺B
> f(a)

f

∨
B

f

5

In process algebra a function f with this property is known as a simulation [Tay96, 2.3].
If f : A > . B is mono then being a simulation says that A is down-closed, i.e. ∀a, b. b ≺ a ∈

A ⇒ b ∈ A. This is the case for the the inclusion of one transitive set as a subset of another (in
the set-theoretic sense), so Osius gave the name inclusion to such maps [Osi74, §6].

Indeed if the two coalgebras are extensional and well founded, f is necessarily mono (Propo-
sition 10.2), and embeds A as a ≺-lower subset of B. This gives a purely order-theoretic charac-
terisation of the subset relation of set theory [Tay96, 2.9, §3].

Now we come to the central concept of this paper:

Definition 3.5 A coalgebra α : A . TA is well founded if in any pullback diagram of the
form

TB ⊂
Ti

> TA

H

∧

⊂
j
> B ⊂

i
> A

α

4

the maps i and j are necessarily isomorphisms.
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Let us spell this out in detail in the case T = P. The property says that any subset B ⊂ A
satisfying a certain premise (that it gives rise to a diagram of this form) is necessarily the whole
of A. Writing B = {x ∈ A : φ[x]} for some predicate φ[x] defined on A, the induction scheme
has this form. We just have to unscramble the premise.

An element (a, V ) ∈ H ⊂ A× TB of the pullback consists of a ∈ A and V ⊂ B ⊂ A such that
α(a) ≡ {x ∈ A : x ≺ a} = V . Thus V is determined uniquely by a (and the structure α : A→ TA),
but for such a V to exist, a must satisfy

{x ∈ A : x ≺ a} ⊂ B, i .e. ∀x ∈ A. x ≺ a⇒ φ[x].

For every such a ∈ A, the premise is that a ∈ B, i.e. φ[a].
In the case T = P, α : A→ TA is therefore a well founded coalgebra iff the rule

∀a.
(
∀x ∈ A. x ≺ a⇒ φ[x]

)
⇒ φ[a]

∀a. φ[a]

is valid. This is the usual induction scheme defining a well founded relation. The bracketed
part, H =

(
∀x ∈ A. x ≺ a ⇒ φ[x]

)
, is known as the induction hypothesis, and a “proof by

induction” is the implication from this to B = φ[a]. We shall call this implication the induction
premise. If it happens that it is two-way then we refer to the strict induction premise; this
corresponds to being given j : H ∼= B in the Definition, i.e. to the situation of Proposition 2.5.
[[It can be shown that the lax and strict induction schemes are equivalent.]]

A diagrammatic “proof by induction” consists in showing that H ⊂ B; the conclusion is then
B = A. See Lemma 6.5, Proposition 6.7, Proposition 7.3, Theorem 8.4 and Proposition 10.2 for
examples of this style of reasoning.

Osius did not consider induction but recursion [[pick up abstract]]:

Definition 3.6 A coalgebra α : A . TA obeys the recursion scheme if, for every algebra
θ : TΘ→ Θ, there is a unique map f : A→ Θ such that the square

TA
Tf

> TΘ

A

α

4

f
> Θ

θ

∨

commutes. In the case of the covariant powerset functor, this is the law

f(a) = θ
(
{f(x) : x ≺ a}

)
,

which describes a recursive procedure: given the argument a, use α to parse it as a set {x : x ≺ a}
of sub-arguments, apply f (recursively) in parallel to these, and finally use θ to form the result
f(a) from the sub-results f(x). In general, the functor T handles the “parallel” application of f ,
allowing for more complicated ways of marshalling the sub-arguments.

An ensemble for a free algebraic theory is a collection of terms which is closed under sub-
arguments, but not necessarily under applying the operation-symbols. We may think of expressions
lying outside the collection as having “overflowed.” In the case of the free algebra, the structure
map of the coalgebra is the inverse of that of the algebra (Proposition 2.4): it is used to parse a
term and feed its sub-terms to the recursive calls Tf of the function.
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Remark 3.7 As an example of the recursion law, Andrzej Mostowski showed in set-theoretic
terms that every extensional well founded relation is isomorphic to the ∈-relation on a unique
transitive set. This is defined recursively by

f(a) = {f(x) : x ≺ a}.

Dropping extensionality as a hypothesis in this result, we obtain the extensional quotient of any
well founded relation, i.e. the universal way of imposing extensionality on a well founded relation.

Mostowski’s equation may be re-written as

y ∈ f(a) ⇐⇒ ∃x. y = f(x) ∧ x ≺ a,

which says exactly that f is a simulation from the well founded relation to its extensional quotient.
[Tay96, 2.11] gave a complicated recursive construction of the equivalence relation needed to
perform this construction, without the axiom of replacement (which Mostowski’s result needs).
We shall give a simpler construction in Proposition 7.10.

Remark 3.8 Consider the case where Θ = Ω = P(1), the set of truth values (subobject classifier),
and the structure map θ =

∧
is infinitary conjunction or universal quantification. Then

f [a] ⇐⇒
(
∀x. x ≺ a⇒ f [x]

)
,

which is the strict (⇔) version of the induction premise above. On the other hand, it is easy to see
that the constant function f : a 7→ > satisfies the recursion property in this case, so uniqueness
of f amounts to the induction scheme.

H > TU > T1 > 1 < U

A
∨

∩

. TA

Ti

∨

∩

Tf
> TΩ

T>
∨

∩

θ = χT>
> Ω

>
∨

∩

<
f

A

i

∨

∩

This argument generalises. Let θ : TΩ → Ω be the characteristic function of the subset T> :
T1 ↪→ TΩ, where > : 1 ↪→ Ω is the element “true”. The induction premise is α ; Tf ; θ ⇒ f and
the strict premise has equality (bi-implication), but this is also satisfied by the constant function
with value >.

The conclusion that well foundedness is necessary for a unique solution of the recursion equation
should be treated with circumspection. Taking the object of truth values as the target algebra
means that we are using higher order logic (this point is obscured classically by the identification
of Ω with a discrete two-element set). Induction for the second order predicate φ[x] ≡ (x 6≺ x)
shows that well founded relations in this sense are irreflexive, and therefore too clumsy to analyse
fixed points of iteration. On the other hand, experience shows that we must count ourselves lucky
to find a condition for termination of a heavily recursive program which is sufficient for the case
at hand: asking for it to be necessary as well is too much.

Idiomatically, we have in mind a particular target structure Θ, and maybe we would like to
do recursion in some category which is not a topos. By closer examination of the carrier and
structure of the intended target, maybe we can restrict the class of subsets (predicates) which
need to be considered, and thereby obtain a weaker notion of well-foundedness which admits more
source structures A but remains sufficient to define recursion.
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4 Examples

Example 4.1 Euclid’s algorithm. Let T : Set → Set by X 7→ X + N. Put Θ = N and let
θ : TΘ = N + N→ N be the co-diagonal. Put A = N×N and define α : A . TA = (N×N) + N
by

α(n, 0) = n (in the second component)
α(n,m) = (m,n) if 0 < m < n

α(n,m) = (n,m− n) if 0 < n ≤ m

Then α is well founded because g : A→ N by (n,m) 7→ 2n+m is strictly monotone. Hence there
is a unique solution of the recursion equation, which is the highest common factor. �

Definition 4.2 The situation where TX = X + Θ and θ : TΘ = Θ + Θ→ Θ is the co-diagonal is
called tail recursion. Without loss of generality Θ = A. Iteration of α : A→ A until it’s fixed.

While coequalisers.
Other text book recursion examples, such as fold and quick sort.
Deal with using a sub-result as another sub-argument.

5 Partial algebras

In order to make the ideas of the last two sections fit together, we shall now generalise those of
Section 2 by considering partial functions. We shall characterise the “initial segments” of the free
algebra, i.e. collections of terms closed under sub-expressions. Section 8 shows how to build up all
initial segments, and hence the free algebra. The ambient category will be called S, though you
may think of it as sets and functions.

Definition 5.1 A partial map X ⇀ Y is a diagram of the form

U
f

> Y

X

i

∨

∩

where i is injective (a mono) and is called the support. If i is an isomorphism then (i, f) is said
to be a total map.

Proposition 5.2 Partial maps form an ordered category, which we call P, and each hom-poset
P(X,Y ) is an ipo (it has a least element ⊥ and directed joins

∨↑). Total maps are maximal (if
(i, f) v (j, g) then (i, f) = (j, g)), though the converse need not hold.

• ............> V > Z U

U
∨

∩........
> Y
∨

∩

V
g
>

.......k .......>
Y

f

>

X
∨

∩

X

j
∨

∩

⊂
i

>

13



Proof Partial maps compose by forming the pullback shown on the left. This composition
is associative with identity X <

id
⊃ X

id
> X. We define (i, f) v (j, g) if there is a map k

(necessarily a mono, cf. Lemma 6.2, and unique) such that i = k ; j and f = k ; g, as shown on
the right. If (i, f) v (j, g) and (j, g) v (i, f) we shall treat them as equal. The least partial map
X ⇀ Y has empty support; directed unions of supports, being colimits, provide directed joins of
partial maps. �

A generalisation is possible wherein we no longer require supports to be mono, so partial
maps become spans. These form a bicategory rather than an ordered category, although in fact
this would not make the arguments of this paper significantly more complicated. The reason for
restricting to monos is that we have some control over the number of monos into an object, i.e. its
subsets (we say that the category is well powered, Assumption 1), but not over arbitrary incoming
maps. [[Small complete category.]]

Assumption 5.3 Let T : S → S be an endofunctor which preserves monos and inverse image
diagrams, i.e. pullbacks of the form:

U > V

X
∨

∩

> Y
∨

∩

[[Peter Freyd’s unique existentiation.]]
Notice that in the cases we considered in Sections 2 and 3, T actually preserves arbitrary

intersections of monos, and cofiltered limits of arbitrary maps. In fact free algebraic theories and
generalisations of them such as semilattices and complete semilattices may be characterised by
such properties: see [Joy87, Tay89].

Proposition 5.4 T extends to an order-preserving endofunctor T : P → P on the ordered
category of partial maps. �

Definition 5.5 Now we can replace TA→ A by TA ⇀ A in the definition of a T -algebra. That
is, a partial algebra is a diagram of the form

A < U ⊂ > TA.

In fact it is useful to generalise even further to a span A ← U → TA. From spans we restrict
back to the special cases in which these two maps are monos or isomorphisms:

U ↪→ TA U ∼= TA

A← U → TA partial algebra algebra

A←↩ U partial coalgebra
equationally free
partial algebra

equationally
free algebra

A ∼= U coalgebra extensional coalgebra parsable algebra

well founded coalgebra T -ensemble initial algebra

In this table, each of the twelve notions is the conjunction of those at the top and left. This is
not difficult to see, except in the last two cases. We shall show in Proposition 5.8 that a minimal
equationally free partial algebra, i.e. one with no proper subalgebra, is the same thing as a well
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founded extensional coalgebra. That well-foundedness and parsability imply initiality is one of
our main goals.

Definition 5.6 Similarly a partial homomorphism is a map f : A ⇀ Θ such that the square
on the left commutes in P:

TA
Tf
⇀ TΘ TA

Tf
⇀ TΘ

v

A

α
�

f
⇀ Θ

θ
�

A

α
�

f
⇀ Θ

θ
�

This is simply a homomorphism of T -algebras in the category P. However we have no direct way
of obtaining homomorphisms: there is at most one homomorphism from a T -ensemble to a partial
algebra, and its existence is a principal result of this paper. It is therefore useful to replace this
equality with the order relation on partial maps, as on the right. A partial map f : A ⇀ Θ such
that α ; f v Tf ; θ is called an attempt. The empty partial function is an attempt, and by
applying the functor and forming unions we can generate more of them.

Several symbolic and diagrammatic technologies have been developed for handling partial
functions, and in particular to deal with the fact that we may wish to write an expression without
asserting ā priori that it denotes a value. Consider the law defining homomorphisms of algebras,

f(rA(a
→
)) = rΘ(f(a

→
)),

interpreted as a strict equation between possibly undefined terms. This says that if one side
(together with all of its subformulae) is defined, so is the other (and its subterms), and then they
are equal. For an attempt, we allow the right hand side to be defined and the left not, writing

f(rA(a
→
)) v rΘ(f(a

→
)).

Beware that this does not mean that the left hand side is in any sense arithmetically less than the
right: if they are both defined then they are equal.

In this work partial maps are being used as a tool to define total ones, so we want to develop
idioms for discussing total maps. In particular we have to explain how coalgebra homomorphisms
and the recursion scheme (Definitions 3.2 and 3.6) arise.

The next result is a Pons Assinorum: it is not difficult in itself, but this rearrangement of
diagrams is crucial to understanding the rest of the paper.

Remark 5.7 An attempt f : A ⇀ Θ is described by either of the following diagrams in S:

P > B
f

> Θ
1 2

Q >

............> i
∩

V
θ
>

U
∨ g

> A
∨

4 3
TB
∨ Tf

> TΘ

j

∨

∩

TA

α

∨

∩

< T
i
⊃

A <
g

U ⊂
α
> TA

1 4

B

i

∪

∧

< P
∪

∧

⊂ > TB

Ti

∪

∧

2 3

Θ

f

∨
<

θ
V
∨
⊂

j
> TΘ

Tf

∨

Similarly a partial homomorphism is given by the same diagram, but with P ∼= Q in the left-hand
diagram, and square 3 in the right-hand diagram is a pullback. �
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[[Partial homomorphism TA ⇀ A.]]
Just as we generalised T -algebras to spans and then restricted again, so we may replace the

monos in these diagrams by general maps or by isomorphisms. The idioms of the previous two
sections may be recovered by doing this in various ways.

The next result links Proposition 2.5 (minimal equationally free algebras) to Definition 3.5
(well-foundedness). This explains our interest in coalgebras, even though we aim to find the
free algebra. Coalgebra homomorphisms are also very important, and in particular coalgebra
monomorphisms A > . B between ensembles are called initial segments.

Proposition 5.8 A minimal equationally free partial algebra (mefpa) is the same thing as an
extensional well founded coalgebra. We shall call such a structure a T -ensemble.

Proof First we show that every mefpa A <
i
⊃ U ⊂

α
> TA is a coalgebra, i.e. i : U ∼= A.

U <................
j

V ..............
β
> TU

2 3

A

i

∨

∩

<
i

⊃ U

j

∨

.............
⊂

α
> TA

Ti

∨

∩

Form the pullback as shown on the right; the left-hand square commutes, trivially. But this
describes a subalgebra, i.e. a total homomorphism i : U ↪→ A, so i : U ∼= A by minimality.

TU ⊂
Ti

> TA U < H ⊂ > TU

2 3

H
∪

∧

⊂
j
> U ⊂

i
> A

α

∧

4

A

i

∨

∩

======= A
∨

∩

>
α
. TA

Ti

∨

∩

Now let α : A > . TA be an extensional coalgebra. The diagram on the left testing well-
foundedness of A may be re-arranged into that on the right for a partial subalgebra, i : U ↪→ A.
Hence A is well founded quâ coalgebra iff it is minimal quâ equationally free partial algebra. �

In future we shall only be interested in partial attempts whose sources are well founded coal-
gebras, so i : U ∼= A and square 1 degenerates.

Remark 5.9 Reverting to diagrams of partial maps, consider the (lax) recursion scheme, Defini-
tion 3.6:

TA
Tf
⇀ TΘ

t p

A

α

4

f
⇀ Θ

θ
�

16



Again drawing out this diagram in full in terms of total maps,

P = B
f

2

R >

..........................>
Q > V

θ
> Θ
∨

3

S
∨

∩

> TB
∨

∩

Tf
> TΘ

j

∨

∩

4

i

∩

. A = U
∨

∩

α
. TA

Ti

5

∨

we obtain the diagram on the right in Remark 5.7, reduced to the case where the source of the
partial attempt is a coalgebra:

A ======= A
α
. TA

1 4

B

i

∧

4

======= B
∧

4

β
. TB

Ti

∧

4

2 3

Θ

f

∨
<

θ
V
∨
⊂

j
> TΘ

Tf

∨

The lax recursion scheme for A ⇀ Θ is therefore the same as a partial attempt A ⇀ Θ, which is
a total attempt B → Θ on an initial segment B > . A. �

Remark 5.10 However the strict recursion scheme (with equality for t p), where the mediator
P ∼= R is an isomorphism, corresponds to the condition that P be the limit of the subdiagram
consisting of A . TA / < TB → TΘ←↩ V .

In other words the strict recursion scheme does not characterise partial homomorphisms, but

• if A is extensional (α mono) and f is a homomorphism then f = α ; Tf ; θ, and

• if A is a parsable algebra (α iso) and f = α ; Tf ; θ then f is a homomorphism,

since f is a homomorphism iff P ∼= Q in Remark 5.7, and these conditions then make R ∼= Q..
For counterexamples consider two-element Peano coalgebras. �

Lemma 5.11 Let f : A ⇀ Θ be a partial attempt from a well founded coalgebra to a total
algebra, such that f = α ; Tf ; θ. Then f is a total map.
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Proof We have g : U ∼= A and j : V ∼= TΘ.

A = U
α

. TA

4

B = P

i

∧

4

β
. TB

Ti

∧

4

2/3

Θ

f

∨
<

θ
V = TΘ

Tf

∨

The limit diagram reduces to saying that square 4 is a pullback, so by well-foundedness of A this
is degenerate, i.e. i : B ∼= A. �

Remark 5.12 Consider instead the case where Θ is also a coalgebra, so θ : V ∼= Θ and both
squares 1 and 2 degenerate. Then a partial attempt is a span A / < B . Θ of coalgebra
homomorphisms.

Recall that square 3 is a pullback in the case of a partial homomorphism. This too degenerates if
Θ is well founded, so any partial homomorphism of partial algebras A ⇀ Θ is simply a coalgebra
homomorphism A / < Θ (sic). Any total homomorphism of partial algebras A → Θ is an
isomorphism, since the last square 4 is then also trivial, and we shall also see in the next section
that ensembles have no non-trivial automorphisms. �

6 Local completeness assumptions

There is, at least classically, no ambiguity about what might constitute a “subset” of a set on
which a partial map might be defined (and it will do no harm to ignore this section and think of
M throughout as inclusions of subsets). However we observed in Remark 3.8 that well founded
relations in the traditional sense are irreflexive, and that to tune them more finely to applications
we need to restrict the class of subsets or predicates to which the induction scheme applies. For
posets, topological spaces and other categories there are perhaps several notions of “subspace”
which might be candidates for this role. We shall therefore be explicit about what properties we
require of the notion of subset.

Definition 6.1 A class of supports (or dominion) M in a category S is a class M ⊂ morS
(whose arrows we write ⊂ > ) such that

1. all M-maps are monos in S, i.e. if m ∈M and f ;m = g ;m (•⇒ • ↪→ •) then f = g;

2. all isomorphisms (and in particular all identities) from S are in M;

3. M is closed under composition (so it is a wide or lluf subcategory);

4. such that the pullback f∗m of any M-map m against any S map f exists and is in M.

• .................> V

X

f∗m

∨

∩............ f
> Y

m

∨

∩
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Wherever we talk about “monos” or “subsets” in this paper we mean M-maps. In particular
the discussion of partial maps in the previous section remains valid when we putM for monos. If
the subsets are defined by predicates, then choosing a class of supports corresponds to restricting
the predicates to a certain fragment of logic. In order to provide a notion of well foundedness
sufficient to solve the recursion scheme in as many cases as possible, we want to make the class
M as small as we can.

Lemma 6.2 Whenever m and f ;m are in M then so is f . If the composite of two M-maps is
an isomorphism then so are both maps.
Proof Since M-maps are mono, f is the pullback of f ;m against m.

•
f

> •
id

> •

•

id

∨ f
> •

id

∨ m
> •

m

∨

∩

The second term of the composite is both mono and split epi, so iso. �

It may help to think of M-subsets as open. This point of view is consistent with the follow-
ing completeness assumptions, and with some applications, but in other applications the usual
topology may be inappropriate for the purposes of induction. For example continuous lattices
[GHK+80] carry two useful topologies: a Hausdorff one (the Lawson or patch topology), and the
T1 Scott topology, from which the order may be recovered.

Definition 6.3 A category S with a class M of supports is called locally complete if, for each
object X of S,

1. there is an admissible set Sub(X) of isomorphism classes of M-maps into X;

2. Sub(X) has arbitrary joins (unions);

3. for every map f : Y → X, the pullback functor f∗ : Sub(X) → Sub(Y ) preserves arbitrary
unions (f∗ acts on M-maps by Assumption 4 above);

4. S has a strict initial object ∅ and the unique map ∅ → X lies in M, so the initial object
is the least subobject of every object (this is a special case of the previous clause, but for
historical reasons we shall treat ∅ explicitly);

5. directed unions in Sub(X) are filtered colimits in S (so regarding the system of M-maps
Ui ↪→ X as a cocone for a filtered diagram, the mediator colimUi → X from the colimit is
in M);

6. binary unions in Sub(X) are pushouts in S over the intersection, which is a special case of
inverse image and is therefore also in M.

U

U ∩ V
⊂...

.....
.....

....>

U ∪ V ⊂.................>

⊂.................>
X

⊂

>

V
⊂

>

⊂...
.....

.....
....>

⊂.................>
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The reason why we want unions is to be able to form the largest member of a class ofM-subobjects
which has previously been shown to be closed under unions, for example in the next Proposition.
This is therefore where second order logic enters in to the construction. This idea also features in
category theory as the special adjoint functor theorem (Remark 2.6).

These unions are all bounded : we have certain M-subobjects of a given object X, and need
to form their union as another M-subobject. In Section 10 we shall need to form such unions
without being given a bound X; the pushout property holds in any (pre)topos, and in certain other
categories by direct calculation, but the infinitary colimits must be indexed by “small” objects
and their existence depends on the axiom of replacement.

Remark 6.4 Being a union bounded by X means that the cocone (Ui → U) has the universal
property of a colimit from the point of view of X, i.e. there is a unique mediator to the cocone (Ui →
X). We shall also need this property from the point of view of TX, Θ and TΘ, but not for other
other objects such as Ω. In other words, the “union” need not really be the colimit in the standard
sense involving the entire category S, and in fact the “real” S-union may be a subset of our union
which is “dense” in the sheaf-theoretic sense. This is the way in which well-foundedness can be
tuned more finely to the specific problem of solving the recursion equation f = α ; Tf ; θ for
functions f : A→ Θ for a particular target structure Θ.

The symbolic proof of the following uses structural induction and probably dates back to
Georg Cantor [[check history]]. In the category of sets and functions, the object E is simply the
equaliser of f and g. Under the completeness assumptions above we may construct an object
which is sufficiently like the equaliser for our purposes. If we think of M-subsets as open, then E
is the interior of the equaliser, whereas if the target is a Hausdorff space then the equaliser itself
is closed. [[Define interior and closure/hull.]]

Proposition 6.5 Let A be a well founded coalgebra, Θ a partial algebra and f, g : A ⇒ Θ be
total attempts. Then f = g.
Proof The two parallel squares on the right commute since f and g are total attempts (Re-
mark 5.9). Let e : E ↪→ A ⇒ V be the greatest M-subobject of A on which f and g agree; this
exists, being the colimit of all such subobjects, by Assumption 2. (Indeed we make take E to be
the greatest such initial segment.) [[Not the same use of f as before.]]

TE ⊂
Te

> TA
Tg
>

Tf
> TV ⊂

Tθ
> TΘ

E

H

∧

⊂ >
......

......
......

.>

A

α

∧

f
>

g
>

⊂

e >
V

j

∪

∧

θ
> Θ

Form the pullback H; the composites H ⇒ TΘ are equal by construction, and j is mono by
hypothesis, so H ↪→ A ⇒ V are equal. Then H ↪→ A is member of the class of subobjects of
which E was the union, so H ↪→ E ↪→ A. Hence e : E ∼= A by well-foundedness of A and f = g
[Tay96, 2.5] [Osi74, 6.5]. �

It follows in particular that the category of T -ensembles and coalgebra homomorphisms is
merely a preorder, under a relation which we may think of as “set-theoretic inclusion”. In fact
every such homomorphism is mono, but we need the main Theorem to prove this.
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Proposition 6.6 The colimit of any diagram of coalgebras and coalgebra homomorphisms is given
by the colimit of the carriers. If the individual coalgebras are well founded then so is the colimit.
If they are extensional and the diagram is filtered then the colimit is also extensional.

(The empty case of the last part is trivial; we defer pushouts to Proposition 10.6.)
Proof Finding the structure map on a colimit is easy (as illustrated in the diagram on the left),
and the last part follows from Assumption 5.

TX TY ⊂ > TX

...
...

...
...>

TXi .

.

TXj

.

TYi
⊂....................................................

pbk
>

∧

TXi

.

X

4......................
W ⊂ > Y ⊂ > X

4

...
...

...
...>

...
...

...
...>

Xi

4

.

.

Xj

4

.

Wi

∧........................
⊂....................

pbk
> Yi

⊂........................
pbk

> Xi

4

.

To show that X . TX is well founded, form the pullbacks Yi and Wi against the colimiting
cocone Xi . X. By well foundedness of the Xi, these diagrams are degenerate (Yi

∼= Xi).
Hence Y is the vertex of a cocone over the diagram Xi, so has a mediator from X, so Y ∼= X. �

Proposition 6.7 Let N ⊂ M be two classes of supports in S both satisfying the completeness
assumptions. Then a coalgebra α : A → TA is well founded with respect to all M-subobjects
U ↪→ A iff it is well founded with respect to all N -subobjects V ↪→ A.
Proof Ā fortiori M-well-foundedness implies N -well-foundedness. Conversely let U be an M-
subobject satisfying the induction premise. Since N is closed under unions, let V ⊂ U be the
largest N -subobject contained in U [[interior]] and form the pullback as shown.

TV ⊂ > TU ⊂ > TA

K

∧

⊂ > H

∧

⊂ > U ⊂ > A

α

4

V
⊂

>
..........................>

Then K ⊂ A is an N -subobject with K ⊂ H ⊂ U , so K ⊂ V by construction of V . Hence
V ∼= U ∼= A by N -well-foundedness. �

Although well-foundedness is independent of M, extensionality is not. Where necessary we
must therefore speak of “well founded T -coalgebras” but “(T,M)-ensembles” (understanding that
the category S, and therefore the applicable complete classes of supports, are implicit in the
functor T ).

Remark 6.8 The colimits constructed in these two results are of diagrams consisting only of
coalgebra homomorphisms, and in fact we shall only need to consider unions of initial segments.
We haven’t yet needed stability of unions under pullbacks, but for this too the map in question
will always be a coalgebra homomorphism.
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Writing Seg(A) for the poset of initial segments of a (well founded) coalgebra A, what we
require is that Seg(A) be a frame (it has arbitrary unions, finite intersections, and binary meet
distributes over arbitrary joins, cf. the open set lattice of a topological space), and that f∗ restrict
to a frame homomorphism whenever f : B . A is a coalgebra homomorphism.

Proposition 7.3 makes use of completeness of Sub(X), but an alternative proof will be given in
Proposition 8.7 using only Seg(A). However for this the other assumptions need a little strength-
ening, in ways which the applications are likely to be able to support very easily.

Since Sub(X) or Seg(A) have arbitrary joins and f∗ preserves them, the latter has a right
adjoint. This and the left adjoint, which exists if we also ask (not unreasonably) thatM be closed
under arbitrary intersections, are the subject of the next section.

7 Proving well-foundedness

Three techniques ...
The main result of this section is a fact about well founded relations which everyone knows,

but most people don’t know they know: that strictly monotone functions reflect well-foundedness.
This is what justifies their use to prove that recursive programs terminate and that recursive
definitions are valid. On the domain of definition of a recursively defined function p, we may write
y ≺ x if y is one of the immediate sub-arguments used to compute p(x). Usually this relation is
not amenable to direct analysis, but if we can assign a number or ordinal f(x) (sometimes called
a loop variant) to each argument x such that f(y) < f(x) whenever y ≺ x then we have shown
termination.

This lemma is rather obvious if well-foundedness is given either of the classical definitions,

1. every non-empty subset has a ≺-minimal element (and excluded middle holds), or

2. there is no infinite descending sequence · · ·x3 ≺ x2 ≺ x1 (and dependent choice also holds),

but it becomes more difficult to prove when the induction scheme is used as a definition.

Proposition 7.1 Let f : B → A be a strictly monotone function. Then if (A,≺) is well founded,
so is (B,<).
Proof Put V = {b ∈ B : φ[b]}, so as in Definition 3.5,

TV = {W ⊂ B : ∀y ∈W. φ[y]} H = {b ∈ B : ∀y ∈ B. y ≺B b⇒ φ[y]}.

In order to use well foundedness of A, we aim to show that K ⊂ f∗V , where

K = {a ∈ A : ∀x ∈ A. x ≺A a⇒ ψ[x]}
≡ {a ∈ A : ∀y ∈ B. f(y) ≺ a⇒ φ[y]}

f∗K = {b ∈ B : ∀y ∈ B. f(y) ≺ f(b)⇒ φ[y]}
f∗V = {a ∈ A : ψ[a] ≡ ∀y ∈ B. f(y) = a⇒ φ[y]}

from Definition 3.1. Monotonicity of f says y ≺B b⇒ fy ≺A fb, so

(∀y ∈ B. fy ≺A fb⇒ φ[y])⇒ (∀y ∈ B. y ≺B b⇒ φ[y])⇒ φ[b],

i.e. f∗K ⊂W ⊂ V . Since f∗ a f∗, we deduce K ⊂ f∗V (maybe the reader should verify this step
symbolically), i.e. for a ∈ A,

(∀x ∈ A. x ≺ a⇒ φ[x])⇒ (∀y ∈ B. fy = a⇒ φ[y]) ≡ ψ[a].

Hence ∀a. ψ[a] by induction in A, from which ∀b. φ[b] follows. �
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The more difficult proof has uncovered something interesting: we need an auxiliary predicate
ψ[y] ≡ ∀x. (f(x) = y)⇒ φ[x], which, in particular, involves a universal quantifier.

Proposition 7.2 The pullback functor f∗ : Sub(X) → Sub(Y ) has a right adjoint f∗. If M is
also closed under arbitrary limits (intersections) then f∗ has a left adjoint as well.
Proof Define f! a f∗ a f∗ by

f∗(V ) =
⋃
{U : f∗(U) ⊂ V }

f!(V ) =
⋂
{U : V ⊂ f∗(U)}

since f∗ preserves unions by Assumption 3, and intersections by the additional hypothesis. �

Compare this result with Definition 3.1. The powerset P(X), if it exists, is an object of the
category S, whereas Sub(X) is defined externally as a set of M-maps. The latter exists for most
familiar categories, though for example it is a complete modular lattice (not distributive) if X is
a module for a ring, whereas the existence of the former is the main part of the definition of a
topos (cf. Remark 3.8)

The Assumptions of the previous section are also insufficient to characterise f∗ and f! as ∀
and ∃. A quantified formula may in general have free variables, and the result of substituting
expressions for these must still obey the logical rules for the quantifiers. Categorically this may be
expressed as stability of the universal properties under pullback, or as the Beck-Chevalley condition
[Tay99]. However it turns out that this condition is not needed for either of the quantifiers in the
present work.

Using the right adjoint f∗ (the universal quantifier ∀) we shall now give the diagrammatic
form of Proposition 7.1, in the case where f is a coalgebra homomorphism. Comparing with
Remark 3.4, this is a simulation; we shall discuss the version for strictly monotone functions
(sub-homomorphisms) afterwards.

Proposition 7.3 Let f : (B, β)→ (A,α) be a homomorphism of coalgebras with A well founded.
Then B is also well founded.

TB
Tf

. TA

B

β

4

f
. A

α

4

Proof Given the diagram marked in thick lines, apply the right adjoint (7.2) to j : V ⊂ > B,
to get i : f∗V ⊂ > A with counit ε. Note that the little triangle (∗) commutes. The upper part
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of the diagram is the T -image of the lower part. Let K = α∗T (f∗V ) be the pullback of Ti and α.

(Tf)∗T (f∗V ) = T (f∗f∗V )
pbk

> T (f∗V )

TV ⊂
Tj

>
<

T
ε

∧..............
TB

Tf
.

⊂

>

∧

TA

⊂

T
i

>

f∗K

..............

pbk
> K pbk

H

∧

⊂ >
<...
.....

.....
.....

.....
.

V ⊂
j

(∗)
> B

β

4

f
.

⊂

>

..............
A

α

4

⊂

>

f∗f∗V

ε

∧

pbk
>

⊂

>

f∗V
∨

.............. ⊂

i
>

We have f∗K ↪→ B → TB and f∗K → K → T (f∗V ) agreeing at TA, so there is a pullback
mediator f∗K → T (f∗f∗V ). Then f∗K → T (f∗f∗V )→ TV agrees with f∗K ↪→ B at TB (since
the top triangle commutes), so there is also a pullback mediator f∗K → H. Then since f∗ a f∗
we have K → f∗V . Since A is well founded, i : f∗V ∼= A and j : V ∼= B. �

These proofs differ in that the diagrammatic one assumed that f is a simulation (β ;Tf = f ;α),
whilst the symbolic one only required it to be strictly monotone (β ;Tf v f ;α, Remark 3.4). This
could be accommodated in to the diagrammatic argument by replacing the pullback T (f∗f∗V ) by
a comma square TB ↓ T (f∗V ), but Tε would also have to be extended. In fact, in the case of
the powerset, the pullback and comma square are actually the same. It is not clear what abstract
Assumption to make to generalise this situation.

Proposition 7.4 Let T, P : S → S be functors and κ : T → P a cartesian transformation
i.e. a natural transformation whose naturality squares are pullbacks. Then any T -coalgebra α :
A . TA is well founded (with respect to T ) iff α ; κA : A → PA is well founded with respect
to P .

PU ⊂
Pi

> PA

TU

κU

∧

⊂
Ti

> TA

κA

∧

H

∧

⊂ > U ⊂
i
> A

α

4

Proof The induction hypothesis H is the same for P and T . �

Proposition 7.5 Let T : Set→ Set. Then there is a natural transformation κ : T → P which is
cartesian with respect to monos (as above) iff T preserves arbitrary intersections.
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Proof For any set X and t ∈ TX, define κX : TX → P(X) by

κX(t) = {x ∈ X : ∀U ⊂ X. t ∈ TU ⇒ x ∈ U}.

Now (t, V ) ∈ TA×P(U) lies in the pullback iff V = κX(t) ⊂ U . If T preserves intersections, this
happens iff t ∈ TU .

P(
⋂
i

Ui) ==
⋂
i

P(Ui) ⊂ > P(Ui) ⊂ > P(A)

T (
⋂
i

Ui)

κ⋂
i
Ui

∧

⊂>
⋂
i

T (Ui)

∧

⊂ > T (Ui)

κUi

∧

⊂ > T (A)

κA

∧

The condition is necessary because P preserves arbitrary intersections and pullbacks commute
with them. �

Definition 7.6 In these circumstances we may define the immediate sub-expression relation
on A by x ≺ a ⇐⇒ x ∈ κA(α(a)). Such T was called an analytic functor in [Joy87] since it
has a “power series” representation.

The left adjoint f! (the existential quantifier ∃) can be used to transmit well foundedness
forwards along surjective coalgebra homomorphisms, and to construct the extensional (Mostowski)
reflection. There is an alternative categorical formulation:

Proposition 7.7 There is a left adjoint f! a f∗ iff M is part of a factorisation system.

X >> Q

U
∨
⊂ >
<...
.....

.....
.....

.....
..

Y
∨

The factorisation is used in categorical logic to interpret the existential quantifier:

{〈x, y〉 : φ[x, y]} .......................................>> {x : ∃y. φ[x, y]}

X × Y
∨

∩

π0
> X
∨

∩...........

Lemma 7.8 Let f : A � B be a surjective coalgebra homomorphism. Then if A is well founded,
so is B.

T (f∗V ) > > TA

TV >
>

∧

TB

>

•

∧

pbk
> f∗V

∼=
pbk

> A

H

∧

>
>

V ⊂
i

>
>

B

∧

f
>>
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Proof Pull the test diagram with i : V ⊂ > B for B (at the front) back along f : A � B. By
well-foundedness of A, f∗V ∼= A. Then f : A � B factors through i : V ⊂ > B, so the latter is
an isomorphism [Tay96, 2.7]. �

Definition 7.9 Let α : A . TA and β : B > . TB be T -coalgebras with B extensional.
Then a coalgebra homomorphism f : A . B (or, loosely, B) is said to be the extensional
reflection of A if it is the universal such, i.e. for any other coalgebra homomorphism g : A . C
with C extensional there is a unique coalgebra homomorphism h : B . C with g = f ; h. The
similar property for total attempts g : A → Θ and h : B → Θ, where Θ is a partial algebra, may
be deduced.

For the usual reasons, the extensional reflection is unique up to unique isomorphism. If M is
part of a factorisation system (E ,M) in S, then g ∈ E . If A is well founded then by the Lemma
so is B, and h ∈ M by Remark 10.3, so the extensional quotient is characterised simply by the
existence of a coalgebra E-homomorphism A � B.

Proposition 7.10 Let α : A . TA be a T -coalgebra. Suppose that the object A is co-well-
powered, i.e. there is an admissible set of isomorphism classes of E-maps out of A, and that all
colimits of such E-maps exist. Then A has an extensional reflection.
Proof Let A � B ↪→ TA be the image factorisation of the structure map; we make this a
coalgebra by the composition B ↪→ TA→ TB.

A
f

. Θ

B

∨∨
⊂ >
.......

.......
.......

.......
.......

.......
.....

g

>

TA
Tf

.

α

.
TΘ

θ

∨

∩

TB
∨ .....

.....
.....

.....
.....

.

T
g

>

Given a coalgebra homomorphism f : A . Θ to an extensional coalgebra (or a total attempt
A→ Θ to a partial algebra TΘ ⇀ Θ), the orthogonality of A � B to Θ > . TΘ gives g : B → Θ
making the diagram commute.

The new coalgebra B need not be extensional, so we could try iterating this process, but we
don’t know when to stop. Instead, we regard the construction as a monotone endofunction on the
poset of quotients of A.

TA > TB > TC

A

4

>> B

4

>> C

<

⊃

Assuming that this is a complete lattice, there is a greatest fixed point, which is the required
extensional quotient. If A is well founded then the fixed point is actually unique. �

In the category of sets and functions, outgoing surjective functions correspond bijectively to
equivalence relations (we say that Set has effective quotients of equivalence relations), co-
well-powered-ness follows from the control we already have on the incoming monos. [Tay96, 2.11]
constructed the equivalence relation on a well founded P-coalgebra.
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There exists a complete class of supports (lower subsets of posets) which is part of a factori-
sation system whose E-part (cofinal functions) is neither stable nor co-well-powered. In this case,
the extensional reflection (called the plump rank in [Tay96]) of well founded coalgebras may still
be found, but, like Mostowski’s original construction, this depends on the axiom of replacement.

We shall find that ensembles, as their name suggests, behave in a very set-theoretic fashion.
However practical applications of the general recursion theorem actually employ well founded
coalgebras, as we saw at the beginning of this section: extensionality is not a natural requirement.

8 The von Neumann hierarchy

In this section we shall show how all of the T -ensembles (and well founded coalgebras) are generated
by the “ZF-axioms” of empty set, application of the functor, unions and subsets. We must show on
the one hand that these operations take extensional, well founded coalgebras to extensional, well
founded coalgebras, and on the other that all T -ensembles are obtained in this way. This latter
part is an induction scheme: any property which is transmitted by these operations is shared by
all T -ensembles.

In the case where the functor is the powerset, it is the von Neumann hierarchy which is
generated by the empty set, application of the functor, and unions. For arbitrary functors this
construction is the one mentioned in Remark 2.6, but both the special and general cases rely on
an already given system of ordinals. By closing under subsets as well, we obtain a diagram whose
vertices have an intrinsic characterisation, namely being extensional, well founded coalgebras.

Lemma 8.1 The initial object ∅, together with the unique map ∅ > . T∅, is a T -ensemble.
Proof Assumption 4. �

Application of the functor preserves ensembles, but it will be convenient to prove something
slightly more general.

Lemma 8.2 Let α : A . TA and β : B . TB be coalgebras with A well founded. Suppose
there are coalgebra homomorphisms f : A . B and g : B . TA such that α = f ; g and
β = g ; Tf . Then B is also well founded.
Proof Given a pullback square H testing the well-foundedness of B, form the pullback cube
along f : A . B.

TU ⊂ > TB

TV ⊂...................................................
∼=

>

....
....

....>∧

TA

Tf
.<.......................................

H ⊂ > U ⊂ > B

β

4

/ g

K

∧..................
⊂...................>

....
....

....>

V ⊂........................
∼=

>

....
....

....>

A

α
4

f

.<................

Then V ∼= A by well-foundedness of A, so A→ U ↪→ B → TA→ TU , and H ↪→ B is split. �

Lemma 8.3 Let A and B be coalgebras and i : B > . TA. Then there is a pullback of coalgebras
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and homomorphisms as shown (with i = ` ; Tj):

B >
`
. TC >

Tj
. TA

C

k

4

>
j

. A

α

4

There is a similar result for B . TA if A is extensional, and without restriction if S has and
T preserves all binary pullbacks of coalgebra homomorphisms.
Proof The square which says that i is a coalgebra homomorphism,

TB >
Ti
. T 2A

B

β

4

>
i
. TA

Tα

4

has the same top and right edges as the T -image of the pullback above. Hence there is a mediator
` : B → TC with β = ` ; Tk : B → TC → TB and i = ` ; Tj : B → TC → TA.

B
β

. TB
Tβ

. T 2B

C

k

4

γ = k ; `
. TC

Tk

4

Tγ
.

`

.
T 2C

T 2k

4

T
`

.

Putting γ = k ; ` : C → B → TC, the objects in the pullback square are coalgebras and the maps
are homomorphisms. �

Propositions 6.6 and 7.3 have already dealt with colimits and initial segments.

Theorem 8.4 Let V be a class of T -coalgebras such that the “Zermelo axioms” hold:

1. ∅ ∈ V;

2. if A ∈ V then also TA ∈ V;

3. if A ∈ V and B > . A is an initial segment (or, in particular, an isomorphism), then also
B ∈ V;

4. if A =
⋃

iAi as an I-indexed union of coalgebras with Ai ∈ V, then A ∈ V.

Then V contains all T -ensembles, and, in particular, the initial algebra is in V if it exists.
If we replace B > . A by B . A in 3 then V contains all well founded T -coalgebras.

Proof Let A be any well founded coalgebra, and put U = {B ⊂ A : B ∈ V}. By hypotheses 1, 3
(in the weaker form) and 4, U contains ∅ and is closed under unions and initial segments. Hence,
putting U =

⋃
U , we have

B ∈ U ⇐⇒ A / < B ∈ V ⇐⇒ B > . U,
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and in particular U ∈ V.

TU > . TH > . TA

U

H

4

> .
.....

.....
.....

.....
.....

.>

A

α

4

>

.

Then TA / < TU ∈ V by hypothesis 2, so by Lemma 8.3 the pullback H is a coalgebra. For the
result about ensembles, A > . TA and H > . TU are mono, so A / < H ∈ V by hypothesis 3.
The stronger form, for general coalgebra homomorphisms, is needed in the case of well founded
coalgebras. Hence H > . U by construction of U , and A = U ∈ V by well-foundedness. Finally,
recall from Propositions 2.4 and 2.5 that the initial algebra is an ensemble. �

Remark 8.5 This proof made no use of the conditions that unions of M-subobjects be colimits
and stable under pullback. Hence it is legitimate to use Zermelo induction to verify these conditions
in applications.

By way of an example of this Theorem, we may give an alternative proof of Proposition 7.3
which makes direct use of stable unions instead of the adjunction f∗ a f∗.

Lemma 8.6 Let A =
⋃
Ai be a union of coalgebras such that whenever C . Ai then C is well

founded. Let f : B . A. Then B is also well founded.
Proof Form the pullbacks Bi = f∗Ai.

Ai > .
⋃
Ai ==== A

TAi > .
.

4

TA

α

.

Bi

4................
⊂............ ..........

⋃
Bi >....

∼=
. B

f

TBi

4................
>..............................................

.............
TB

Tf

4

β .

Since T preserves pullbacks, the front rectangle is also a pullback and the Bi are coalgebras with
Bi . Ai, so the Bi are well founded by hypothesis. Since f∗ preserves unions, B =

⋃
Bi, which

is well founded by Proposition 6.6. �

Proposition 8.7 Let f : B > . A be an initial segment of a well founded coalgebra A. The B
is also well founded.
Proof Conditions 1 and 3 of the Theorem are trivial, whilst the Lemma has shown number 4.
For 2, given B > . TA, form C > . A by Lemma 8.3 (which used a pullback) and apply
Lemma 8.2 with C in place of A. �

9 The general recursion theorem

We are now ready to prove the general recursion theorem, which says that each T -ensemble obeys
the recursion scheme, i.e. a partial form of the universal property of the free algebra. Traditionally
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this has been proved using by pasting together partial functions, which we regard as total functions
defined on its initial segments. These initial segments range over the class of T -ensembles. We
shall instead show that there is a greatest attempt A ⇀ Θ by induction on A, using Theorem 8.4.

Throughout let θ : TΘ ⇀ Θ be a fixed total or partial algebra.

Lemma 9.1 There is a unique attempt ∅⇀ Θ. �

Lemma 9.2 Let α : A . TA be a coalgebra and f : A ⇀ Θ an attempt.
Then (Tf ; θ) : TA ⇀ Θ and (α ; Tf ; θ) : A ⇀ Θ are also attempts, with f v (α ; Tf ; θ).

T 2A
T 2f
⇀ T 2Θ

t p

TA

Tα

4

Tf
⇀ TΘ

Tθ
�

t p

A

α

4

f
⇀ Θ

θ
�

Note that this is diagram a diagram of partial functions. Remark 5.9 characterised partial attempts
in this way, and by Proposition 5.4 T acts on partial maps and preserves the order between them.

�
Let us pause for a moment to consider the corresponding symbolic result. In set theory, given

f(a) v θ({f(x) : x ≺ a}) ≡ g(a) ≡ u,

consider also
θ({g(x) : x ≺ a}) = θ({θ({f(y) : y ≺ x}) : x ≺ a}) ≡ v.

If u is defined then so is each f(x), for x ≺ a, and hence θ({f(y) : y ≺ x}) is also defined and
equal to f(x). Then u and v are the same expression.

In algebra we have similarly

f(r(si(yij))) v r(f(si(yij))) v r(si(f(yij)))

in an informal notation. It was to eliminate such manipulation of multiple suffices etc. in algebraic
topology that functors first became an established part of the mathematical vocabulary.

Lemma 9.3 Suppose f : A ⇀ Θ is the greatest attempt from A. Then Tf ; θ : TA ⇀ Θ is the
greatest attempt from TA.
Proof We already know that Tf ; θ is an attempt on TA, so let g be another.

TA
Tf
⇀ TΘ TA

Tα
. T 2A

Tg
⇀ TΘ

t p t p

A

α

4

f
⇀ Θ

θ
�

A

α

4

>
α
. TA

Tα

4

g
⇀ Θ

θ
�

Then α ; g is an attempt on A, so α ; g v f since f is the greatest such.
Hence g v Tα ; Tg ; θ v Tf ; θ. �
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Lemma 9.4 Let i : B > . A and suppose C / < A
f→ Θ is the greatest attempt on A. Then

B / < C ∩A B > . C → Θ is the greatest attempt on B.
Proof It is an attempt; let B / < D → Θ be another. Then A / < B / < D → Θ is also an
attempt on A, so D > . B ∩A C. �

A similar argument (with f∗C instead of B ∩ C) works for an arbitrary coalgebra homomor-
phism f : B . A if f! a f∗ exists (Proposition 7.2): we deduce D > . f∗C from f!D > . C.
Otherwise there is a difficulty with the application of the proof of Theorem 8.4; this can easily be
mended, but we shall return to this point later.

We have to divide consideration of unions into the empty, binary and directed cases, but the
empty case has been done.

Lemma 9.5 Let A =
⋃↑
Ai be a directed union of well founded coalgebras. Suppose that on each

Ai there is a greatest attempt fi : Ai ⇀ Θ. Then there is also a greatest attempt f =
∨↑
fi : A ⇀

Θ.
Proof Let Bi > . Ai > . A be the supports of the fi and put B =

⋃↑
Bi > . A. Since B

is the filtered colimit, there is a mediator f : B → Θ to the cocone fi : Bi → Θ. It is an attempt
because β ; Tf ; θ : B ⇀ Θ is also a mediator.

Now let g : C → Θ with C > . A be another attempt. Put Ci = Ai∩C > . A, so C =
⋃↑
Ci.

Then gi : Ai / < Ci > Θ is an attempt on Ai, so gi v fi : Ai ⇀ Θ. That is, Ci ⊂ Bi, and g
agrees with fi on Ci. Hence by uniqueness of colimit mediators g agrees with f on C, i.e. g v f
on A. �

Lemma 9.6 Let A be a coalgebra with A = B ∪ C, the union of two initial segments. Suppose
that f : B ⇀ Θ and g : C ⇀ Θ are the greatest attempts. Then there is a greatest attempt
f ∪ g : A ⇀ Θ. [[Incorporate 10.4.]]
Proof Let B′ > . B > . A and C ′ > . C > . A be the supports of f and g respectively.

B′ ∩A C > . B′ > . B

B′ ∪A C ′ > .

>

.
A

>

.

B ∩A C ′
∧

4.....................
5

∨....................
> .

>

.

C ′ > .
>

.

C

>

. >

.

As in Lemma 9.4, B / < B ∩ C ′ > . C ′ g→ Θ is a partial attempt on B, so B ∩ C ′ > . B′.
Similarly B′ ∩ C > . C ′, so B′ ∩ C = B ∩ C ′ = B′ ∩ C ′. Moreover the two restricted attempts
agree here. Hence by Assumption 6, there is a pushout mediator B′ ∪A C ′ → Θ.

Now let h : A ⇀ Θ be another attempt, with support D. Then B ∩D ⊂ B′ and C ∩D ⊂ C ′,
so D = (B ∩D) ∪ (C ∩D) ⊂ (B′ ∪ C ′) and h agrees with f ∪ g on them, i.e. h v f ∪ g. �

A simpler version of this argument, but still using Assumption 6, shows that the attempts
A ⇀ Θ on any well founded coalgebra form a directed set, so there is a greatest one since this hom-
poset also has directed joins. To show that any two attempts A / < B → Θ and A / < C → Θ
agree on B ∩A C we use Lemma 6.5 instead of relying on being given greatest attempts. Unlike
Lemma 9.4, this method extends from ensembles to well founded coalgebras without the need for
f! a f∗.
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We have now verified the conditions of Theorem 8.4 needed to prove the General Recursion
Theorem for ensembles, and proved it another way for well founded coalgebras.

Theorem 9.7 Let A be a well founded coalgebra and Θ a partial algebra. Then there is a greatest
attempt f : A ⇀ Θ, and this satisfies the strict recursion scheme, f = α ; Tf ; θ. If Θ is total then
so is f .
Proof Let f : A ⇀ Θ be the greatest attempt. Since α ;Tf ;θ is also an attempt, by Lemma 9.2,
we must have f = α ;Tf ; θ. (This is playing the roles of TU and H in Theorem 8.4.) If Θ is total
then so is f by Lemma 5.11. �

From this we may describe the initial algebra (if it exists).

Proposition 9.8 In the category of well founded coalgebras and coalgebra homomorphisms, an
object θ : Θ . TΘ is terminal iff it is parsable, i.e. θ is an isomorphism.

Moreover for any other well founded coalgebra A . TA, the greatest attempt f : A ⇀ Θ is
total and is the unique coalgebra homomorphism.
Proof The terminal coalgebra is parsable by the dual of Proposition 2.4; this argument restricts
to well founded coalgebras by Lemma 8.2.

Conversely, let Θ be a parsable well founded algebra. By the Theorem, from any other well
founded algebra A there is a greatest attempt f : A ⇀ Θ; this satisfies f = α ; Tf ; θ and is total.
It is a homomorphism by Remark 5.10 and unique either by Lemma 6.5 or because there is only
one maximal attempt. �

Corollary 9.9 The terminal T -ensemble or well founded coalgebra is the initial algebra. �

10 Set-theoretic union and intersection

To anyone from any other mathematical discipline, one of the most bizarre features of set theory
is its notion of union. [[Merging crowds.]] (The Wiener-Kuratowski formula {{a}, {a, b}} for an
ordered pair, on which the set-theoretic interpretation of type theory and thereby of mathematics
depend, is perhaps rather more bizarre, and seems to have no analogue in this work.)

In this section we shall investigate set-theoretic union and intersection by specialising Theo-
rem 9.7 to the case where Θ is another T -ensemble.

Remark 10.1 The next result shows, amongst other things, that every coalgebra homomorphism
f : A → B between T -ensembles is mono [Tay96, 2.5] [Osi74, 6.5]. The proof would be much
simpler if we knew this in advance. One way of showing it would be to make the further Assumption
that the kernel pair of f exists in S, i.e. the pullback of f against itself; by Lemma 6.5 the pair
would be equal, so f is mono. Although this assumption is valid in Set, we might wish to apply
our techniques to some category (of topological spaces, maybe) which does not have arbitrary
pullbacks. �

Proposition 10.2 Let A and B be T -ensembles. The greatest attempts A ⇀ B and B ⇀ A are
given by the same span (which, in particular, consists of two mono coalgebra homomorphisms)
A←↩ P ↪→ B. Moreover this is the meet in the preorder of T -ensembles.
Proof Let A / < U . B and B / < V . A be the greatest attempts, as given
by Theorem 9.7; all four of these maps are coalgebra homomorphisms. Consider the composite
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A ⇀ B ⇀ A, with support P ; this is an attempt. The identity is also an attempt, which is total
and so maximal, hence by Theorem 9.7 A ⇀ B ⇀ A is less than id, so P ⊂ A.

A

P > V

P >

<..........................
V

g
. A

id

.

U
∨

∩

f
. B

j

5

∨

U
∨ f

. B

j

5

∨

A

g

.

>

i

.

A

i

5

∨

id

.

The diagram on the left says this verbatim, and that on the right is a re-arrangement. Note that
P is the pullback rooted at B, but the kite P ⇒ A also commutes.

Forming a similar diagram from B ⇀ A ⇀ B, with pullback Q, the mediators P � Q between
the pullbacks and commutative squares make P ∼= Q. Hence in the diagram shown on the right
above, P is also the pullback rooted at A, and P ↪→ V .

Remark 10.3 (Continuing the proof, by induction on P ⊂ U .) The composite H ↪→ TP ↪→
TV ↪→ TB is mono, and factors through the mono β : B > . TB, so H → U → B is also mono.
Hence it is the support of an attempt B ⇀ A, whose effect is H → U → A. But V is the support
of the greatest such attempt, so there is a mediator H → V making the diagram commute, and
H → P is the mediator to the pullback.

P ⊂ > V

H ⊂ >
.......

.......
.......

.......
.......

.......
....>

.....
.....

.....
.....

.....
.>

U
∨

∩

>
i

. A

g

5

TP
∨

∩

> . TU
5

∨

B

>

j

.

f

.

TV
∨

∩

>
Tj

. TB

β

5

∨
Tf

.

By well-foundedness of U , we now have P ∼= U , and by a similar argument we may also show that
P ∼= V .

To show thatA / < P > . B is the intersection, consider any pair of inclusionsA / < D > . B;
these define an attempt A ⇀ B, so D > . P . �

Proposition 10.4 Let A > . C / < B be coalgebra homomorphisms between T -ensembles.
Then the intersection A ∩B is the pullback in S.
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Proof Form the pullback P , which consists of monos and so is preserved by T . Hence P
is a coalgebra; it is extensional by by the cancellation property of monos and well founded by
Proposition 7.3, and A←↩ P ↪→ B are coalgebra homomorphisms.

TP > . TA

P > .

/ ..............<

∩

A

/

<

TB
5

∨

⊂ . TC
5

B
5

∨

> .

/

<

C
5

∨

/

<

The intersection A∩B also provides a commutative cube, so there is a pullback mediator A∩B →
P . But A ←↩ P ↪→ B is an attempt, so there is a mediator to the greatest such, P → A ∩ B.
Hence P ∼= A ∩B. �

Assumption 10.5 Pushouts over intersections.
any twoM-maps W ↪→ U and W ↪→ V have a pushout, P , where U ↪→ P and V ↪→ P are also

in M; moreover if U, V ⊂ > X such that the square from W to X is a pullback, then P ↪→ X is
also in M.

Proposition 10.6 The preorder of T -ensembles and total attempts has binary unions.
Proof Let A ∪ B be the pushout of A and B over A ∩ B. This is a well founded coalgebra by
Proposition 6.6: we have to show that its structure map is in M.

A > . TA

A ∩B
>

.

A ∪B .

>

T (A ∪B)

⊂

>

B > .

>
>

.
TB

>

Let C = T (A ∪ B) in the previous result, so A ∩ B is the pullback of A > . T (A ∪ B) / < B.
By Assumption 6 the pushout mediator A ∪B > . T (A ∪B) is in M. �

Definition 10.7 Axiom of replacement [Tay96, 2.13c] and [Osi74, 6.6]

Theorem 10.8 Existence of extensional reflections of well founded coalgebras, using replacement
and factorisation.

Theorem 10.9 Suppose that S has set-indexed colimits. Then the functor T has an initial algebra
iff, up to isomorphism, there is a set rather than a proper class of T -ensembles.
Proof [⇒] A T -ensemble is an initial segment of the initial algebra, and by Assumption 1 there
is a set of these. [⇐] Form their colimit, using Assumption 5. �

The “size” words used in this result are not intended to let set theory in by the back door: we’re
simply asking that S have colimits indexed by the intrinsically defined category (quâ diagram) of
ensembles.
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[[Some thoughts on what the definition of rank might be.]]

Finally, we can use the idea of Proposition 5.8 to prove a more general result, although this
will not be used in this paper.

Proposition 10.10 Suppose that the ambient category S has and the functor T preserves limits
of chains as shown. Then [[coreflection]] for any partial algebra TA ⇀ A there is an extensional
coalgebra L > . TL and a total homomorphism of partial algebras L→ A with the co-universal
property that any total attempt Γ→ A factors uniquely as Γ→ L→ A.
Proof Form the pullback of B ↪→ TA against TB → TA as shown, to give a partial algebra
TB ⇀ B. Repeating the process, the chains along the middle and bottom are the same (but for
a shift), so their limits agree.

TL > · · · > TC > TB > TA

L
∪

∧

> · · · > D
∪

∧............
> C

∪

∧............
> B

∪

∧

L

∼=
∨

> · · · > C
∨

> B
∨

> A
∨

Assuming that T preserves this limit, so TL is the limit of the chain at the top, the structure map
TL ↪→ L is the mediator from the middle chain, and is mono because a limit of monos like this is
mono. The universal property required follows from that of the limit. �

TΓ

TB >

................>
TA>

Γ
∪

∧

C
∪

∧

⊂ >

...................>
B
∪

∧

>

Γ

wwwwwwww
B
∨

>

...................>
A
∨

>

11 Recursion in other categories

Recursion in arbitrary categories, by embedding in a suitable sheaf topos. The recursion equation
(for particular A, T and Θ) is the same, but the induction scheme becomes more complicated:
instead of subobjects we must consider sieves.

12 Additional material

One or more of the following may be added to this paper; the rest will be in Part II.

• Interpretation of ΠΘ.(TΘ→ Θ)→ Θ.
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[Can83] Georg Cantor. Über unendliche, lineare Punktmannichfaltigkeiten. Mathematische
Annalen, 21:545–591, 1883.

[CLW93] Aurelio Carboni, Steve Lack, and Robert F.C. Walters. Introduction to extensive and
distributive categories. Journal of Pure and Applied Algebra, 84:145–158, 1993.

[Ded94] J. W. Richard Dedekind. The nature and meaning of numbers. In Essays on the
Theory of Numbers. 1894. Dover (1960).

[FA66] Gottlob Frege and Ignacio Angelelli. Begriffschrift und Andere Aufsätze. Olms,
Hildesheim, 1966.

[Fre79] Gottlob Frege. Begriffschrift, eine der Arithmetischen Nachgebildete Formalsprache
des Reinen Denkens. 1879. Reprinted in [FA66]; English translation in [vH67], pages
1–82.

[Fre91] Peter J. Freyd. Algebraically complete categories. In A. Carboni et al., editors, Proc.
1990 Como Category Theory Conference, pages 95–104, Berlin, 1991. Springer-Verlag.
Lecture Notes in Mathematics Vol. 1488.

[Fre92] Peter J. Freyd. Remarks on algebraically compact categories. In M. P. Fourman, P. T.
Johnstone, and A. M. Pitts, editors, Applications of Categories in Computer Science:
Proceedings of the LMS Symposium, Durham, 1991, number 177 in LMS Lecture Notes.
Cambridge University Press, 1992.

[GHK+80] Gerhard K. Gierz, Karl Heinrich Hoffmann, Klaus Keimel, Lawson Jimmie D.,
Michael W. Mislove, and Dana S. Scott. A Compendium of Continuous Lattices.
Springer-Verlag, Berlin, 1980.
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[Zer30] Ernst Zermelo. Über Grenzzahlen und Mengenbereiche. Fundamenta Mathematicae,
16:29–47, 1930.

Bernoulli, Euclid, Fermat, Giraud, Dana Scott, Skolem, Tierney
From Wilfrid Hodges:

• Montague, Scott and Tarski: On Set Theory and Well Founded Sets, circa 1960, unpublished.
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