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Abstract
We define well founded coalgebras and prove the recursion theorem for them: that there is a
unique coalgebra-to-algebra homomorphism to any algebra for the same functor. The functor
must preserve monos, whereas earlier work also required it to preserve their pullbacks. The
argument is based on von Neumann’s recursion theorem for ordinals. Extensional well founded
coalgebras are seen as initial segments of the free algebra, even when that does not exist. We
have a categorical form of Mostowski’s theorem that imposes extensionality.

The assumptions about the underlying category, originally sets, are examined thoroughly,
with a view to ambitious generalisation. In particular, the “monos” used for predicates and
extensionality are replaced by a factorisation system.

These proofs exploit Pataraia’s fixed point theorem for dcpos, which Section 2 advocates
(independently of the rest of the paper) for much wider deployment as a much prettier (as
well as constructive) replacement for the use of the ordinals, the Bourbaki-Witt theorem and
Zorn’s Lemma.
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Categorical set theory is the study of ideas from Set Theory as ordinary mathematical objects,
without their foundational pretensions. The first application of our subject was to show that the
logic of an elementary topos with natural numbers is more or less the same as Zermelo Set Theory
IMik76, [Osi74].

In this paper we study well-foundedness, extensionality and the arguments behind von Neu-
mann’s recursion theorem and the Mostowski extensional quotient. We strip them of everything
else from their set- (or even topos-) theoretic origins and then identify what is needed of some
completely different setting for them to be re-deployed there.

The value of these particular ideas is that they provide ways of expressing very strong principles
of induction and recursion. These may be used in Proof Theory to prove the consistency of other
logical systems and in Process Algebra to investigate termination or persistence of processes and
ask whether one process is “the same” as another.

The role of category theory is that it is a good tool for capturing the essential features of a
mathematical argument, whilst demanding almost nothing by way of foundational beliefs.

In the first section we give the traditional ideas from Set Theory and universal algebra that
we are seeking to capture. Chief among these is the theorem of John von Neumann that defines
functions by recursion over well-founded relations, i.e. those for which we have induction for
predicates.

Section [2] introduces a novel order-theoretic fixed point theorem that we consider deserves a
place in the mathematical canon beyond its application in this paper. We need it here because,
whereas the original form of the recursion theorem relies on the fact that a poset with all joins has



a greatest element, our generalisation need not have binary joins at a key point. We demonstrate
how it maybe used for induction and recursion in familiar relational and process algebra.

Section |3| begins our categorical treatment by showing how coalgebras for a functor put these
properties of Set Theory and term algebras in a common abstract setting, summarising earlier
work.

Section ] which you should omit on first reading, examines our precise requirements of the
category and its notion of “mono”. In future work this will enable a considerable generalisation
of similar previous results from Set to other categories.

Section [f] shows how well founded coalgebras are generated and Section [f] proves our central
result, the recursion theorem.

Section [7] introduces extensional well founded coalgebras and shows how they behave like the
von Neumann hierarchy in Set Theory.

Section [§] shows how to impose well-foundedness and extensionality on a coalgebra, giving
adjoints to the inclusions of categories, on the additional assumption of image factorisation.

Section [J] re-introduces the requirement that the functor preserves pullbacks and proved the
(relatively few) results that depend on this. Finally, Sectionconsiders binary joins, in particular
the “overlapping” union in Set Theory.

1 Background

We are going to study the axioms of foundation and extensionality.

The axiom of foundation and the notion of a well founded relation are the (to us, natural)
generalisation of the well-orderings or ordinals (X, <) that Georg Cantor introduced [Can95|
Can97]. He stated their defining property in two ways:

(a) every non-empty subset ) # U C X has a <-least element; or

(b) there is no infinite descending sequence --- <d < ¢ < b < a.

In fact Euclid had invoked the second of these principles for the natural numbers long beforehand,
in Elements VII 31 [Fow94l p 262].

It took some time to recognise the weaker notion and how to use it to show that Zermelo’s
Set Theory and infinitary proofs are not vulnerable to circular arguments like Russell’s Paradox.
Dimitry Mirimanoff seems to have been the first to do this [MirI7al, Mir17Db, [Mir19], introducing
ideas such as rank that we will see later. His style is in the same spirit as our own, treating
membership like any ordinary relation.

John von Neumann proposed a meta-axiom, that the system of Set Theory be the minimal one
[vN25]. Ernst Zermelo asserted the two properties above for € as his axiom of foundation [Zer30].
He then introduced the general notion of a well founded relation and applied it to proof theory
[Zex35).

If we state either of the properties (a,b) as the definition, we have to make frequent use of
excluded middle or dependent choice, respectively. For the intuitionistic definition, we identify
what we actually want to do with the notion. It is difficult to say who first did this, because of
constructivists’ habit of retaining classical definitions verbatim and then arguing at length about
their faults, but one early formal intuitionistic account of induction is [HKG6].

Definition 1.1 A binary relation < on a carrier A is well founded if it obeys the induction

scheme
Va:A. (Vb:A. b<a= ¢b) = ¢a

Va:A. ¢a

for any predicate ¢ on A.
It will be convenient to dissect this triply nested implication. The innermost one,

Vb:A. b <a= ¢b



is standardly called the induction hypothesis (for ¢ at a).

When ordinary mathematicians use induction to prove something, their effort goes in to jus-
tifying the next implication, the one above the line. However, our focus is on the wvalidity of
induction, 4.e. the outermost implication (written as the line), and therefore we call the whole of
the top line the induction premise (for ¢).

We recognise that the middle implication is typically not two-way (d priori, but of course it
always becomes two-way after we have invoked induction), but in the case where it is we call it
tight.

Remark 1.2 This still leaves the variable ¢ free. For simplicity we will usually speak of well-
foundedness as if it were quantified over all ¢. However, the word scheme in the name indicates
that we may restrict attention to individual predicates or to a class of them of a certain logical
complexity, such as those with at most a particular number of alternations of quantifiers. Our
categorical structure will be able to accommodate this generalisation (Assumption and we
will indicate for what predicates we are using induction. This consideration is particularly relevant
in proof theory, but we shall not get involved in that subject in this paper.

Example 1.3 With the successor relation n < n+1 on the natural numbers, the induction scheme
is known as Peano induction:
@0 Vn:N. ¢n = od(n+1)
Vn:N. ¢n

although this idiom predates Giuseppe Peano [Pea89] by at least three centuries.

Whilst the general notion of well-foundedness is natural and long-established, many math-
ematicians seem to be reluctant to use it. Instead they say that they are doing induction or
recursion on the length of a string, the height of a tree, its depth in computer science, or some
other such numerical measure. This is also the way in which iterative or recursive programs are
shown to terminate.

The general result that lies behind such usage is this:

Proposition 1.4 If (A4, <) is well founded and f : (B, <) — (4, <) is strictly monotone in the
sense that
Vb1by: B. b <by, = fbl < fbg

then (B, <) is also well founded.

Proof If B has an infinite descending sequence then so does A, which is forbidden. Alternatively,
if 0 £V C B then () # fV C A, so there is a minimal a € fV, where a = fb for some b € V and
this is minimal there. The more difficult intuitionistic proof will be given in Proposition (9.2l O

From the ability to prove a predicate by induction we may derive that of defining a function by
recursion. The principal goal of this paper is to see how far we can generalise the setting of this
recursion theorem. John von Neumann proved it for the ordinals in his reformulation of their
theory that became the classic one [vIN28| § III] and the following is the (mild) adaptation of his
argument to intuitionistic well founded relations.

This result appears in most Set Theory textbooks, usually without attribution, but Paul
Bernays [Berb8, p 100] credits von Neumann; this book also has a detailed historical introduction
by Abraham Fraenkel, who probably knew the developments personally.

Theorem 1.5 Let (A, <) be a carrier with a well founded binary relation and © another carrier
with a function 0 : PO — O that takes an arbitrary subset of © as its argument and returns a
single element. Then there is a unique function f : A — © such that

Va:A.  fa = 0({fb|b=<al}).



We call this equation the recursion scheme, because we do not quantify over (6, 6): we only
ever consider a particular target structure.

Proof An initial segment of A is a subset B C A such that
Yboc:A. c<beB=c€B

and an attempt is a partial function f : A — © whose support (domain of definition) B C A is
an initial segment and
VbiA. be B = fb = 0({fc|c=<b}).

a) There is a unique attempt with empty support.

(
(b) The union of any directed family of initial segments or attempts is another such.
(¢) The restriction of < to any initial segment is well founded.

(

d) Any two attempts f, g with the same support B are equal, which we prove by induction
over (B, <) for the predicate

ob = (fb=gb).

(e) Hence any two attempts with supports By and Bs agree on B1NBy and so may be amalgamated
into an attempt with support B; U Bs.

(f) Given any attempt f with support B, there is a successor attempt g with support
C =sB = {c:A|¥0:A. b<c=be B} given by gc = 0{b: A|b=<c},

whilst any attempt with support C restricts to B and these constructions are inverse.
(¢) In this construction, C' = B iff B = A, which we prove by induction over (A, <) for the
predicate
ba = (a € B),

indeed “C = B iff B = A” is exactly the induction scheme for this predicate.

(h) The required solution to the recursion equation is the union of all of the attempts (a,b,e); this
is total because it is fixed by the successor operation (g) and unique by (d). O

It is essential to understand the steps of this traditional proof before proceeding with the rest
of this paper and we label them because they will each be the subject of lemmas in our categorical
proof. However, we shall give our proof in a generality in which Proposition fails (even though
that is plainly an extremely important property of well founded relations). We therefore lose steps
(c) and (e) of the proof and so cannot simply form the union of all attempts in the final part.

For these reasons, the next section gives a revised proof of the Theorem, as a guide to the way
we subsequently do it categorically.

Remark 1.6 Steps (a) and (f) in the traditional proof provide the initial and next attempts, so
by Peano recursion we can define the nth one for all n : N. Can we not then just use step (b)
at limit stages to continue this through the ordinals (here and in the fixed point theorems in the
next section)?

No:

(a) Ordinals are not “infinite numbers” in which w follows the finite ones and we continue ever
upwards: the (classical) definition involves downward sequences. We require a proof to justify
recursion, namely the result due to von Neumann that we have just stated. Using a theorem
to prove itself is begging the question, as is citing a result from later in a textbook to prove
an early one; even a journal paper is to be understood as forming some stage in a logical
development.

(b) Even when ordinal recursion is legitimate, there are two further but commonly overlooked
components to a valid proof, besides the zero, successor and limit cases. Firstly, the ordinals



go on “forever” — Cesare Burali-Forti [BF97] showed early on that they do not form a “set”
— so when do we stop? Secondly, there is more work to be done in the target structure to
deduce that the recursion provides a solution to the problem being considered.

(¢) The question of when to stop was answered by Friedrich Hartogs [Har15]: For any set X, let
A be the set of isomorphism classes of well-orderings of subsets of X. Then A is well ordered
and there is no injection A — X.

Hartogs’ proof was one of the earliest formal applications of Zermelo’s Set Theory [ZerO8b]
and he set out the prerequisites from that and Cantor’s original work [Can97] very clearly.
Principal among the latter is that, for any two well ordered sets, one is uniquely isomorphic
to an initial segment of the other; we would now deduce that from von Neumann’s (later)
recursion theorem (c¢f. Proposition , but Cantor had actually given a valid direct proof
of it.

A key feature von Neumann’s paper (already present in [Mirl7a]) was the use of the global
set-theoretic membership relation € for the order < on an ordinal, whereas for Cantor, Hartogs
and us, the relation < on a well ordered or well founded set is superstructure.

(d) Now we have some ordinal A that does not embed in the given set, so somewhere it must repeat
itself (classically). The second question is why is this point unique and how does it solve the
problem? We will see a new result in the next section that does this — intuitionistically and
much more simply.

(e) Remarkshows that there are lightweight alternatives to Hartogs’ Lemma for obtaining the
ordinal A\. However, instead of vindicating the use of ordinals, they suggest a deep rethinking
of how we prove things by recursion.

(f) No proof of the fixed point theorem correctly using ordinal recursion and citing Hartogs seems
to have been published prior to these alternatives, i.e. in 1928-49.

(g) Making new rules after the game has begun, such as Collection, Inaccessible Cardinals or
Universes, is also illegitimate, especially as there are valid proofs according to the original
rules (Zermelo Set Theory or an elementary topos).

(h) The traditional theory of the ordinals depends very heavily on excluded middle. There are
two existing intuitionistic accounts [JM95] [Tay96a], which show that there are several different
notions. Even so, (the use of) Hartogs’ lemma remains irretrievably classical.

(i) The ordinals themselves are significant applications of the generalisations that our categorical
approach will offer, but they deserve a treatment of their own [Tay23|. It is no more reasonable
to use an old theory to justify its replacement than it would be to power a carbon-neutral
vehicle with a steam engine.

Remark 1.7 In order to start generalising these ideas, consider first the recursion scheme: 6 is
the evaluation operation for some sort of algebra ©. In taking a set of arguments instead of a
list, we are saying that 0 is idempotent and commutative with respect to them, although these
conditions are inessential.

Indeed, we can consider any free theory, i.e. one with no equations at all, but a (possibly
infinite) collection ¥ of operation symbols, each r of which has a (possibly infinite) arity ar (r).
Then for any set X (of constants, generators, indeterminates or variables as you please), there is

a set
X = JJx"®
r:

of terms of depth 1 built from these generators and operation symbols. With no generators, T
is the set of constants or nullary operation-symbols. Of course TT X is the set of terms of depth 2
and so on.

An algebra for these operation symbols is a carrier © that is equipped with an operation
©2 (") — @ for each symbol 7 : ¥. These may be combined into a single function on the disjoint



union:

0:T60 — 0.

In particular, at least in the case where all of the arities are finite, there is a term- or free
algebra that is obtained by forming the union A of all of the iterates of T, applied to the empty
set. Since we have already done so exhaustively, applying T" again to A yields the same thing, so

TA A

)

}

parse

where ev and parse are the operations of wrapping and unwrapping the outermost symbol of a
term.
Therefore,
b<a = (rb) € parse(a)

defines the immediate sub-term relation on A. Since A only consists of expressions that
are formed by repeated application of the operation symbols, this relation clearly satisfies the
“descending sequence” definition of well-foundedness.

Whilst pure mathematicians still typically do induction on the depth of such an expression
(¢f. Proposition , it is increasingly common for theoretical computer scientists and logicians
to say directly that this is structural induction or structural recursion on the expressions or
language instead.

Returning to Set Theory, the second idea that we want to develop is the following — at first
sight innocent — property of the €-relation:

Definition 1.8 A (well founded) binary relation < such that
Vab:A. (Vc:A. ¢c<a <= ¢=<b) = a=b

is called extenstonal. The analogous property of sub-terms in a free algebra is that the parse
map is one-to-one, because any term is uniquely determined by its sub-terms (and outermost
operation-symbol).

Remark 1.9 In this paper we will put the ideas of well-foundedness and extensionality in a more
powerful categorical setting. Together they explain many characteristic features of Set Theory,
even when stripped of what we might suppose to be its most important ingredients. They are also
important properties of term algebras, underlying the algorithm for unification, i.e. for assigning
(sub-)terms to indeterminates in two or more terms so that they match.

In Set Theory, when we form the “union” of two supposedly independent objects, we may
find that they already overlap. (Besides being bizarre from the point of view of any other kind
of mathematics, this is irritating for those who use set theory as a foundation.) The way that
unification “matches up” sub-terms is similar to the overlapping union.

We shall find in Section [7] that the category of extensional well founded structures and the
appropriate homomorphisms is actually a pre-order, i.e. there is at most one map between any
two objects. When we put two objects together, they (typically) have a non-empty intersection
(meet in this order) and therefore an “overlapping” union.

Remark 1.10 Applying universal algebra back to Set Theory, when we take (the functor) T to be
the (covariant) powerset P, we see that the terms of successive depth are just sets (€-structures).
We usually like to have free algebras for structures, which in this case would be the universal
set, but this does not exist as a legitimate object.

However, the extensional well founded structures are legitimate fragments of the universal set.
These are known in Set Theory as transitive sets, by which is meant those X for which

yerxeX —=yelX, but not necessarily zeyexe X = z€x.



The analogue in algebra is a collection of terms that includes all of their sub-terms This is a
familiar situation: a language processor such as a compiler forms just such a collection when it
parses a particular program or text.

Such structures are parts of the free algebra, whether the latter exists legitimately or not. More
precisely, the (possibly illegitimate) union (colimit) of the preorder of extensional well founded
structures is the free algebra.

Remark 1.11 Continuing with the fiction of the universal set, let’s use it as the target © of the
recursion theorem. Then, for any well founded relation (A, <), we may define

fa recursively as the set (€-structure) {fb|b=<a}.

Even if (A, <) was not extensional, the result is, because © is extensional by the axioms of Set
Theory.

Therefore, following Andrzej Mostowski [Mos49, Thm 3],
(a) any extensional well founded relation is isomorphic to a unique set (€-structure); and

(b) any well founded relation has an extensional quotient, with a suitable universal property.

The first of these obliges us to subscribe to the belief that a set is some particular thing, instead
of having a mathematical property that is shared by any isomorphic structure. (There is the same
distinction between von Neumann’s ordinals and Cantor’s well ordered sets.) Moreover, if we
admit that, then we commit ourselves even more deeply, because this €-structure is not defined
within Zermelo’s original Set Theory [ZerO8b], but requires the axiom-scheme of replacement.

Since we are not using Set Theory as our foundations, we do not need to be concerned with
that (as yet). On the other hand, the second statement is an ordinary theorem of higher order
logic. It’s a quotient, so we may construct it using an equivalence relation, albeit one that has a co-
recursive definition. This is done symbolically in Theorem [2.13] and in a more general categorical
form in Theorem [B.9

Remark 1.12 This discussion of whether Mostowski’s theorem requires Replacement or not is
a distraction. There undoubtedly are constructions that ordinary mathematicians do, but which
are not available in Zermelo Set Theory or its modern substitutes:

(a) It is common to iterate constructions, either over N or an ordinal, the simplest case being
UP™(N).

(b) By methods variously known as realisability, gluing or logical relations, one can compare the
term model of a logic system with a semantic one to prove consistency or completeness. Since
this seems to conflict with Godel’s Incompleteness Theorems, the recursion over the term
model must be one that goes beyond what that logic can prove for itself.

To give a categorical account of the axiom-scheme of replacement would go well beyond what
we can consider in this paper. We will make a proposal towards it in [Tay23] by demonstrating
how our categorical methods can define transfinite iteration of functors. Of course we cannot
construct this: we will simply add a new tool to the categorical lexicon. This will lie alongside,
for example, the definition of the subobject classifier in a category with finite limits, which defines
but does not construct an elementary topos.

Mostowski’s theorem is nevertheless the conceptual key to this, because our definition of trans-
finite iteration will be another example of the extensional quotient. However, this is in a framework
where we use categorical tools to generalise the notions of “injective” (and “surjective”) functions.
Sections [ and [8] explain how this is done.

Remark 1.13 Finally, since we have gone to the trouble of saying how induction and recursion
are schemes, we should also state our position vis ¢ vis the two traditions in Set Theory: one that
employs completed infinities (classes, universes, inaccessible cardinals) and another that eschews
them, developing potential infinities instead.



Completed infinities feature in ordinary mathematics in the form of free algebras, as we have
seen. André Joyal and Ieke Moerdijk [JM95], approaching the analysis of Set Theory from this
point of view, treated the universes of sets and of (three kinds of intuitionistic) ordinals as the free
algebras for the powerset functor together with “successor” functions having various properties.

It was their key contribution to model the small/large distinction using ideas that had been
developed in topology and sheaf theory to handle open maps. Their algebraic set theory has been
developed further by a number of authors [Awo13] and now gives a categorical account of several
highly powerful notions in Set Theory.

Type theories also commonly include (multiple) universes, because, when the motivations are
symbolic formulae, it is quite natural to internalise the whole system within itself. This is also
used to provide results that would otherwise be obtained impredicatively.

Our view, on the other hand, is in the tradition of potential infinities. We take on board the
fact that we cannot solve X = P(X), i.e. that there are functors such as the covariant powerset
that have no free algebra. In place of this, we characterise and work with fragments of what
ought to be the free algebra. In the case of the powerset, these fragments are the e-structures or
transitive sets of traditional Set Theory.

Working without completed infinities is also important if we want to understand Replacement,
because of the way that it can be dismissed as apparently trivial in the context of universes.
Somehow Replacement allows us to express very large things using small specifications, like an
architect’s plan for a skyscraper, even without an encompassing universe.

Remark 1.14 In this setting we therefore need to explain what we mean when we write Set
for the category of all sets (or whatever) and functors between such categories. Categorists
commonly and happily talk about these without being clear what they mean.

Plainly, to do sheaf theory we would need to consider functors F' : X°? — Set as legitimate
objects, and also collections of them. These are completed infinities, although they can in fact be
re-formulated to avoid this by considering fibrations F — X instead.

But we’re not going to do sheaf theory in this paper. For us, Set and other “large” categories
are not really the completed infinities of all objects but just a shorthand for the scheme that says
what it is to be an object or morphism of the relevant kind. Similarly, a functor is a process that
turns an object or morphism of one kind into one of the other, not the completed infinity that
collects all instances of this transformation.

2 A novel fixed point theorem

In order to prove our categorical generalisation of the recursion theorem we need to know about
order-theoretic fixed points. Here we also recall the properties of simulation and bisimulation that
both the set-theoretic membership relation and coalgebra homomorphisms obey.

The best known fixed point theorem is for complete (semi)lattices. It was stated tersely by
Bronistaw Knaster [Kna28| and later elaborated by Alfred Tarski [Tar55], but the key idea was
already a commonplace to Zermelo in 1908. In the same year as Knaster, von Neumann used it
in his proof of the Recursion Theorem [1.5

However, there are many systems, especially in algebra, where general (especially binary) joins
need not exist, or if they do they are unmanageably complicated. For example, in the proof that
we gave of the recursion theorem, step (e) pasted two partial functions together, relying on an
inductive argument in step (d) that they agree on their common domain.

We will generalise the recursion theorem to situations where these steps may not be valid, so
we need a more subtle result that avoids binary joins. Classically, this is accommodated by using
those of linear orders or chains, but for a constructive result we replace these with a looser notion:

Definition 2.1 Let (X, <) be a poset (partially ordered set), so the relation < is reflexive,
transitive and antisymmetric (x <y <z = x =vy). Then



(a) asubset I C X is directed if
dJr:X.xzel and Veyel.dzel.x < z2>y;

(b) (X, <) is a depo (directed-complete poset) if it has joins of all directed subsets, written \! or
; and
(c) it is a ¢po (inductive poset) if it also has a least element, written L or ().

If an endofunction s : X — X of an ipo preserves directed joins then there is another simple
fixed point property that is well known in universal algebra and the semantics of programming
languages, where it was promoted by Dana Scott. Here, however, we will only require the function s
to be monotone, i.c. to preserve order,

Ve,y: X. <y = sz <3y,

and also to be inflationary,
Ve: X. z < sz,

although there are numerous alternative names for these two properties.

Lemma 2.2 Any dcpo (X, <) has a greatest inflationary monotone endofunction, ¢t : X — X.
This is idempotent (Vz. t(tz) = ta) and its fixed points are exactly the points that are fixed by all
inflationary monotone endofunctions.

Proof Consider the poset Y of all inflationary monotone endofunctions of X, equipped with the
pointwise order,
r<ys = Va:X. rz<x sz

This inherits directed joins from the pointwise values in X. Also, id x is the least element of Y,
so Y is an ipo.
Now, for any r, s € Y, the composites ;s and s;r both lie above both r and s in the pointwise
order on Y, because
Ve, x < rx, st < r(sx), s(rx),

using both the inflationary and monotone properties.

Hence the whole of Y is directed.

Since Y is also directed-complete, it therefore has a greatest element, t : X — X.

Now, for any s € Y, the composites s;t and t;s are in Y too, so s;t >t < t;s by the previous
argument, but also s;t <t >t ;s since t is the greatest element of Y. Hence s;t =t =1¢;s and
in particular ¢t = ¢;¢.

Finally, if = tz then sz = s(tx) = ta = z for any s € Y. In particular x = ty satisfies this
for any y € X. (]

Our novel fixed point theorem incorporates the idea that recursion doesn’t “pause for a breather

and then start up again”, ¢f. Remark [1.6(d)

Theorem 2.3 Let s : X — X be an inflationary monotone endofunction of an ipo satisfying the
spectal condition that

Vey:X. z=sr < y=sy — zx=uy.

Then
) X has a greatest element, which we call T;

(a

(b) T is the unique fixed point of s;

(c) if L satisfies some predicate that is preserved by s and directed joins then this also holds
for T.



Proof By the Lemma, let ¢t : X — X be the greatest inflationary monotone endofunction. Then
Ve: X, 1L <z < sz < tx = s(tx),

whence Ve, tL = s(tl) < s(tz) = tz > =,

so the < is equality by the special condition and ¢L is the greatest element (T) and unique fixed
point.

For the final part, the subset U C X defined by the predicate is closed under 1, s and \f It
therefore satisfies the same properties as X itself, so it contains a fixed point, which must be the
same as the one in X. O

The innovation of using functions instead of subsets was made by Dito Pataraia in 1997, but
he never wrote it up formally himself and died in 2011 at the untimely age of 48 [Jib11]. His
original argument was more complicated but was simplified by Alex Simpson [JS97] and our new
“special condition” simplifies it further.

We call the third part of the conclusion Pataraia induction, although it was first exploited
in a constructive setting by Martin Escardé [Esc03, Thm 2.2].

It is easy but instructive to find examples where s fails to be monotone or inflationary and
there is no top element. We continue the discussion at the end of this section.

To illustrate the use of the Theorem, we now prove the analogous results for relations to those
that we later discuss for coalgebras, starting with a proof of the Recursion Theorem Some of
the intermediate steps are weaker, but note that the use of uniqueness is a novelty that will be
crucial in the categorical version:

Theorem 2.4 Let (A, <) be a carrier with a well founded binary relation and © another carrier
with a function 6 : PO — ©. Then there is a unique function f : A — © such that

Va:A.  fa = 0({fb|b=<a}).

Proof Initial segments, attempts and the successor operations on them are defined as before.

The poset (Seg, C) of initial segments of (A, <) has least (}) and greatest (A) elements and
directed unions; we will not use binary unions in this proof. Part (g) of the earlier version says
that the top element (A) is the unique fixed point of the successor, as in the special condition.

We haven’t used Pataraia’s Theorem so far, because we already have T, but we do use Pataraia
induction for the attempts:

There is another poset (Att, <) of attempts, which also has a least element and directed joins,
but it is not obvious that there is a greatest element or that it is total.

There is a “support” function Att — Seg, which commutes with L, s and \f

Next consider the successor operation on attempts (part (f)) more carefully: it doesn’t just
extend an attempt from an initial segment to its successor, but defines a bijection between attempts
with supports B and sB.

Now let ®(B) be the predicate on B € Seg which says that there is a unique attempt with
support B. Our remark about bijections means that @ is preserved by successor.

It also holds for ) € Seg and is preserved by directed unions, since these are colimits. We do
not need to consider binary unions. We deduce by Pataraia induction that ®(A) holds, i.e. there
is a unique attempt with total support. O

Another form of the first part of the proof does make use of the special condition and the first

two conclusions of Pataraia’s Theorem:

Lemma 2.5 Any binary relation (A, <) contains a largest well founded initial segment WA C A.

Proof This time we consider the poset WfSeg of well founded initial segments, which again has
a least element and directed unions, but no longer obviously a greatest element.
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The special condition is a relative version of part (g) of the original proof: if B’ = sB’ C B =
sB C A with B well founded then Vx € B. x € B’ by induction.
Hence WfSeg does have a greatest element by Pataraia’s Theorem. O

We now turn to extensional well founded relations, which are the basis of Cantor’s theory of
the ordinals and the €-structures of Set Theory. Since our point of view is that sets are partial
P-algebras, we adapt the recursion theorem to allow its target (0, 6) to be partial. This makes
it rather more complicated, so it is correspondingly less obvious that there is a greatest attempt.
Pataraia’s theorem comes to the rescue.

For this we need the notion, introduced by Mirimanoff as “isomorphisme”, that spells out
what equality of sets means for their elements, but it is nowadays best known in Process Algebra
[Sanll]:

Definition 2.6 A function f : B — A between sets with binary relations is called a simulation
if it has the “lifting” property

Va':A.Vb:B. a' <4 fb = J':B.d = fb' Ab <pb.
We may define a similar property for a relation (~) : B — A:
Vaa :A.Vb:B. d <aga Ab~a = W:B.V ~d AV <pb
and then ~ is a bisimulation if it also satisfies the symmetrical property,
Va:A. Vo' :B. b <a4b~a = Fa":A. b ~ad ANd <4 a.

Since this makes the empty relation a bisimulation, we need to be clear whether we are talking
about functions or relations.

Lemma 2.7 The bisimulation relations between any two sets with extensional well founded rela-
tions form an ipo under inclusion.

Proof The definition is finitary, so it is closed under directed unions. O

Lemma 2.8 The relative successor b= a of a bisimulation relation (~) : (B,<p) « (A4,<4)
is defined by

(Va’.a’ <aa=3.d ~V ANV <p b) A (Vb’.b’ <pb=3d.d ~b Nd <4 a).
It extends (~) and is also a bisimulation. If (A, <4) is extensional and (~) : B — A is functional,
(b'\/al) N (bNag) = a1 = ag,

then the successor (=) is functional too.
Proof Ifb~ai, b~ as and a’ < a; then I0'. 0 ~a’ AV <D, so

Wa" bV ~a <ay ANV ~d" <ay ANV <D,

in which @’ = a” since ~ is functional, so @’ < as. The converse is similar, so a; = as by

extensionality of A. O

Proposition 2.9 Between any two well founded relations (B, <p) and (A, <4) there is a greatest
bisimulation relation. If A is also extensional then the bisimulation is functional and if B is also
extensional then it is a partial bijection.

Proof To apply Pataraia induction, it remains to verify the special condition, so suppose that

Vab. avb < aRb=—a~b < a=xb

11



and (for induction)
Va't!. ad <aa ANV <gb Ad~V=1d V.
Then
ar~b = (Va’.a'<Aa:>5|b'.a’~b’Ab'<Bb) A ()
= (Vd'.d <aa=3.d ~b AV <pb) A (1) = a=Rb,
soa~b <= a-b. Thisis true for all a € A and b € B by well-foundedness of <4 and <p.

Hence, using extensionality, the greatest bisimulation is functional by Pataraia induction.
When this is so both ways it is a partial bijection. O

Section[7] goes on to show how, with the natural notion, all morphisms between extensional well
founded relations are mono, they from a preorder with meets and their joins are like set-theoretic
union. For classical ordinals, this is also the result that says that one must be an initial segment
of the other, in a unique way [Can97, §13 Thms N&E].

Proposition said that well-foundedness is reflected by order-preserving functions and in
particular is inherited by initial segments, c¢f. Theorem There is a simpler result about the
induction premise that will be an important tool (Lemma [5.1]) in our categorical construction:

Lemma 2.10 Substitution along simulation functions preserves the induction premise.

Proof Let f: (B,<) — (4,<) be a simulation function and ¢ a predicate on A that satisfies
the induction premise (Definition ,

Va. (Vd'. d' <a= ¢a') = ¢a.
Put ¥ = f*¢, so ¥b = ¢(fb), and suppose that it satisfies the induction hypothesis
V. b < b= b’

for b: B. Let a’ : A be such that @’ < a = fb. Then, since f is a simulation, there is some lifting
b : B with @’ = fb' and b’ < b. By the induction hypothesis for B at b, this satisfies 1)0’, which is

o(fb') or ¢a’.
Hence we have proved the induction hypothesis for ¢ on A at a = fb. It follows from the
induction premise for A that ¢a = ¢(fb) = 1vb. Therefore we have proved that

Vb, (V0. b < b= b)) = b,
which is the induction premise for B. O

Corollary 2.11 Surjective simulation functions preserve well-foundedness.
Proof If (B, <) is well founded, f is surjective and ¢ obeys the induction premise for A in the
Lemma then Vb. b and Va. 3b. a = fb, whence Va. ¢pa [Tay96al, Lemma 2.7]. O

Now we have further applications of Pataraia’s theorem:

Lemma 2.12 Any simulation function f : (B,<) — (A, <) from an extensional well founded
relation to any binary relation whatever is 1-1.

Proof For any initial segment C' C B, let ®(C) be the predicate that the composite C — B — A
is 1-1. This holds for C = () and is inherited by directed unions.

Suppose ®(C') holds and let by, by € sC with fb; = fby € A.

Since f is a simulation function, the trivial statement a < fb; <= a < fbs becomes

BV, a = fb, AV <b) = (h.a=fby A by <by),
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in which we must have fb} = fbtS,. By construction of sC, we have b}, b5 € C, so b} = b}, by &(C).
Hence
vo'. b < by <— b < b,

so by = by by extensionality of B. So we have proved ®(sC). The special condition is as in
Lemma so Pataraia induction gives ®(B), which is that f: B — A is 1-1. O

We use these two results to prove our version of Mostowski’s theorem (Remark [[.11), which is
that any well founded relation may be made extensional by forming the quotient by an equivalence
relation. This replaces the ad hoc references to co-recursion in [Tay96a, Thm 2.11] with Pataraia
induction. Theorem is the generalisation to coalgebras.

Theorem 2.13 Let (X, <) be a well founded relation,

h
(E,<) = X//‘\/ ................... > (E/’</)

4
(X, =)

Then there is an extensional well founded relation (E, <) and a surjective simulation function
f : X — E, with the universal property that, for any simulation function ¢ : X — E’, where
(E',<’) is extensional and well founded, there is a unique simulation function h : E — E’ such
that g =ho f.
Proof First consider the universal property. Extensionality of E’ at g(z) and g¢(y), where
z,y € X, says

[Ve'.e' < g(z) & ¢ <'gly)] = g(z)=g(y).

Write © ~ y for g(x) = g(y) and use Definition By an argument similar to Lemma
(Vo' <z. 3 <y 2’ ~y) AN (VW <y 32 <22 ~y) = z~y,

which is a bisimulation relation. By Proposition there is a greatest of these and by Pataraia
induction it is reflexive, symmetric and transitive (an equivalence relation).
The order relation on the quotient X/(~) is defined by

] <[yl = . ox~y =<y

Then X — X/(~) preserves < and is a surjective simulation function. Hence X/(~) is well
founded by Corollary 2:11]

Since ~ is fixed by the successor operation, X/(~) is extensional. Moreover, for any denser
equivalence relation =2, the quotient X/(~) — X/~ is a simulation function out of an extensional
well founded relation, so it is 1-1 by Lemma [2.12] and therefore bijective. O

This is as much as is required as an introduction to the remaining sections of the paper: the
rest of this section is a largely historical commentary on fixed point theorems.

Remark 2.14 Theorems like Pataraia’s are usually stated without our special condition, conclud-
ing instead that s has a least fixed point, but there may be lots of other stuff above and alongside
it. We presented the argument as we did in part because it is simpler to deduce the least fixed
point result from our version than wice versa.

But principally, our tool is meant to be a scalpel, not a sledgehammer.

We introduced the special condition because, as the applications have shown, the objective is
often to prove that there is a top element in some system. Plainly if the fixed point is unique
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then the special condition must hold, but to prove uniqueness we would normally postulate two
candidates without assuming any a priori relation between them. The special condition says that
we may suppose that they are in the order relation. Compare this with Tarski’s version [Tar55],
where is a lattice of fixed points, so our condition reduces that to just one.

There must have been some kind of “refinement” of the raw setting to make it satisfy our
special condition. In our examples this done by assuming well-foundedness in some form.

Remark 2.15 One general way of performing this refinement would be to say that the ipo X to
which we apply our version is obtained from a larger one as the subset generated by 1, s and joins
of either directed subsets or chains.

The classical forerunner of Pataraia’s Theorem did exactly that. Ernst Witt [Wit51] and the
Bourbaki group [Bou49] showed that this subset is itself a chain (linear order), in fact

Ve,y: X. y<z V sz <y.

Hence it has a greatest element and is indeed well ordered. It therefore satisfies what we have
called Pataraia induction, and Hartogs’ lemma is no longer needed.

Once again, the credit really belongs to Ernst Zermelo [Zer(8a]: see the last paragraph on
page 184 of [vH67], which proves this property, albeit for descending chains of subsets. There
sA=A" = A—{¢(A)}, where ¢ : P*(M) — M is the choice function.

So the historical question is why this result, which should have been in the core of the curricu-
lum, kept being re-discovered, starting with [Hes08|, §125], and then re-buried under crude ordinal
recursion.

You may perhaps understand this if you try to find your own proof: in contrast to the simplicity
of Pataraia’s Theorem, the Bourbaki-Witt property is surprisingly awkward, because the natural
induction step swaps the two variables and cases. On the other hand, once you find one proof and
then study the literature, you will see that there are multiple strategies. Walter Felscher identified
a principle of double induction to handle this [Fel62], claiming that it underlay earlier versions.
This too was forgotten and re-discovered.

As for constructivity, Todd Wilson has shown that the double induction argument does not use
excluded middle [Wil01]. However, the resulting notion of well-ordering just says that every inhab-
ited subset has a least element, as in Cantor’s condition, but this is not enough for intuitionistic
induction.

Returning to Definition Andrej Bauer and Peter LeFanu Lumsdaine have investigated the
difference between joins of chains and of directed subsets in the effective topos [Bau09l, [BL12].
From this, the Bourbaki-Witt property is definitely classical.

Forming the subset generated in this way requires second order logic, but there is a first order
way of defining a (possibly larger but) suitable subset. This uses the poset translation of the
categorical notion of well founded coalgebra that we introduce in the next section.

Proposition 2.16 Let (X, <) be an ipo that also has binary meets (A) and s : X — X a monotone
endofunction. We say that z : X is a well founded element if

z < sx and Vu: X. (suhz < u) = z < u.

Then there is a greatest well founded element, which is the least fixed point of s and satisfies
Pataraia induction.

Proof The subset of well founded elements satisfies the hypotheses of Pataraia’s Theorem,
including the special condition. O

Proposition 2.17 Let (A, <) be any set with a binary relation and

sX = {a:A|Vh:A. b<a=be X}
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the successor operation from Theorem on the full powerset PA. Then X is a well founded
element iff it is an initial segment on which < is a well founded relation.

Proof It is an initial segment iff X C sX and the induction premise for U is sUNX Cc U. O

We have not exploited well founded elements in this paper, but doing so might simplify our
definitions and proofs further, eliminating the special condition. However, its use in Theorem
does not apparently follow directly from well-foundedness, even though it did in the analogous

Lemma 2.12]

Remark 2.18 We have already explained why it is not legitimate to use ordinals to prove the
Recursion Theorem. Indeed, if you do so and make full disclosure of the relevant proofs (by von
Neumann and Hartogs) down to your chosen foundations (Zermelo [ZerO8b], maybe), you will see
that Pataraia’s proof is much simpler.

It is also intuitionistically valid.

But even if you don’t care about using Excluded Middle, maybe you agree with G.H. Hardy’s
maxim that “there is no permanent place in the world for ugly mathematics” [Har4(Q, §10]. The
classical theory of the ordinals is ugly and heavy: Pataraia’s proof is much prettier.

We have already given a neater complete proof of the validity of ordinal recursion in this section,
but (unless you really need the value at some random polynomial in w) its uses in other places
throughout mathematics could very probably be reduced to simpler and more natural arguments
using Pataraia’s Theorem instead.

At a more elementary level, our hypotheses are very similar to those of the famous “lemma”
for which Max Zorn denied responsibility [Cam78| [Zor35], but which has dominated the literature
on fixed points. It is very easy to deduce our Theorem from that assumption. Conversely, in the
situation where a maximal element that has been found a la Zorn turns out to be unique up to
unique isomorphism, it may be possible to adapt the proof of the latter fact to verify our special
condition instead, which would eliminate the axiom of choice from the construction.

However passionately we advocate more subtle methods, people will still regress to ordinal
recursion and even misreport others” work. Kazimierz Kuratowski [Kur22] argued this a century
ago, with worked examples and references from Set Theory, topology and measure theory, saying
repeatedly that he was doing induction. Sadly, even he, much later in his career, based his textbook
on the usual transfinite stuff [Kur61].

For further studies of the history of the fixed point theorem see [Blal4l, [Cam78] [Fel62).

Remark 2.19 Finally, Lemma [2.2] constructs the inflationary monotone function ¢ as the join
of all such, so it is tmpredicative. Indeed, the directed set Y is much bigger than the X that
we required to be directed-complete. Possibly related is that there seems to be no categorical or
“proof-relevant” version.

This is an issue in some understandings of constructivity that we will not address in this paper.
If you would like to do so, note that we will not repeat this sin, so it is just that Lemma that you
will need to replace. One might imagine obtaining it from the proof instead of the fact that a
dcpo is well formed.

Proof theorists apparently have a different conception of ordinals from the one in the set-
theoretic tradition, generated more like infinitary algebra, cf. Remark We therefore believe
that the categorical reformulation that we are about to develop would continue to be of value to
do this, in some more predicative category than Set.

3 Well founded coalgebras

We now show how the ideas from Set Theory, universal algebra and process algebra in the previous
two sections can be expressed in category theory. We build on the work of Christian Mikkelsen
and Gerhard Osius. This was done in the years following the introduction of the notion of an
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elementary topos by Bill Lawvere and Myles Tierney [Law70], when the key issues were to optimise
the categorical axioms and show that toposes could do anything that sets could do.

The main part of Mikkelsen’s thesis [Mik76] gave an important simplification of the categorical
definition of a topos, showing how colimits could be derived from limits (although this was eclipsed
by Robert Paré’s monadicity result [Par74]), after his supervisor Anders Kock had derived expo-
nentials from powersets [KMT4]. As an appendix, he gave the first proof of the recursion theorem
in a topos, in a very “diagrammatic” style; apparently he devised the argument himself, not having
known von Neumann’s Theorem [L.5

Gerhard Osius was one of several people who demonstrated how to interpret “ordinary” mathe-
matical notation (higher order logic) in a topos. The aspect of this that was not also done by other
authors was was to take &-structures seriously as mathematical objects in a categorical setting
[Osi74, §§4&6]. He also summarised Mikkelsen’s proof of the recursion theorem in more familiar
notation [Osi75, §6].

It is a pity that neither of them continued studying categorical logic: Osius became a professor
of statistics (and died in 2019) and Mikkelsen a schoolteacher, having been unable to find a
permanent university job.

The extension of their theory to any endofunctor 7" of a topos that preserves inverse images
was made in [Tay99, §6.3] and sketched for other categories in [Tay96b]. In this paper we weaken
the requirement on T to preservation of mono(morphism)s, but in the next section we show how
the latter may be replaced by special notions of inclusion in other categories.

We give precise references to some corresponding results in these earlier works, for historical
comparison, but the ones here are often much more general. (Unfortunately, I mis-attributed
Mikkelsen’s work to Osius in my earlier work.)

We work throughout in the logic of an elementary topos S, remembering to thank Osius and
others for allowing us to write this in the vernacular of mathematics. You may therefore treat
S as Set, except that we do not use Excluded Middle or the Axiom of Choice, although the key
Lemma [2.2] is impredicative.

So far, we have discussed a binary relation on a carrier A. There are many ways of representing
a relation in category or type theory, but the one that we choose is as a function (morphism)

A-—2>PA by ar—>{b|b=<a}CA

This is directly analogous to the parse operation for a free algebra (Remark , where < or €
correspond to the immediate sub-term relation.

We can do the same for any functor 7" whatever, although we will throughout require it to
preserve monos:

Definition 3.1 A coalgebra for an endofunctor T': C — C of any category is an object A of C
together with a morphism a: A —> T A. We say (provisionally) that (4, @) is extensional if «
is mono in C, ¢f. Definition [I.§

rf

TA TB

o B
f

A——> B

A homomorphism of coalgebras is a C-morphism f : A — B that makes the square commute,
which we indicate by the triangle arrowhead. We mark the structure map « in the same way
because it is a homomorphism to (T'A, Ta). We write CoAlg or just CoAlg for the category of
coalgebras and homomorphisms.

16



This paper develops an entire theory that is remarkably similar to Set Theory, but just using
a functor that need have hardly any of the properties of the powerset. This alone is a massive
declaration of foundational autonomy. Nevertheless, to relate coalgebras to the background in Set
Theory, we first need a full understanding of the powerset as a functor in a topos:

Notation 3.2 The covariant powerset functor P : S — S is defined on an object X by
PX =X and on a function f: X — Y by

PrU = {fz|zeU} = {y:Y|I:X.y=frAzeU}CY

for U € X. We shall also need to define, for V C Y,
v
LU

{z:X|fzeV}
{y:Y|Vo:X. fr=y=z€U}.

These also provide the morphism parts of functors S — S that are respectively contravariant and
covariant, since (g; f)*W = f*(¢*W) and (g; f).U = ¢.(f«U). More importantly for us, there
are (order-)adjunctions

Ur—>X PX
f PfIA A fs
Vo———>Y PY.

Diagrammatically, Pf and f* are given by composition and pullback respectively. The logical
formulae that define PfU and f,U are the same except that one involves an existential and the
other a universal quantifier. We will use f, in Section [0 O

Gerhard Osius’s principal insight was to characterise set-theoretic inclusions as homomorphisms
of extensional recursive P-coalgebras [Osi74 §6], although we will replace recursion with well-
foundedness.

Lemma 3.3 A function f : (B,<p) — (A, <4) is a homomorphism of P-coalgebras iff it is strictly
monotone, i.e. it preserves the binary relation as in Proposition [I.4]

Vbl,bgiB. b1 <p by = fbl <A fbg7
and a simulation (Definition ,
Va':A.Vb:B. d <4 fb = FW:B.d = fV' ANV <pb.

B =B

B—" >7PB 39’ ................... > b B
f > |Pf f foof
A——>PA a ———> fb A

In this case, the relation (a ~ b) = (a = fb) is actually a bisimulation.
Proof The inclusion 8;Pf C f;« (as marked in the diagram on the left) holds iff f is strictly
monotone and the reverse inclusion (illustrated on the right) iff f is a simulation. For a bisimulation

we also require
Vab'.b' <pb A fo=a=3d. = fa' N d <4a,
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but this follows from strict monotonicity, with o’ = fo/ <4 fb = a. O

Corollary 3.4 If f : B C A is a subcoalgebra inclusion then the lifting is unique, so being a
homomorphism says that B carries the restriction of < from A and is down-closed or an initial
segment,

Yab:A. a<beB = a€ B,

just as we have used in the proof of the recursion theorem. O
Observe that (infinitary) directed unions of initial segments can only build ascending —<-
sequences.

We are ready to formulate the two concepts that are connected by our main result.

Definition 3.5 A coalgebra a: A — T A is well founded if in any pullback diagram in the
category C of the form

-
TU ! TA
Q
_l . .
H—J) Spys—"' -4

the maps ¢ and therefore j are necessarily isomorphisms. To clarify, we mean that when we form
the pullback H of T and «, the map H — A factors through ¢ : U — A.

We write WfCoAlg, or just WfCoAlg for the category of well founded coalgebras and
coalgebra homomorphisms. The “scheme” issues in Remark [I.2] will be considered in the next
section.

Essentially this “broken pullback” appears (with 7' = P) on page 99 of [Mik76] and it is written
symbolically as a~}(PU) C U = U = A in [Osi74} §4] and [Osi75, Prop 6.1]. It was first given
as the definition of well-foundedness in [Tay96b], [Tay99].

The result that justifies this name is implicit in the work of Mikkelsen and Osius, but not very
clearly expressed there:

Proposition 3.6 A binary relation (A, <) is well founded in the earlier sense iff the corresponding
(A, @) is a well founded P-coalgebra.

Proof Write U = {x: A| ¢z} for some predicate ¢ defined on A.
An element (a,V) € H C A x TU of the pullback consists of a : A and V C U C A such that

afa) = {z:A|lz<a} = W

Thus V is determined uniquely by a (and the structure o : A —> T'A), but for such a V to exist,
a must satisfy
{z:Alz=<a} C U, ie. Vr:A. z<a= ¢z.

The pullback H therefore corresponds to the induction hypothesis (Definition .

The induction premise is that, for each such a : A that satisfies the hypothesis, we have a € U
or ¢a. In the diagram this means that H C U. The tight induction premise corresponds to having
H = U instead; this makes U C A a subcoalgebra for which the square is a pullback.

Well-foundedness of the coalgebra says that whenever we have a diagram of this form then
U = A, just as the induction scheme says that whenever the premise holds then we must have
Va:A. ¢a. O

We also have agreement with Definition [2.16}
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Proposition 3.7 The relative successor can be defined on subobjects of the carrier of a coalgebra.
Then such a subobject is a well founded element iff it is a well founded subcoalgebra.

Tj Ti
TU < J TB—"' o TA
yaN
«

- B
sU < sB—\ — A
AN paN
i
J_l U id U
H U< B > B

Proof Given a coalgebra a: A —> T A and a subobject i : B —— A of its carrier, the (upper
right) pullback sB is the successor subobject. The condition B < sB on subobjects is the lower
right square; this is equivalent to having a subcoalgebra structure 3, by composition and pullback.
Now let U —— B be a subobject of the carrier B, so its successor sU is defined in the same
way. Then the pullback H of TU and B factors through sU and states both
esUNB=H CU for B to be a well founded element and

e the broken pullback for (Bf) to be a well founded coalgebra. O

The other side of the main result is recursion:

Definition 3.8 A coalgebra o« : A —> T' A obeys the recursion scheme if, for every algebra
0 : TO — O, there is a unique map f : A — © such that the square

T
ra L e

f

A————0

commutes. The notion is a scheme because we only ever consider particular algebras (0,0). A
map of this kind has also been called a coalgebra-to-algebra homomorphism [Epp03].
To obtain parametric recursion, in which the top line is replaced by

Tfxid:TAxA—>T0O x A,

we just need to make Lemma [6.5] a bit more complicated. In fact Mikkelsen had an even more
general recursion scheme than this, although still with T'= P [Mik76, pp 98-99] [Osi75l, Def 6.2].
Osius’s account of categorical Set Theory [Osi74] used recursion instead of well-foundedness (in-
duction).

Example 3.9 The predecessor and test for zero function define a coalgebra on N for the functor
TX =14 X on S. Then recursion defines f : N — © by the two cases

f0 = 6(%) and fn = 0(f(n-1)).

In a topos, well-foundedness is necessary for recursion [Mik76, p 100] [Osi75, Prop 6.3] [Tay99,
Exercise 6.14]:
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Proposition 3.10 In a topos, if &« : A —> T'A obeys the recursion scheme then it is well founded.

Proof The subobject classifier (set of truth values) © = Q = P(1) carries an algebra structure
for any operation whatever, namely by interpreting it as (infinitary) conjunction or universal
quantification. Then f: A — © is a homomorphism iff

fa <— (Vm.x%a:\fx).

This is the tight (&) version of the induction premise, whilst the constant function f :a— T is
also a homomorphism. So uniqueness of f amounts to the induction scheme.

H TU T1 1 U
| | | L
Ti TT T i
T =
A oTA S gl S

This argument generalises. Let 6 : TQ) —  be the characteristic function of the subset T'T :
T1 — T, where T : 1 — € is the element “true”. The induction premise is a; Tf ;0 = f and
the tight premise has equality (bi-implication), but this is also satisfied by the constant function
with value T. O

Remark 3.11 This result should be treated with circumspection, because taking the object of
truth values as the target algebra means that we are relying on higher order logic. (This point is
obscured classically by the identification of Q with a discrete two-element set.)

For example, induction for the predicate ¢px = (x £ x) shows that well founded relations must
be irreflerive. However, this makes the idea too clumsy to analyse fized points of iteration, as we
might hope to do in future applications of the theory.

On the other hand, experience shows that we must count ourselves lucky to find a condition
for termination of a heavily recursive program which is sufficient for the case at hand: asking for
it to be necessary as well is too much.

Remark [£.1§ replaces higher order  with similar objects for particular logical complexity
levels.

In Remark we made an analogy between Set Theory and term algebras. The tools that we
now have already show us how to formalise this:

Lemma 3.12 Let k : T — P be a natural transformation whose naturality squares are pullbacks,
between endofunctors of a category with pullbacks. (Such k is called a cartesian transforma-
tion.) Then oo : A —> T'A is a well founded T-coalgebra iff ;x4 : A — PA is a well founded
P-coalgebra. If k4 is mono then the notions of extensionality coincide too.

Pi

PU PA
Ry KA
] Ti
TU ! TA
N
Q
] i

H U A
Proof Since the upper rectangle is a pullback, the whole diagram is one iff the lower rectangle
is. That is, the induction hypothesis H is the same for P as for T' [Tay96b}, Prop 7.4]. O
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Proposition 3.13 Let 7' : S — S. Then there is a natural transformation x : T — P that is
cartesian with respect to monos (as above) iff T' preserves arbitrary intersections.
Such T was called an analytic functor in [Joy87] since it has a “power series” representation.

Proof For any set X and ¢t :TX, define kx : TX — PX by
kx(t) = (WUCX|[teTU} = {a:X|VUCX.teTU=zcU}

Now (t,V) € TA x PU lies in the pullback iff V= kx(t) C U. If T preserves intersections, this
happens iff t € TU.

P((\U:) =———=\PU: PU; PA
Hni U; KU, KA
() U;|>—> (71U TUi_l TA

The condition is necessary because P preserves arbitrary intersections and pullbacks commute
with them [Tay96bj, Prop 7.5]. O

4 Categorical requirements

Our theory applies to an endofunctor T' that preserves monos, but we have not yet said anything
about what we require of the category C on which it acts. Beyond that, as we generalise C further
and further away from Set, we find that it have many different kinds of “inclusions” that (have
but) are not necessarily characterised by the standard cancellation property that defines (what we
shall call plain) monos in a category.

Besides the functor T', the freedom to choose different categories and notions of mono in them
gives considerable power to this theory.

We address those questions in this section, but really this is a technical analysis of the proof
to follow. Therefore, even if you are proficient in categorical logic, it would still be better to
understand the next two or three sections grosso modo before reading this one, so that you can
see why the following subtleties are needed. So, this is like the configuration section of a piece
of software, that logically has to come first, but which you must not touch until you know what
you're doing.

On first reading, you should therefore simply take C = S = Set, read both arrowtails as
injective functions and assume that the functor T : Set — Set preserves them. Then you may
omit this section.

The simplest statement of more general but sufficient conditions is this:

Provisional assumption 4.1 The category C
a) has inverse images (pullbacks) of monos along coalgebra homomorphisms;
)

(
(b) has an initial object () and all maps ) — X are mono;
(c¢) has directed unions of subobjects (Definition [2.1)), and
(d) is well powered, whilst
(e) the functor T : C — C preserves monos.

Besides defining “unions” and “well powered”, we also need to examine all of these assumptions
more carefully.

We will use some other finite limits in C, but only incidentally, not as part of the proof of
our main theorem: Lemma uses binary products to show how to handle parametric recursion.
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Lemma [6.4] uses equalisers to prove uniqueness of recursion, but we can deduce that in another
way, without using them. The terminal object 1 is never used.

Much of this section is about replacing the “monos” in (a,e) with some special class of maps
that we use for “predicates” and those in (b,c,d) with another possibly smaller class of “initial
segments” .

Remark 4.2 Any category of finitary algebras satisfies (a,c,d), but part (b) is more delicate.
Recall from universal algebra that, in an appropriately constructed category of algebras, the
wnitial object typically arises as the collection of terms generated by a given set of symbols
(¢f. Remark [1.7).

We can mimic this for any object I of any category: Working instead with the (coslice or
cocomma) category whose objects are monos I — X and whose morphisms are commutative
triangles, the initial object is id ; and all maps out of it are monos. This construction leaves the
other provisional assumptions intact, because the subobjects, inverse images and directed unions
in the coslice are essentially the same as those in the original category.

For example, the category of fields does not meet our requirements as it stands, but cutting
it down to those of a particular characteristic does: this selects one of the components of the
category and then Q or F, is the initial object. We also need to fix the characteristic if we want
to work with rings (or commutative rings), because that ensures that all maps from the initial
object (Z or Z,,) are mono.

Our main Recursion Theorem [I.5| works by building up partial maps from the empty one. This
means in particular that the initial object must serve as the least subobject of any object. This is
why maps out of the initial object need to be mono, which is not the case for the initial ring Z.

More generally, in order to combine partial maps we need to make the colimits of monos in
the category behave like unions of subobjects of each object. So we first need to be clear what
“unions” are in general; this is rather basic category theory (of the kind that makes it a far superior
foundational tool to Set Theory) but I cannot find an attribution for it.

Definition 4.3 A union in a category is a diagram or its colimit such that
(a) the maps in the diagram are mono;

(b) the maps in the colimiting cocone are mono;
(c) for any other cocone consisting of monos, the colimit mediator is also mono.

Proposition 4.4 Set (or any topos S) has directed unions.

Proof (Sketch) A colimit in Set is given by the quotient of a coproduct by an equivalence
relation that is obtained from the diagram. The different components of a coproduct are disjoint.

Two elements are identified in the colimiting cocone iff they are linked by a finite zig-zag in
the relation. Since the diagram is directed, it has some further stage (beyond the zig-zag but still
within the diagram) that is a cocone over the zig-zag. Since this cocone consists of monos, the
two elements were already equal.

Now consider the kernel (pullback against itself) of the mediator to any other cocone of monos.
Since colimits are stable under pullback, this kernel is a doubly-indexed union. But since the
diagram is directed, this is equivalent to a singly-indexed union, which is in fact the original
diagram. Hence the projections from the kernel are isomorphisms and so the mediator is mono. (I

In other categories, the second part of the argument shows that the mediators in Defini-
tion are plain monos whenever colimits are stable under pullback. But this is not sufficient
for other kinds of inclusions. We give the analogous results for pushouts in a (pre)topos more
formally in Section

To emphasise the importance of this property, we give an example of its failure:

Example 4.5 The union requirement fails for Set°P.
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Proof It is clearer to discuss the dual categorical properties in Set itself.

Classically, all maps X — 1 are epi, except when X = (). All maps in a limiting cone over a
cofiltered diagram of epis are epi, if we assume the axiom of choice.

However, Choice and excluded middle do not help in making the mediator epi too. Consider
the following chain diagram, in which each column denotes a set and the successive maps between
the finite sets squash the top two elements:

J\ S > NT 3 2 1

Its limit is N, but there is also a cone of epis with vertex N, but for which T is not in the image
of the mediator, i.e. this is not surjective onto N .
Example considers pullbacks. O

Remark 4.6 Venanzio Capretta, Tarmo Uustalu and Varmo Vene considered the categorical dual
of our notion of well founded coalgebra, which they called an antifounded algebra [CUVQ9].
They presented a number of illuminating counterexamples that falsify our main recursion theorem
unless we put other conditions on the category. Their simplest example is that suc : TN — N is
an antifounded algebra for T' = id : Set — Set, but there is no homomorphism from the trivial
coalgebra id : 1 — T'1, because its value should be the fixed point of suc, which we would like to
be T in NT. It would be instructive to compare their other counterexamples to our proofs, to see
the necessity of the conditions in this section. O

Definition 4.7 A category is well powered if, for each object X, there is a “set” of isomorphism
classes of monos U —— X.

On the face of it, the word “set” is an embarrassment, given that we aim to eliminate Set
Theory from mathematical foundations. But, as mathematicians, we pay our words extra to mean
what we want them to mean [Car72l Chapter 6]. In general, we do this by specifying the ways in
which we intend to use them, i.e. the axioms.

A “set” of objects is not a chaotic jumble but a single object that is dependent on some
parameter. In the geometric tradition, this arose as the object (such as a tangent space) varied
from one place to another in a space. In type theory (and indeed longstanding symbolic usage in
real analysis), it simply means a formula containing an unknown.

What we require of dependency is just to be able to substitute other formulae for the unknown
parameter. This parameter has a certain type. Such types and their formulae form a category S,
called the base, which may be Set, an elementary topos or even something simpler. Then, for
each type I' in S, the objects whose parameter is of type I' together form the fibre over I'.

Substitution of a formula for a parameter (or along a morphism f) is an operation f* on
dependent objects. There are two techniques for capturing how f* takes one fibre to another:

(a) if we consider the fibres as separate structures, they are the object part and f* is the morphism
part of a functor that is contravariant in f, giving an indexed structure; but

(b) the fibres may be combined into a single structure, called a fibration, in which f* acts by
pullback.

The account that develops well-poweredness in most detail, in the indexed style, is [PST§|, although
its goal is the adjoint functor theorem rather than our needs. The indexed approach has to contend
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with choices of isomorphic objects, which the fibred one avoids, but at greater learning cost. Brief
accounts in the fibred style are in [Joh02, Example B1.3.14] and [Str05) §11]. Unfortunately, both
techniques have rather obscure notation and huge diagrams, so, since we already have some very
complicated ones, we will content ourselves a verbal description of how they work.

Definition 4.8 A generic object GG is a parametric one that has the universal property that any
particular object P is obtained as P = f*(, by substitution of a value for the parameter in the
generic one, The morphism f that achieves this is called the name of P.

The type of names is an object of the base category S and the generic object belongs to the
fibre over this type. In particular, when the “objects” in question are monos i : U — X targeted
at a particular object X of C, the type of names is called Sub (X) and the generic subobject of X
belongs to the fibre over this type.

Using the definition of genericity, any external structure that respects substitution induces an
internal structure on the type of names in S. For example, triangles of monos in C give rise to
an internal order on Sub (X). In this sense we say that the external structure is equivalent to an
internal one.

It is instructive to draw a few of these diagrams to show how, for example, pullbacks in C yield
meets in Sub (X)), making it an internal semilattice in S. Then you will see that Sub (X) is like the
handle of a marionette, with manoeuvres linked to the actions of the doll. With practice, we can
just describe what the doll does, so long as we remember how it does it. We don’t write out the
diagram of strings because it conveys comparatively little information per cm? and is not really
needed. In fact, the doll is well powered exactly when it is impotent, being able to do no more nor
less than what the puppeteer makes it do.

Nevertheless, there is perhaps a PhD in collecting the applications of well powered categories
from the literature and formalising results such as Proposition This account would be
analogous to those by Osius and others on the logic of a topos; indeed the subobject classifier
provides the generic mono in a topos. We do not use universes (types of types) here, but they can
be presented categorically in a similar way, although without uniqueness of names.

Corollary 4.9 Any construction on a generic object that respects substitution corresponds
uniquely to a morphism of the base category. In particular, the construction of one subobject
of X from another corresponds to an endomorphism of Sub (X).

Proof An operation on a parametric object yields another object with the same parameter, i.e. in
the same fibre, whilst binary operations such as categorical products combine the parameters using
pullbacks in §. We then use the universal property of the generic object of the resulting kind to
define the morphism of the base category. O

So far we have only discussed finitary structure such as composition and pullback. The original
reason for requiring a “small” set of subobjects was so that we could legitimately form their union.

Proposition 4.10 External S-indexed unions in a well powered category C correspond to joins
in Sub (X).
Proof Any of the accounts of indexed and fibred categories explains how they handle colimits.
Of course the “set” of objects of which we form the colimit is a single parametric one as before. In
fact, the union operation is left adjoint to substitution and has an even simpler characterisation
in that the opposite of the fibration functor is also a fibration.

The universal property of the generic subobject translates this into a join in the internal poset

Sub (X). O

Remark 4.11 Pataraia’s Theorem is for internal ipos in S. The role of the union and
well powered conditions that we have described is to provide an equivalence amongst external
colimits and unions and internal joins. The same link also relates constructions in C to morphisms
between objects of S. In particular, the “relative successor” that we construct in the category in
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Constructions [5.6ff and [6.5] corresponds to a monotone inflationary endofunction of the internal
ipo.

This has a fixed point by Pataraia’s Theorem, which is valid precisely because the well powered
condition turns colimits into joins in the object Sub (X) that is an internal poset in a topos. We
translate this back into the category, as an object on which the construction yields an isomorphic
object. O

Remark 4.12 There is yet another reason why we need a “set” of subobjects, namely to justify
universal quantification over them as predicates. (In Set Theory this distinction is known as
unbounded versus bounded quantification.)

When we introduced well-foundedness in Definitions [1.1| and we called it a scheme, which
means a property that we assert for each individual predicate ¢. We will develop the general
theory of well-foundedness in this way.

On the other hand, when we come to apply well-foundedness in the proof of our main theorem,
we need it to be a single legitimate property in the logic of an elementary topos. For this it cannot
be a scheme but must be quantified over all predicates ¢.

Once again, by a “set” of predicates we mean a single generic predicate with a parameter.
Well-foundedness with respect to a particular predicate ¢ is expressed in Sub (X) as above, with
a parameter ¢. Universal quantification over ¢ is now the right adjoint to substitution for ¢, as is
amply explained in the topos literature, c¢f. Notation [3.2) O

Remark 4.13 We now turn to investigating the classes of “inclusions” that we might use in place
of plain categorical monos when applying our ideas to objects with richer structure than sets have.
We will use inclusions for three purposes in this paper:

(a) as the extents of predicates that test well-foundedness;

(b) as the inclusions of subcoalgebras that are the supports of attempts; and

(c) as the structure maps of extensional coalgebras.

All supports must be predicates to prove totality of recursion (Lemma [5.8)), whilst supports
and extensionality are thoroughly mixed up in Construction [7.5, so we must treat these as the
same thing. Therefore we potentially have two classes of inclusions, one contained in the other,
and we write

>—> for predicates and <—> for supports and extensionality.

It is tempting (thinking in terms of so-called Descriptive Set Theory) to call U >— X a subspace
and U —— X an open subspace of X. Unfortunately, this need not be the same as an open
subspace in whatever topology the object X might carry.

Beware that these two classes of monos are additional structure for the situation, along with
the category C and functor T'. Since our primary interest is likely to be in C and T, we are at
liberty to choose the two classes of monos in whatever way yields the optimum results, although
we may then want to show that these are independent of the choices.

Remark 4.14 As you will see in the next section, we have some conflict in the objectives for
this paper between proving the central recursion theorem and developing the whole theory of well
founded coalgebras. For the general theory, we might typically want

(a) a large class of predicates so that we can make liberal use of induction, but

(b) a small class of supports.
For the proof of the recursion theorem, it turns out that

we only need to do induction over the supports,
so the two classes are the same.
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We simply need a usable class of extensional well founded coalgebras that contains the iterates
of the functor T applied to the initial object, as tightly as possible.

Therefore, in the particular application category, we would like to find some notion of inclusion
that is both tractable and restrictive.

It is straightforward to substitute these chosen inclusions for the “monos” in the definitions
above of unions and being well powered. However, Proposition [£:4] only works for plain monos
and so needs to be replaced with some other argument, which is why we formulated Definition [4-3]
instead of just asking that colimits be stable under pullback.

It may be possible to control the unions even further, such as by making the diagrams com-
putable in some sense, using techniques from various forms of synthetic domain theory, but we
leave that for another day.

For the general theory we do distinguish between the classes and so need to axiomatise them
separately. In doing this, it is convenient to make an auxiliary definition for the closure conditions
that are common to both classes:

Definition 4.15 A class of T-monos M must
(a) contain all isomorphisms;

(b) contain all maps from the initial object (cf. Remark [4.2);

(¢) be closed under composition;

(d) be preserved by the functor T}

(e) be preserved by pullback along T-coalgebra homomorphisms; and
(f)

f) satisfy the cancellation property for plain monos, Vfg. f;i=g;i=— f=g.

The reason why we need the cancellation property is this: For the initial object A = (), there
isamap p: A — U with p;m = id 4. The ubiquitous idiom in using well-foundedness gives the
same thing. We use the cancellation property to deduce that m ;p =idy.

Another easy but useful property that is also known as cancellation may be deduced as a
“warm-up” exercise in the kind of diagram-chasing that we shall use throughout this paper:

Lemma 4.16 For any class of T-monos M,
(a) if i ;m € M and m is a plain mono then i € M too; and

(b) in the broken pullback for the induction premise (Definition , if the predicate U Lox

belongs to M then so does H Lu.
Proof Hint: The maps id, (i ;m), ¢ and m form a pullback square. O

We are now ready to state the conditions for the two classes:

Assumption 4.17 The maps >—> used for predicates form a class of T-monos M for which
also

(a) M includes all inclusions of initial segments —— ; and

(b) each map i € M belongs to some well-powered subclass M’ C M of T-monos.

For additional results beyond the main recursion theorem,

(c) the class could include all regular monos (equalisers, cf. Lemma [6.4));

(d) the functor T could preserve inverse image diagrams; or

(e) the inverse image operators f* applied to predicates could have right adjoints f. (Section E[)

Recall that, in categorical logic, inverse images correspond to substitution, equalisers to equa-
tions, composition of monos to existential quantification and the right adjoint f. to universal
quantification, cf. Notation [3.2] The conditions above are therefore natural and very flexible for
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considering precise restrictions on the logical strength of the predicates over which we may per-
form induction. This is possible (contrary to what was said in [Tay96bl Prop 6.7]) because we are
making a distinction between the roles of predicates and initial segments.

Remark 4.18 Suppose that the class M has a dominance T : 1 >— ¥ [Ros86]. This means
a map of which every M-map is the inverse image along a unique map, like €2 for all monos in a
topos and the Sierpiriski space ¥ for open inclusions of topological spaces. Then Proposition [3.10]
specialises to M with © = X. O

Example 4.19 The category Pos of posets and monotone functions has two suitable classes of

IMonos:

(a) inclusions of arbitrary subsets that carry the restriction of the order relation, which we call R;
and

(b) inclusions of lower subsets, again with the restricted order, which we call L.

The class R includes (is) that of regular monos and this is not contained in £. However, £ has

but R fails the other extra properties [Tay23].

Now we turn to the other use of “monos” in the theory.

Assumption 4.20 The maps —— used for inclusions of subcoalgebras and for structure maps
of extensional coalgebras must form a class of T-monos (Definition that

(a) is contained in the class of used for predicates;

(b) admits directed unions (Definitions [2.1] and [4.3)); and

(c) is well powered (Definition [4.7)).

Again, for additional results we may also assume that

(d) this class is part of a factorisation system (Section [8)); or

(e) these monos admit pushouts that are unions (Section [10)).

The classes R and £ in Example enjoy all of these properties, except that pushouts for R are
not as well behaved as inclusions of sets [Tay23].

Remark 4.21 The monos in this class will often also be coalgebra homomorphisms and so will be

written — . We will just call them initial segments, to exploit the intuition from ordinals.

However, the two ends of the arrow signify different things:

(a) the triangle arrowhead ( — ) says that the map is a coalgebra homomorphism, which
captures the traditional order-theoretic ideas (c¢f. Lemma ; whilst

(b) the hook tail ( =—— ) says that the underlying C-map belongs to a special class of monos:
this aspect is a novelty in this paper.
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5 Generating well founded coalgebras

In this section we study how the category of well founded coalgebras is built up, which is roughly
analogous to the von Neumann hierarchy V,, in Set Theory. However, we stress that we assume no
more about the underlying category C than that it is an elementary topos and in fact the results
are more widely applicable, as explained in the previous section.

The first result is the categorical proof of Lemma because coalgebra homomorphisms
generalise bisimulations (Lemma and pullback captures substitution.

Lemma 5.1 The induction premise (broken pullback) is stable under pullback against coalgebra
homomorphisms.

Beware that we are saying nothing about ¢ being an isomorphism.

Proof The thick lines show the homomorphism f : B —=> A and the given induction premise
H — U for the predicate i : U — A.

Let j : V — B be the inverse image of i along f. Apply T to this pullback, to give the
parallelogram at the top, although we are not assuming that this is a pullback.

Form the inverse image K — B of Tj along 3, so that K is the induction hypothesis for
V— B.

The top, back and right quadrilaterals commute (from K to T'A), so there is a pullback mediator
K — H that makes the left and bottom quadrilaterals commute, i.e. from K to TU and to A.
The map K — H deduces the induction hypothesis for U from that for V.

Because of this, there is a pullback mediator K — V that makes everything commute, in
particular from K to B. Then K — V is the required induction premise. O

The proof of the recursion theorem forms the union of attempts, so we consider colimits next,
but see Definition for the relationship between colimits and unions in general categories.

Note, however, that we are not asking for new colimits: we are merely enhancing the properties
of those that already exist in the category C, by showing that the categories of coalgebras and of
well founded coalgebras inherit them.

Although we state the Proposition for general colimits, we only use directed unions (Defini-
tion [2.1)) in our main proof of the recursion theorem. We will consider pushouts in Section

Lemma 5.2 The initial object () of C carries a unique T-coalgebra structure, which is well founded
and is the least subcoalgebra of any coalgebra.

Proof Easy, but ¢f. Theorem [1.5(a)l Remark and Definition b,f). O

Proposition 5.3 The forgetful functors WfCoAlg — CoAlg — C create colimits. That is, the
colimit of any diagram of coalgebras and homomorphisms is given by the colimit of their carriers,
if this exists, and then the structure map is uniquely determined. If the individual coalgebras are

well founded then so is their colimit (¢f. Theorem [1.5(b))).
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Proof The structure map a on the colimit is the colimit mediator, as shown in the diagram on
the left, where the colimiting cocone consists of coalgebra homomorphisms, i.e. the parallelograms
from A; to TA commute.

T4

TA TU TA
4 7
//W T - ya
TAz —_— > TAJ Oé TU; > TAZ o
: A
“ A H>——U >li — A
i " i I
A74\>AJ K > D e > A;

ks

Now suppose that the a; are well founded and let k : U »— A be a predicate satisfying the induction
premise for the colimit « (the back rectangle, from H to T'A).

Form the inverse images K; of this induction premise against the homomorphisms 4; —& A
of the colimiting cocone, using Lemma [5.1

Since each A; is well founded, k; : U; = A;.

Now U is the vertex of a cocone over the diagram A;, so it has a mediator from the colimit A,
and ¢ : U 2 A as required [Tay96bj, Prop 6.6]. O

This establishes the order-theoretic setting for the fixed point theorems from Section

Corollary 5.4 The category of subcoalgebras of any coalgebra (A, «) and inclusions between
them is equivalent to an S-internal ipo Seg (A, ). The well founded subcoalgebras form a subipo

WrSeg (4, ) C Seg(A,a)

of this, i.e. a subset (S-subobject) that contains the least element and is closed under directed
joins.
Proof Assumption [£:20, Lemma [5.2] and Proposition [5.3] provide the colimits in C, CoAlg
and WfCoAlg. However, we need Definition to make these colimits agree with unions of
subcoalgebras and then the well powered condition (Proposition to link the external unions
with the internal joins.

Finally, the well powered condition is used again to justify quantification over the class of pred-
icates in the definition of well-foundedness (Remark ; note here that, for the main recursion
theorem, we will only use initial segments for these predicates. O

The next four results are about the “successor” operation that we introduced in Proposition |3.7]

Lemma 5.5 The functor T preserves well founded coalgebras.
Proof A special case of Lemma [5.9| with ¢ = id . O

Construction 5.6 Let i : (B,3) == (A,a) be a subcoalgebra. Then its relative successor
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k:(C,vy) = (A, «) is given by pullback of o and T'.

A—% 1A

The pullback mediator j : B — C makes (B, ) —= (C,7v) == (A4, «) as subcoalgebras (initial
segments) when we define v = c¢; T'j.

We will write sB for the relative successor (C); the operation s is inflationary because j :
B —— sB. It has been called the next time operator elsewhere.

Proof Since the functor T and inverse images preserve initial segments (Definition [4.15)) and the
latter obey the cancellation property (Lemma [4.16)), if 4 is an initial segment then so successively
are T, k, 7, Tk and Tj. Finally,

kia=c;Ti=c;Tj;Tk=~;Tk and  j;y=j;¢;Tj=p;Ty,

so j and k are coalgebra homomorphisms. O

Lemma 5.7 The relative successor construction s is monotone (functorial) in B.

A—2% 1A

yaN yay
‘ T
t k Ti k
j T e LTy
B < > sB >TB —— TsB
yaN yaN
¢ T
.7 o] / U T -/
B oS orp =ty B

Proof Given initial segments B’ —> B —= A, apply T and then pullback; the one giving
sB' factors uniquely through the one for sB. O

The next result provides the special condition for Pataraia’s Theorem and is actually the
sole place in our proof of the recursion theorem where we use well-foundedness. (Indeed, we only
use the definition and none of the theory above.) The induction predicate is the initial segment

i: B — A, ¢f. Theorem [1.5(g)|

Lemma 5.8 In the previous diagram, if (B, ) is well founded and both it and (B’, 8’) are fixed
by the relative successor (j : B = sB and j' : B’ = sB’) then ¢ : B’ = B.

Proof B, TB,TB’ and B’ form a pullback. It is the one in Definition of well-foundedness,
except that K = U = B’. Therefore B’ = B. O
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In the case of the covariant powerset, any subcoalgebra of a well founded coalgebra is again
well founded, by Proposition Using this, we could deduce well-foundedness of sB = C' from
that of T'B and hence from that of B by Lemma 5.5 However, since we have chosen to use weaker
conditions in our account, we need a slightly more complicated result at this point, which we call
the sandwich lemma.

Lemma 5.9 Let (B, ) be a well founded coalgebra and j : B — C and ¢ : C — T'B maps such
that 8 = j;¢. Put v = ¢;Tj. Then (C,7) is also a well founded coalgebra and j and ¢ are
homomorphisms.

Proof They are homomorphisms because
Jiv = Jse;Ty = B;Tj  and  yiTe = ¢;Tj;Te = ¢;TB.

Now let k : W — C satisfy the induction premise given by the pullback H and form the inverse
image of this along j, using Lemma [5.1] This gives the induction premise K for the predicate
£:V — B:

Tk
TW - |
70
TV > > TB !
A B VX
—| k
//'H /jWT C
A 14 B ’
V>

Since B is well founded, ¢ : V = B and so there is a map h : B — W making the triangle with C'
commute. The one with T'B, TW and T'C' also commutes.

The triangle on the right commutes too (y = ¢; T5), so the maps C — TB — TW and
id : C — C form a commutative square at T'C. This factors through the pullback H, splitting the
inclusion H — W — C' as required [Tay96b, Lemma 8.2]. O

Recall that we gave slightly different arguments for (the first part of) Theorem and for
Lemma as the revised forms of von Neumann’s Recursion Theorem The simpler one
provides exactly what we will require in the next section and only uses the definition of well-
foundedness with respect to initial segments, not any of the theory that we have developed or
Pataraia’s Theorem.

Lemma 5.10 For any well founded coalgebra (A, «), the relative successor defines an endofunction
of the ipo Seg (A, «) whose unique fixed point is the top element, A itself.
Proof The well powered requirement that we used to define the ipo in Corollary [5.4] also says
that categorical constructions correspond to endofunctions of it (Corollary . By Lemmas
and the relative successor therefore defines a monotone inflationary function s : Seg (4, o) —
Seg (4, ).

By construction, the ipo has a top element (A) and this is a fixed point of successor. Since
A is well founded, Lemma [5.8] says directly that it is the only fixed point. Note that this state-
ment makes a quantification over subcoalgebras, which also requires the well powered condition

(Remark |4.12]). O

The second version applies to general coalgebras. This does exploit Pataraia’s Theorem and
the theory of well-foundedness that we have developed,
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Proposition 5.11 Any coalgebra A —%5 TAhas a greatest well founded subcoalgebra,

WA — 5 T(WA)

A——>TA

and this is independent of the choice of classes of predicates and initial segments.

Proof Corollary [5.4] also defined the subipo WfSeg (A, &) C Seg (A, ) of well founded subcoal-
gebras. By Lemmal5.9] the relative successor restricts to an endofunction of the smaller ipo, where
it is inflationary and monotone.

Next we verify the the special condition in Pataraia’s Theorem By Lemma [5.8] if the
subcoalgebra B is well founded with respect to initial segments and B’ C B are subcoalgebras
that are each fixed by the successor then B’ = B. Hence WfSeg (A, a) has a top element, say
(WA, w).

As an element of the larger ipo Seg (A, o), WA is characterised as the least fixed point of the
successor. The statement of this property is independent of the notion of well-foundedness: If we
re-define the latter for a larger class of predicates that satisfies Definition [4.15] even though there
may be fewer well founded subcoalgebras, W A is still one of them and the proof that it is the
largest one also remains valid. O

In Section[§ we improve this greatest subcoalgebra to an adjoint, on an additional assumption.

The results of this section also bear some resemblance to the way sets are built up in Zermelo’s
Set Theory [ZerO8b|, where the Sandwich Lemma corresponds to subsets of powersets, so we call
the next result Zermelo induction:

Theorem 5.12 Any property that holds of the initial coalgebra and is preserved by directed
unions and sandwiching ¢ la Lemma 5.9 holds of all well founded coalgebras.

Proof Although this appears to be about the class of well founded coalgebras, it is a scheme of
results about (A, <) as usual, because we just require ®(B) be a predicate on B € Seg (T'A).
The sandwich property, that ®(B) implies ®(C) whenever C splits 5 : B —»> C —> T'B,
means that the relative successor for initial segments of A preserves ®. Moreover, A itself is the
only fixed point. We deduce ®(A) by Pataraia induction. O

6 The recursion theorem

Now we are ready to prove the recursion theorem for well founded coalgebras. Since we only
assume that the functor T' preserves monos and not their inverse images, the proof is more subtle
than the one in [Tay99) §6.3]. It is based on our revised argument for well founded relations in
Theorem [2.4] which uses directed unions of attempts, instead of forming the union of all of them.
In particular, we do not assume that we have binary unions, although we will return to them in
Section

The proof has similar components to the constructions in the previous section, dealing with
the empty attempt, successors, directed unions and the special condition for Pataraia’s Theorem.
The particular novelty of our proof is the more careful analysis of the successor.

Remark 6.1 An attempt from a coalgebra a: A —> T'A to an algebra 6 : TO — O is intended

32



to be a partial map f: A — O that is a subhomomorphism in the sense that

rf

TA—T6

« C 0

A / C]

i.e. if the composite via T A is defined then so is that via © and then they are equal, cf. the
definition in Theorem [L.5l

Composition of partial functions in a category uses inverse images. In order to define a category
of coalgebras and partial homomorphisms, the functor 7" should therefore preserve inverse image
diagrams, as the powerset and term algebra functors do.

However, the structure maps « and 6 are total and we never need to compose partial maps.
The notion of attempt therefore has a simple equivalent form that is sufficient to carry out the
proof of the theorem:

Definition 6.2 An attempt from A to © is a diagram of the form

Ti T
A< g T 1o
o I} 0
Ao g g

That is, a subcoalgebra inclusion (initial segment) ¢ : B —> A together with coalgebra-to-algebra
homomorphism f : B ——> ©. A map f satisfies the recursion scheme (Definition exactly
when it is a total attempt, with i : B = A. We call the attempt well founded if the support
(B, p) is.

We also need a well powered assumption for attempts, which is easily adapted from that for
initial segments (Definition ) Alternatively we may consider them as subobjects of A x ©
instead of those of A. Then, for any given coalgebra and algebra, there is a set or S-object
Att (A4, a, ©,0) of attempts from A to ©, c¢f. Seg (A, «) in Corollary

Lemma 6.3 There is a “support” function (morphism of S)
supp : Att (4,0,0,0) — Seg(A,a) by (A< B L5 0)—> (B ‘v A).
Proof Corollary O

One way to show that attempts are unique is by an easy application of well-foundedness:

Lemma 6.4 Let A be a well founded coalgebra, © an algebra and f,g : A = © be total attempts.

Then f = g (¢f. Theorem [1.5(d))).

Proof The two parallel squares on the right commute since f and g are total attempts. Let
i: E— A= 0O be the equaliser in C.

TE TA
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Form the pullback H of A — T'A + TFE; the composites H = T'O are equal by construction, so
those H — A = O are also equal. Then H — A factors through the equaliser, so H — E »— A.
Hence i : F = A by well-foundedness of A and so f = g. [Mik76, page 99] [Osi74, Prop 6.5] [Osi75]
Prop 6.3] [Tay96al, 2.5] [Tay96b, Prop 6.5] [Tay99, Prop 6.3.9]. O

You will object that we did not ask for equalisers in Section [4] either in the category itself or
in the class of predicates over which we may perform induction. This lemma is valid in Set, and
also in Pos if we use R for predicates, but not using £ (Example .

However, it transpires that there is a more subtle proof by induction on the structure of
subcoalgebras that does not need equalisers after all:

Lemma 6.5 There is a bijection between attempts
Ao B-to0 and A<l sB-%v o0,

where sB is the relative successor of B (Lemma [5.6). Hence the successor lifts not only the
existence but also the uniqueness of an attempt.

A4QQ>TA
AN AN

v
B > 0

v
TO <
Proof Let (4, «) s (B,B) S (6,60) be an attempt, so
;a0 = 05T and f=p8;Tf0
Then the relative successor attempt is defined by
vy =c;Tj and g=c;Tf;0
and satisfies

fo= B:Tf;0 = js;e;Tf:0 = jig
g = c;Tf;0 = c;Tj;Tc;TTf;T0;0 = c;Tj;Tg;0 = ~v;Tg;80.

So (4, @) PR (sB,v) —=> (©,0) is also an attempt, extending f.
Conversely, f =i ; g satisfies

f=3Jig=37vTg;0 = j;c;Tj;Tg;0 = B;Tf;0
g = ¢;Tf;0 = ¢;Tj;Tg;0 = v;Tg;0 = g,
establishing the bijection. O

The parametric version is similar and is the only place where we use binary products:

Lemma 6.6 There is a bijection between parametric attempts given by

g = (k,(c;Tf);0 and f = j;g. O
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(i, )

B AxTB —
k,c
i (k) AxTj
f sB——> AxTsB AxTf
gi {Ax Tg
(C] AxTO <

Lemma 6.7 The initial object is the support of a unique attempt. For any directed diagram
of subcoalgebras, if each member is the support of a unique attempt then so is the union of the
diagram.

Proof The statements are the universal properties of the initial object and filtered colimits,
but we need to say that they are unions (Definition . Also cf. Remark Lemma and
Proposition [5.3 U

We can now achieve our principal goal, the Recursion Theorem, based on Theorem for
well founded relations.

Theorem 6.8 From any well founded coalgebra (A, a) to any algebra there is a unique total
attempt.

Proof By Lemma Seg (A, ) is an ipo on which the relative successor defines an endo-
function, whose unique fixed point is the top element, A itself. The uses of the well powered
condition that we make here were explained there.

Lemma defined an endomorphism of Att (A4, «, ©,0) called relative successor and supp :
Att — Seg commutes with the two successors (Corollary . Hence this situation is wholly
about objects and morphisms of the topos S.

Consider the subset U C Seg (A, ) consisting of those initial segments i : B —> A such that
there is a unique attempt with support B. That is,

U = {BeSeg(4,a)l|IacAtt(A a,0,0).supp(a)=1i}.

Then () € U and it is closed under directed unions by Lemma [6.7) whilst s : U — U by Lemma|6.5
Therefore, by Pataraia induction (Theorem U contains the least fixed point of the
successor, which is A itself. This means that there is a unique attempt with support A, i.e. a total
one or solution to the recursion equation.
The statement of the Theorem is independent of the notion of initial segment that we choose.
Also, if we enlarge the class of predicates then there are just fewer well founded coalgebras and
the result remains the same [Mik76, pp 101-4] [Osi75, Prop 6.5] [Tay99, Thm 6.3.13] O

We have developed the theory of well founded coalgebras to approximate the initial algebra
when the functor T does not have one, such as in the case of the powerset. When the initial
algebra does exist, we therefore need to link the two accounts together.

Two of the steps in the circular equivalence below are based on observations by Joachim
Lambek [Lam68] and by Daniel Lehmann and Michael Smyth [LS8I] §5.2]. Lambek discusses
systems of coherently commuting functors and gives a criterion for the existence of a fixed point.
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Proposition 6.9 The structure maps of the initial algebra, final coalgebra and final well founded
coalgebra, if they exist, are isomorphisms.

TO Ta
T® . > T TA Cevrerrrannnenn ITA
To TO
0 TO « Ta
0 o
O > T® A Corvereerenrnnnnens TA
« 0

These objects are therefore both algebras and coalgebras and we call them fized points of the
functor. Coalgebra-to-algebra homomorphisms from or to them are respectively the same as plain
algebra or coalgebra homomorphisms.

The successor relative (Lemma to the initial algebra is just the functor T'.

Proof This is illustrated by the diagrams. It also applies to the final well founded coalgebra
because the functor 7" preserves well-foundedness by Lemma In Lemma [5.6] since A = TA
also C = TB. O

Proposition 6.10 The initial algebra A is well founded qud coalgebra.

Ts
TU TA
Tp
o 2l
—| )
H>—sU7 A

Proof Since the structure map is invertible, so is its pullback, so TU = H 2. U makes U an
algebra and i : U > A an algebra monomorphism. But this is split since A is initial qud algebra.
Hence A is well founded qua coalgebra. O

Corollary 6.11 If any of the following exists then it satisfies the other properties too:
(a) a final well founded coalgebra;

(b) a well founded coalgebra whose structure map is an isomorphism;
(¢c) an initial fixed point;

(d) an initial algebra.

Moreover, it is unique up to unique isomorphism.

Proof The Recursion Theorem [6.8] says that the final well founded coalgebra has the universal
property of the initial algebra, so b=-c. Proposition [6.10] is almost the converse, d=-c, where
Proposition [6.9] fills in the gaps, a=-b and c&d. O

Corollary 6.12 If T has a final coalgebra F' then its greatest well founded subcoalgebra A = W F
is the initial algebra.

Proof The structure map of F is an isomorphism, so by cancellation of monos, that of A is
mono too. But T'A is another well founded subcoalgebra of F', so A =2 T'A, whence A is the initial
algebra. O

This seems to have been known in some form for a long time, in a sense since [Mir17a]. That
there is a homomorphism A — F follows from Lambek’s lemma and his paper says more about
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the category of fixed points, in which A and F' are initial and final. However, that A — T' is mono
must depend on the assumptions in Section [4] Peter Freyd considered the situation where A & F',
which he called algebraic compactness [Fre9l].

7 Extensionality

Now that we have some understanding of the Axiom of Foundation generalised to coalgebras, we
turn to the Axiom of Extensionality.

Definition 7.1 A coalgebra o : A — T A extensional if « is an initial segment.

That is, it belongs to the same class of monos that we used for subcoalgebras in our proof of
the recursion theorem (Assumption . If you skipped Section |4} you should simply understand
« to be mono, cf. Definition when T = P.

An ensemble is an extensional well founded coalgebra. If need be, the name could be qualified
by stating the category, functor and two classes of monos that are used in the definition.

Remark 7.2 Zermelo’s generalisation from well ordered to well founded systems [Zer35] introduced
“noise” in the form of repetition. Extensionality removes this so thoroughly that there are no
automorphisms aside from the identity. Extensional well founded coalgebras are fragments of the
initial algebra (if there is one) and behave very much like Set Theory, even in a much more general
setting. This justifies the name ensemble.

As we said in Remark[T.10] the “sets” that we are mimicking here are those that are called tran-
sitive in Set Theory. So Gerhard Osius used the name transitive set object for our extensional
well founded coalgebras [Osi74], §§6,7]. He defined a general “set” to be an S-subobject of some
transitive set object and developed Set Theory following [Zer08b], in fact giving a logical subtopos
of §. See [Tay964, §3] for another account of this. We shall not go any further in this paper with
modelling the rest of Zermelo’s axioms and have no generalisation of the Kuratowski-Wiener pair
formula {z, {z,y}}.

Instead we pick up on the idea that a “set” is a fragment of the unattainable universe that
would be the free algebra for the powerset functor. We will show that these features of Set Theory
are shared by ensembles for more general functors.

We need first to adapt the Recursion Theorem from the previous section to partial coalgebra-
to-coalgebra homomorphisms. It becomes rather more complicated, but we handle this by relying
more heavily on Pataraia’s Theorem

Definition 7.3 An attempt from one coalgebra (A, ) to another (D, d) is a pair (4, f) of coalgebra
homomorphisms, also known as a span,

-
TA<« g T L rp
o 15} 1)
A< ! B / > D

This is the same as Definition [6.2] apart from reversing the arrow §. The relationship is that we
think of (D, ) as a partial algebra whose evaluation part is id p.

We call the attempt well founded if the support B is.

By the time we get to the Theorem, all of the arrows will be initial segments (monos), but we
need slightly more generality at first (¢f. Lemma : We will assume that § and ¢ are initial
segments, so D is extensional, but @ priori a and j need not be monos.
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Lemma 7.4 Consider the category whose objects are attempts from A to D and whose morphisms
are coalgebra homomorphisms B’ — B that make commutative triangles. This category is
equivalent to an S-ipo and it has a subipo of well founded attempts,

WrfAtt (A, «, D,d) C Att(A4,a,D,0).

Proof For the same reasons as in Corollary relying on the assumptions about unions and
being well powered. O

The next diagram may be daunting, but it is just the adaptation of Construction for
successor attempts to the situation where the target is a partial algebra or extensional coalgebra.
It is more complicated because we have to trim the support according to the partial target.

If you would like to try to compare this with the relational version in Proposition [2.9] recall
from Lemma [3.3] that coalgebra homomorphisms define bisimulations. Since such relations are
composable and reversible, the span of homomorphisms becomes a single relation.

Construction 7.5 The relative successor of an attempt from a coalgebra (A, a) to an exten-
sional coalgebra (D, 9).

Proof Let (A, «) P (B, B) RS (D, ) be an attempt, where ¢ and § are initial segments, as

shown in the bold lines in the diagram (which is rotated relative to the one in Definition :

« Ty
> A b TA<t+—— TC
o A

C

J
] Ti Tk
k G a
| E / \A | TE

02 Tf
f _ Th
vy
g v Tg v
> D G >TD +——— TCy

Let C1, Cs and C be the pullbacks shown. Then T4, j, d, k and k ; j are initial segments because
T, pullback and composition preserve them. Notice that we have used both the subcoalgebra
inclusion B “ A and the extensional structure map D = T'D to do this, so it is not possible
to separate these two uses of “monos”, ¢f. Remark [£.13]

This construction makes C' the limit of the W-diagram

38



Now B is the vertex of another cone over the W, with arrows ¢, 8 and f. Hence there is a unique
mediator £ : B — C' to the limit, with

1= LCk;j, B =4L;k;a =/;h;d and f=4¢;h;g.

Then ¢ is an initial segment by the Cancellation Lemma since i and k ; j are.
Now we make C' a coalgebra by defining v = k;a; T¢. Then ¢ is a homomorphism because

iy =4k;a;TC = B;TL.

The new attempt with support C is given by the composites k;j: C — Aand h;g: C — D,
whose composites with £ are ¢ and f. Then & ; j and h ; g are homomorphisms because

(kij)sa = kia;Ti = kya; TCT(kj) = v35T(ks )
and (h;9);6 = hid;Tf = h;d;TC;T(h;g) = 73T (h; g).
The map ¢ : B — C makes the successor inflationary. O

Lemma 7.6 The relative successor s is monotone (functorial) in B’ — B.

Proof The proof amounts to the mediator between two W-limits that share the nodes A, T A,
D and T'D but differ on TB" — T'B, cf. the next diagram. O

Lemma 7.7 If B is well founded then so is C' = sB.
Proof By Lemmal[5.9] since C is sandwiched between B and T'B. O

The next result is the special condition for Pataraia’s Theorem [2.3

Lemma 7.8 If B is well founded and B’ = sB' <L» B~ sB then j : B’ = B.

«

> T
VaN
Ty
TB'
Tf T
p > TB
v Tf
>TD

Proof That B’ is a fixed point means that it is already the limit of the W that defines its
successor, namely

AsTAl B Mo D4 D.

We claim that the homomorphism quadrilateral for B’ /s B (shown in bold) is a pullback, so
let I" be the vertex of a cone, with p;Tj = ¢; 8. Then

q;i:T"—= A, p:I' - TB and q;f:T—= D
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define a cone over the W for B’ because
q;isa = q;B8:Ti = p;Tj;Ti = p; T

and q; ;6 = q;B8;Tf =p;T5;Tf = p;Tf.

Since B’ is the limit, there is a unique mediator £ : I' — B’ with
Cii' = L5ji = q3i, ;8 =p and L5 f = q;f

whence £ ; j = g since 7 is mono. Thus ¢ provides the mediator that is required for B’ to be the
pullback. However, B is well founded by hypothesis, so any such pullback degenerates, making
j:B = B. O

Corollary 7.9 There is a greatest well founded attempt from (A, «) to (D, J).
Proof WfAtt (A, «, D,6) has a top element by Pataraia’s Theorem O

Lemma 7.10 If (A, o) and (D, ) are both extensional then the greatest attempt with well founded
support consists of a pair of initial segments.

Proof We use Pataraia induction (Theorem for the property that the evaluation part of
the attempt is an initial segment (mono).

The least attempt, whose support is the initial object, satisfies this property.

The successor Construction preserves it: if a and f are initial segments then so too are
Tf,g,a, hand h;g.

Directed unions also preserve it (Definition .

Therefore the greatest attempt has it too. O

Lemma 7.11 Any coalgebra homomorphism f : A ——> D between ensembles is an initial
segment. There is at most one such homomorphism. If there are homomorphisms in both directions
then they are inverse.

Proof Without using the hypothesis that A is extensional, the homomorphism f provides an
attempt (id, f), in the sense of Definition which also says that (7, f) is well founded iff A is.

This attempt is fixed by the relative successor (Construction: i, T and j are isomorphisms,
so the initial segments ¢ and k are too since initial segments are plain monos.

Hence the attempt (id, f) coincides with the greatest one (Lemma, which is a pair of initial
segments by Lemma Moreover this greatest attempt is unique.

In particular, the only endomorphism of an ensemble is the identity, so if there are homomor-
phisms both ways between ensembles then they must be inverse. O

Corollary [8:T1] strengthens this to say that any outgoing homomorphism from an extensional
well founded coalgebra is an initial segment, whatever the codomain. (It is proved there on much
stronger assumptions, but it should be possible to prove it under the present ones, cf. Lemma)
An ensemble is therefore a very rigid structure.

Corollary 7.12 Ens is a preorder with binary meets. Moreover, whenever a meet-span of ensem-
bles is part of a commutative square of them then this is a pullback.
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Proof Let A<+— B —= D be the greatest attempt from A to D, these being ensembles that
are both contained in some ensemble E. Let A <+—— C —= D be another pair of homomorphisms
from an ensemble C. That these commute at F is automatic by the Lemma. The maps from C
define an attempt from A to D, which lies below (factors through) the greatest one, B. The
universal property of a pullback holds irrespective of its root. O

Under stronger assumptions, this is actually a pullback in WfCoAlg by Theorem [8:9]and even
in CoAlg and C by Proposition

Remark 7.13 The meet therefore has the property that we would normally call a product in a
category. We avoid that word because the construction looks like set-theoretic intersection and
nothing like the Cartesian or Kuratowski-Wiener product. Set-theoretically, the maps A + C —
D do have to be subset inclusions and not arbitrary functions. Categorically, A < C — D must
be coalgebra homomorphisms and not just C-maps.

This corollary was a bonus that we should not have expected unless T' preserves inverse images
(Proposition . However, we can’t take it any further unless that is the case; in particular, we
do not yet have binary joins of ensembles, but we will study them under additional assumptions
in Section O

Theorem 7.14 The category Ens of ensembles and coalgebra homomorphisms
(a) is a preorder with

(b) a least (isomorphism class of) object(s),

(c) directed unions,

(d) binary meets and

(e) an inflationary monotone successor, namely the functor T

Moreover,
(f) the greatest ensemble is the initial algebra (Corollary , if either of these exists, and is the
unique fixed point of T’ O

In the last part, the successor coalgebra relative to the initial algebra is just given by the
functor T

Proposition 7.15 Suppose that the category C has set-indexed filtered colimits. Then the func-
tor T has an initial algebra iff there is a set rather than a proper class of isomorphism classes of
ensembles.

Proof Since an ensemble is an initial segment of the initial algebra, the forward direction follows
from the well powered Assumption Conversely, another way of stating the “size” condition is
that the preorder Ens is equivalent to an internal poset in S. The initial object, endofunctor and
filtered colimits in Ens become the least element, directed joins and endofunction of the poset.
By Pataraia’s Theorem [2.3] there is a fixed point, which is the top element, and this corresponds
to the initial algebra. O

Corollary 7.16 If there is an initial algebra, it satisfies any property of coalgebras that holds of
the initial object and is preserved by isomorphism, the functor and filtered colimits.

Proof By Pataraia induction, Theorem [2.3(c)| d

8 Imposing the properties

In this section we show how to turn a general coalgebra into a well founded one and then make it

extensional too. That is, we will find adjoints to the inclusions Ens — W{fCoAlg — CoAlg.
The key idea in doing this is (the categorical abstraction of) the fact that any function can

be expressed as the composite of a surjection and the inclusion of its image. One of the earliest
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achievements of category theory, or rather of Modern or Universal Algebra, was to bring together
the various “isomorphism theorems” relating these for groups, rings, vector spaces, etc. The
abstract formulation was given by Peter Freyd and Max Kelly [FK72]:

Definition 8.1 Two maps e: X —> @ and m : V —— Y in any category are orthogonal,
written e L m, if, for any two maps f and g such that the square commutes, there is a unique
morphism p : @ — V making the two triangles commute:

X—e>>Q

R e
e m
Ve———>Y

Then a factorisation system is a pair of classes of morphisms (€, M) such that
(a) the classes & and M each contain all isomorphisms;
(b) they are each closed under composition;
(c) e L m for every e € £ and m € M and
(d) every morphism f: X — Y can be expressed as f = e;m with e € £ and m € M.

Lemma 8.2 In a factorisation system,

(a) if f € £ENM then f is an isomorphism;

(b) if the pullback of an M-map exists in the category then it is also in M (so Assumptions [4.1f(a)
and [{.15e) become redundant);

(c) & has the cancellation property that if f, (f;e) € £ then e € &, ¢f. Lemma [4.16}

(d) if f €C has f L m for all m € M then f € £ (in fact quantification over M is not needed:
we only use this for the M-part of the factorisation of f);

(e) if the maps in a directed or pushout diagram are all in £ then so are those in the colimiting
cocone; and

(f) the mediator from such a colimit to a cocone consisting of £-maps is also in £.

| !
S}

X9y —> X; — colim —>

U>————>Y

Proof (a—d) Easy, but see e.g. Lemma 5.7.6 and Proposition 5.7.7 in [Tay99]. (e) Any pushout
has a root Xy (with maps to all of the other vertices of the diagram), and any directed diagram is
equivalent to one with a root. Using (Xo — X;) L (U = Y), there is a unique mediator X; — U.
These maps form a cocone, with mediator colim — U. Finally, (f) follows from (d,e). O

Examples 8.3

(a) Inclusions (1-1 maps, monomorphisms) and surjections (onto maps, epimorphisms) in Set or
a topos, where surjections are quotients by equivalence relations and this class is stable under
pullbacks.

(b) More generally in type theories, if the factorisation is stable under pullback then the £ class
is associated with an existential quantifier [HP89] [Tay99} §9.3].
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(¢) In a general category with inverse images, a map e that is orthogonal to all monos is called
an extremal ept and is characterised by Vme M.e=m; f = m=1id.

(d) The classes of “monos” R and £ in Example belong to factorisation systems in Pos,
whose “epis” are functions that are respectively surjective on points and cofinal. The first of
these classes is well co-powered but the second is not.

Assumption 8.4 In this section we require that the category C

(a) have a factorisation system (£, M) in which M is the class of initial segment maps that we
have been using,

(b) be well copowered with respect to £-maps, and

(¢) have filtered colimits of £-homomorphisms.

Theorem only requires the first of these, but we use the others for Theorem

The notion of being well copowered is the obvious analogue of being well powered (Defini-
tion: that the (pre-ordered) external category of outgoing £-maps is equivalent to an internal
poset in the base topos S.

Ivan Di Liberti and Jifi Rosicky have given the name convenient factorisation system to the
combination of our union property for M (Definition and & being well co-powered [DLR0O9).

Remark 8.5 We will call &-maps cofinal. As in Remark [L.21] for initial segments, this term is
intended to hint at certain intuitions, which are linked to the fact that all of the maps that we
call cofinal are coalgebra homomorphisms. However, the notion is not necessarily the same as
the traditional order-theoretic one. It is a novelty of this work that £ can be a special class of
morphisms in a category that need not be a topos.

The following is the categorical version of Corollary 2.1}

Lemma 8.6 Let E be a well founded coalgebra and e : E —=> C be a cofinal homomorphism.
Then C' is also well founded.

Ty
TW < TE
/g\ ..~....' T %
P, €
: B Ti
TV © ! TC
j
Y QST PR > W CGorvrnerneenns > F v
“.pbk \44
’~..\.k _l ...A Z
H V< C

Proof Leti:V —— C be an initial segment that satisfies the induction premise given by the
broken pullback from H to T'C' (at the front).

Pull this back along the homomorphism e : E —> C, using Lemma[5.1]

By well-foundedness of F, we have j: W =2 E.

Since e : E —p> C'is cofinal and it factors through the initial segment i : V. ——= C, the latter
is also an isomorphism [Tay96b], Prop 7.8]. O

Theorem 8.7 The inclusion WfCoAlg — CoAlg has a right adjoint (coreflection), whose counit
is an initial segment. This is independent of the choices of classes of predicates, initial segments
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and cofinal maps.

E—t 4
e J i
v k

C———>WA

Proof We claim that the largest well founded subcoalgebra i : WA —> A (Proposition [5.11))
provides the adjoint. That is, any coalgebra homomorphism f : £ —& A with E well founded
factors uniquely through <.

Let E —53> C <L A be the factorisation in C of f as a cofinal map followed by an initial
segment. Since T7j is also an initial segment, the orthogonality mediator provides a coalgebra
structure on C such that e and j are homomorphisms. Then C' is well founded by Lemma and
it is a subcoalgebra of A by construction.

It is therefore a subcoalgebra of W A, since W A was the largest such. The map E —»> WA
is unique since i : WA —— A is mono.

Proposition said that the largest well founded subcoalgebra W A is independent of the
classes. This is also true of the factorisation, because a stronger notion of well-foundedness just
replaces WfCoAlg with a full subcategory. O

Now we turn to imposing extensionality, which is our categorical version of Theorem and
of Mostowski’s theorem, but formulating this using a factorisation system gives a much more
general result.

In the more familiar setting where (Proposition holds and) & consists of regular epis in a
topos (or effective regular category), such maps correspond to their kernels. In the earlier version,
kernels were expressed as equivalence bisimulation relations, but in a categorical style they are
spans of homomorphisms similar to Definition

Construction 8.8 The successor quotient (C,~) of any coalgebra (B, ) is given by factoris-
ing B as a cofinal homomorphism followed by an initial segment, as shown below. Thene : B = C'iff
(B, B) is extensional. If B is well founded then so is C. Any homomorphism f : (B, ) —> (E,¢)
to an extensional coalgebra factors uniquely through C.

TTB
T Ti
T8 TC
Te .. Tg
v
-
TB > TE
N V\ Tf
1
153 C . €
/v . .9
B ! S E

Proof Let 8= e;i be the factorisation, via C, and put v =i ;Te. Then the three triangles on
the left commute, so e : B —> C and i : C' —> T'B are coalgebra homomorphisms.

If e: B> C then 8= i€ M, so B is extensional, and conversely.

If B is well founded then so is C' by either Lemma [5.9| or
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Since e : B —> (' is orthogonal to € : E — TFE, there is a unique map g : C — FE such
that e;g=fand i;Tf = g;e. Hence g is a homomorphism:

v;Tg = i;Te;Tg = i;Tf = g;e. O

Theorem 8.9 The inclusion Ens — Wf{CoAlg has a left adjoint, called the extensional
reflection, whose unit is cofinal.

Proof Let (A4,a) be a well founded coalgebra. Since the category is well copowered, we may
consider the poset of isomorphism classes of cofinal maps A —d> B (and commutative triangles),
ordered such that the identity id : A — A is the least element.

Since C has filtered colimits and Lemma [8.2] says that these are joins, this poset is directed
complete, so it is an ipo.

The successor quotient (Construction defines an inflationary monotone endofunction, so
we consider the special condition in Pataraia’s Theorem
(a) An object B is fixed by the successor iff it is extensional, by the Construction.

(b) Any coalgebra homomorphism B’ — B between extensional well founded coalgebras is an
initial segment by Lemma[7.11] (which requires well-foundedness), but the present construction
only uses cofinal maps, so B’ = B (Lemma .

Hence the ipo has a greatest element and this is the unique fixed point of the successor, so it is

an extensional well founded coalgebra.

Now let f : A —— E be a homomorphism to an extensional coalgebra. We repeat the
construction, but now using factorisations A —> B —> E of f. This contains L = (id 4, f) and
is closed under successor quotient and filtered colimits. It embeds in the simpler version and so
contains A —»> D by Pataraia induction (Theorem. The corresponding A —>> D —> B
is the required factorisation that shows that D is the extensional reflection of A. O

Corollary 8.10 If C has pushouts then so does Ens.

Proof WfCoAlg — C creates them (Proposition and any left adjoint preserves them.
That is, the pushout in Ens is the extensional reflection of that in WfCoAlg, which is actually
calculated in C. O

Beware, however, that the result could be vastly larger than the given objects or C-pushout;
Theorem looks at when the pushout in WfCoAlg is already extensional.

The adjoints in Theorems and do not commute because the extensional reflection
requires well-foundedness. However, we can put them together to deduce an even stronger rigidity

property:

Corollary 8.11 Any coalgebra homomorphism EF — C from an ensemble to any coalgebra
whatever is an initial segment, cf. Lemma However, there could be multiple maps E = C.

E——C

v ) u
R <eeeeeereenenns wC

Proof Let WC be the largest well founded subcoalgebra of C, so W(C ——> C is an initial
segment and E ——> C' factors through it by Theorem [8.7 Then let R be the extensional
reflection of WC, so by Lemma [7.11] the composite E —> WC — R is also an initial segment.
By cancellation (Lemma , so is E —— W(C and by composition £ =< C'is too. Finally,
consider C' =2 x E. O
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Warning 8.12 Assumption [8:4] that the category be well copowered with respect to a class £ of
cofinal maps that are “surjective” in only the most tenuous of senses must not be taken lightly.
Indeed, we will propose the existence of the extensional reflection when & fails to be well co-powered
as a candidate for the categorical form of the axiom-scheme of replacement [Tay23].

Remark 8.13 There may be some other adjoints, but they are not very interesting:

(a) The forgetful functor CoAlg — C has a right adjoint iff there is a final T-coalgebra in each
slice C/X.

(b) If CoAlg — C has a left adjoint and there is a final coalgebra then it must be 71 = 1. Then
the initial algebra and all ensembles are subobjects of 1.

(¢) If the forgetful functor U : WfCoAlg — CoAlg has left adjoint L, the unit n: A — ULA
would provide a map from any coalgebra to a well founded one. If Proposition [0.3|holds, every
coalgebra would be well founded. If there is a final coalgebra then it would also be the initial
algebra, cf. Peter Freyd’s principle of algebraic compactness [Fre9]]. O

9 When the functor preserves pullbacks

Previous work on this subject required the functor to preserve pullbacks, or at least inverse images
of monos, but this new account has only used preservation of the monos themselves. We now re-
impose the stronger assumption and prove the relatively few earlier results that depend on it.
Principal amongst these is Proposition which is a very important result for the way that well
founded relations are used across mathematics.

There is a second essential requirement for this proof, namely the universal quantifier. In the
categorical formulation this appears in the form of the adjunction f* - f.. Gerhard Osius noted
this in his version of the result [Osi74, Prop 6.3(a)]. Any topos has it (Notation [3.2), but since we
are considering more general categories, we state it as a further assumption on the subobjects:

Assumption 9.1 In addition to the assumptions in Section
(a) the functor T': C — C must preserve inverse image diagrams of predicates along coalgebra
homomorphisms; and

(b) each inverse image operation f* must have a right adjoint f, on predicates, at least when f
is a coalgebra homomorphism.

As an aid to understanding our categorical proof, we first give it for well founded relations, in
as similar a form as possible. See [Tay99, Prop 2.6.2] for a box-style proof in natural deduction
for well founded relations.

Proposition 9.2 Let (A4, <) be a well founded relation and f : (B,<) — (A4,<) a strictly
monotone function in the sense that

VoY :B. b <b = fb < fb

then (B, <) is also well founded.

Proof Let ¢ be a predicate on B satisfying the induction premise
vb. (V.0 < b= b)) = ¢b.
For comparison with the categorical proof below, cf. Proposition [3.6] this is K C V, where
K={:B|W.V<b=>yb}cB and V = {b:B|vyb}CB.
The key step is to define f,V ={a: A | da} C A, where pa = (Vb'. fb/ = a = ¢b), and

H={a:A|Vd.d <a=¢d} = {a: A|VW.V <a= ¢V} C A
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Strict monotonicity and the induction premise give f*H C K C V, which is
Vb, (W f < fb = b)) = (WY < b= b)) = vb.
Quantifying over {¥' | fb/ = a}, we obtain H C f.V, which is
Va. (Va'.d' <a= ¢d') <= (W'. [0 <a= b)) = (W. [0 =a=Yb) = ¢a.

Then Va. ¢a since (4, <) is well founded, whence Vb. ¢b as required. O

We now prove the result for general functors that preserve inverse images and coalgebra ho-
momorphisms that are equipped with f.. Notice, however, that the hypothesis that f be a
coalgebra homomorphism is actually stronger (in the case of T' = P) than being strictly monotone

(¢f. Lemma [3.3)).

Theorem 9.3 Let f: (B,8) — (A4, a) be a coalgebra homomorphism with f,, where (4, «) is
well founded. Then (B, ) is also well founded.

Proof Given the diagram marked in thick lines, apply the right adjoint f, to j : V — B, to get
i: fiV > A. The counit of this adjunction is € : f*f,V — V and makes the little triangle (x)
commute, where f* is given by pullback (inverse image) of ¢ along f. The upper part of the
diagram is the T-image of the lower part, including this pullback but not K. Let H = o*T'(f.V)
be the pullback of 7% and « and f*H its pullback along f.

(Tf T(f* f* T(f.V)
A\

\ Ti

H H
A_ pbk .

fﬁ/ /

By construction, the whole diagram of solid lines commutes from f*H to T'A. In particular,
f*H — B — TB and f*H — H — T(f.V) agree at T A, so there is a pullback mediator
f*H = T(f*f.V). Then f*H — T(f*f.V) — TV agrees with f*H ~— B at TB, so there is also
a pullback mediator f*H — K.

This shows that f*H C V as C-subobjects of B. Therefore, by the adjunction f* 4 f,., we
have H C f,V as subobjects of A.

That is, there is a map H — f,V that makes the right-hand part of the diagram into a broken
pullback. Now, since A is well founded, i : f,V = A so f*f.V = B and j : V = B [Tay96b),
Prop 7.3]. O

Examples 9.4 To show that the additional hypotheses are necessary, we substitute preorders for
categories in the whole theory, so a well founded coalgebra becomes a well founded element in the
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sense of Proposition

y < sy=ssl y < sy < ssy < sssy < oo < s¥y
VI VI VI VI VI VI I
1 < sl 1 < sl < 85l <sssl < .. < Y1

In both diagrams, the elements s™ L and s¥_L are well founded, but y is not, because sL Ay < L
but y £ L.
The first example is a Heyting semilattice, but s does not preserve the meet y A sl = 1.
The second is also distributive but it is not a Heyting semilattice, since y A (—) does not
preserve the directed join \f s™ 1. However, s preserves meets because, for n < w and m < w,

s"L A sy = gmin(nm) | O

Question 9.5 You may think that this is not a “real” counterexample, because it uses posets
instead of categories, but by the extensional reflection (Theorem the issue is really what
happens in Ens, which is a preorder. But could there be a cofinal homomorphism f: A —> B
where B is well founded and extensional, but A is not well founded (c¢f. Lemma ?

The Theorem seems to be needed to construct binary pullbacks of well founded coalgebras.

Proposition 9.6 The functors Ens — WfCoAlg — CoAlg — C create pullbacks.

D —— > TC

. /

Proof The diagram shows how to compute the pullback (D, §) of coalgebras B —»> A <— C
for a functor T that preserves them.

If the given coalgebras are well founded then so is the pullback, by Theorem

If they are extensional then all of structure maps and homomorphisms in the cube are initial
segments (by Lemma composition and cancellation), so the pullback is extensional too. O

As an application of this, we may construct the well founded part of any T-coalgebra (Theo-
rem [8.7)) in a uniform way:

Corollary 9.7 If T has a final coalgebra F' (and hence an initial algebra I by Corollary [6.12])
then the well founded part W A of any coalgebra A is given by the inverse image on the left:

WA——>I=WF Wf{CoAlg ~ CoAlg/I
|
fri ) 4w |
A % F CoAlg ~ CoAlg/F
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Proof Any category with a terminal object is equivalent to the slice by it. By Proposition [6.10}
the initial algebra I is the terminal well founded coalgebra, whilst by Theorem [9.3] any coalgebra
having a homomorphism to I is well founded. Hence we have equivalences as shown on the right,
commuting with the forgetful functors. The latter both have right adjoints, which must also be
equivalent. O

Question 9.8 Can W have a further right adjoint? What would it mean?

10 Pushouts

Besides the preservation of pullbacks, we have also avoided using pushouts (binary joins) in this
work, by developing a much more delicate proof for directed joins using Pataraia’s fixed point
theorem. We now restore the pushouts, inspired by Gerhard Osius’s treatment of them in his
reconstruction of Set Theory within a topos.

We will still pay attention to our analysis of special classes of monos in the base category C,
but now the additional assumptions make it much more like Set or a topos than we have so far
needed. Of the classes of “monos” in Pos (Example[4.19), £ satisfies them but R does not [Tay23].

In addition to the Assumptions that we have accumulated, we need a “union” property for
pushouts analogous to Proposition [£.4] for directed unions. See [Bar87] for another account of this
property in toposes and Abelian categories.

B
/ \
d
AA pbk
K

)
psh D—>06
e
C

We will discuss these properties of pushouts in Set and Set°?. The first result is known as the
Amalgamation Lemma:

9

Lemma 10.1 In Set or any pretopos, the pushout of a pair of monos B << A >"s (s another
pair of monos and is also a pullback.

Proof The following is a congruence:

[m;vo, vo, nyv1, v1]
(A+B)+(A+0C) B+ C.

[m;v1, vo, o, v

If f: B— O and g: C — O make a commutative square then [f,g] : B+ C — © coequalises the
congruence. Since the quotient is effective, to verify monos and equalisers, it suffices to inspect
the congruence [F'S90] 1.651] [Tay99l 5.8.10]. O

Lemma 10.2 The dual property also holds in Set or any effective regular category, such as a
category of finitary algebras.

Proof The pullback of B -5 A «- C'is D = {(b,¢) | mb=nc: A}. Suppose B <~ E % C make a
commutative square from D. For each a : A, since m and n are surjective there are b : B and ¢ : C
with a = mb = nc, so (b,¢) € D and ub = ve. Then if a = mb’ = nd’ too, also ub = v’ = ub’ = ve.
Hence we may unambiguously define the mediator e : A — E by ea = ub. O

Lemma 10.3 In Set or any pretopos, if A, B, © and C' form a pullback and A, B, D and C form
a pushout, with all these maps mono, then the mediator d : D — © is also mono.

49



Proof Regarding pullbacks, first note that if the square rooted at D is one then so is that to O,
but the converse requires D — © to be (plain) mono.

We consider the kernel of d (the pullback of d against itself), K C D x D.

Since D is the union of its subobjects B and C and the pullback d* preserves unions, D x D is
the union of four parts, B x B, Bx C, C x B and C'x C, and K is the union of their intersections
with it. Putting these parts together, we have a surjection

ker (i ; d) — KNBxB = Ap
pbk(isd, j;d) = KNBxC = Ay
pbk(j;d, i;d) = KNCxB = Ay —> K C DxD
ker (j ; d) = KNCxC = Ac

so the kernel K C D x D is Ag UA¢, which is the diagonal Ap. Hence d is mono, as required. O

Example 10.4 The dual of this Lemma fails in Set.

_{ab}<

%

D = {ac,ad, be,bd} <——< © = {ad, ac, bc}

V\

C= {cd}<

\

Proof Any pullback D rooted at 1 is a product, so D = B x C. For the whole diagram to
commute A & O, using the same ideas as in Lemma the three elements of © give the three
equations

nd = ma = nc = mb : A,

whence the pushout rooted at © is 1. However, the pullback mediator D < © is not epi. O

So long as the base category C also has these properties, we can paste two attempts together,

as in Theorem [1.5(e)|

Lemma 10.5 Well founded subcoalgebras and attempts admit binary joins.

BNC S

Proof Suppose that the outer diamond defines two attempts with well founded supports B
and C. Let BN C be the intersection (pullback) of these subobjects of E, so BN C is a well
founded coalgebra by Proposition By Lemma the restrictions BNC — B — O and
BNC — C — O agree. By the union property we have BUC — ©. (]

Recall that Lemma used equalisers and so assumed that regular monos are predicates
admitting induction, whereas in that section we went on to prove (uniqueness in) the recursion
theorem by another argument, without using this. In other words, we could avoid using equalisers
here by relying instead on the main Theorem, for which this was intended to be a lemma.
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Finally we give the categorical explanation of the strange “overlapping union” in Set Theory:
putting B and C' together does not yield a coproduct B+ C but their pushout rooted at their meet
A= BnNC from Corollary

We already know from Proposition that the functors WfCoAlg — CoAlg — C create
colimits, whilst by Theorem[7.14] Ens — WfCoAlg creates filtered colimits and the initial object.
Corollary showed that Ens has binary joins, but relied on the extensional reflection for this.
What we show now is that they are inherited from C, under the additional assumptions of this
section.

Theorem 10.6 The preorder Ens has binary joins, given by pushout in C over the binary meet.

A=BnC D——  »>TD
~ J

Proof Let (B,f) and (C,~) be ensembles, so § and ~ are initial segments.
By Theorem[7.14] they have a meet A = BNC, and the maps B <~ A — C are initial segments.
Let D be the pushout in C; it is well founded by Proposition By the union assumption
(¢f. Lemma , i and j are initial segments, as are T, T'j, 8 ;Ti and v T3,
The key pomt is that BN C is the pullback rooted at either D or T D, by Corollary
Therefore § : D — T'D is an initial segment by the union assumption (cf. Lemma, making
D extensional. O

The argument that Osius gave for this [Osi74, Thm 6.6] is rather more complicated (with a
big diagram). Throughout his paper he used recursion instead of well-foundedness (cf. Proposi-
tion and of course T' = P, but for this particular result he used the partial map classifier C
(nowadays written C'|) in a topos.

There are no more adjoints amongst these categories.

Example 10.7 Ens — W{CoAlg does not create or even preserve colimits and so does not have
a right adjoint: Binary coproducts are idempotent (A + A = A) in Ens but disjoint (AN A = 0)
(in C by hypothesis and so also) in WfCoAlg. For a concrete example, the extensional well
founded relation 0 < 1 is embedded twice in V. O

Example 10.8 The rank functor R : WfCoAlg — Ens does not have a left adjoint because it
takes the pullback

0—>1 00— 1

where 2 carries the empty relation, which is well founded but not extensional.

Further work

The original purpose of this work was to provide an intuitionistic categorical account of transfinite
recursion for my book [Tay99]. However, there was no way to use Hartogs’ Lemma constructively,
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and then out of the blue came Pataraia’s far simpler proof of the fixed point theorem, but domain
theorists ought to have found it much earlier.

What we did learn from the intuitionistic ordinals [JMO95 [Tay96a] is that their irreflexive
membership and reflexive containment relations must be considered separately. In symbolic logic
this at least doubles the work, but category theory was invented to organise such difficulties, by
isolating the essential argument, whilst wrapping the complications in an appropriate choice of
categories and functors.

Therefore the next task is to apply the present work to the category of posets instead of sets
[Tay23|; we haven’t included that here because there are too many order-theoretic facts to check.
Then the ideas can be extended to other categories, which might have fixpoint objects [CP92] or
accommodate corecursion alongside recursion, cf. Remark [£.6]

This is why we went to some trouble in Section [g] to pin down just what we were using in
the original setting. In other categories there are many alternatives to the naive ideas of 1-1 and
onto mappings that we could use for the predicates over which we do induction and for defining
extensionality, although changing the former doesn’t seem to be very fruitful.

Extensionality is not as innocent as it looks: equality is like marriage in that it transfers any
property of one partner to the other. Dana Scott showed that it is essential for giving the axiom
of replacement its power: without it, that is provably consistent in Zermelo Set Theory [Sco66].

We expect to see even more dramatic results from applying the extensional reflection (Theo-
rem to other categorical settings. Using various notions of “initial segment” and “cofinal map”
turns sets (€-structures) into ordinals and thin ordinals into plump ones. Transfinite iteration of
functors and Jean-Yves Girard’s dilators [Gir81] are also examples of this process.

To perform these over Set Theory requires Replacement, but, being adjoints, they are expressed
in the mother tongue of category theory, so we can regard them as candidates for new axioms to
replace Replacement.

We have also explained how extensional well founded coalgebras are “fragments” of the initial
algebra, whether that exists or not. Even if it does, it may be very complicated, whilst it may be
easier to characterise its fragments instead.

Since there is plenty to do in “concrete” categories, it is not really an issue that we haven’t
fully explained how they are well powered. Any fibration defines a factorisation system, in which
we would require prone maps to be initial segments and cofinal ones to be vertical. If we are going
that deep into foundations, we should also deconstruct what is needed of the base category S to
prove Pataraia’s Theorem, in particular the directed completeness and impredicativity.

All of these considerations come together when the algebra is some type theory. There is a
categorical construction called gluing [Tay99) §7.7] or logical relations that apparently magically
proves consistency and termination results. It invokes the universal property of the free algebra,
i.e. recursion over the entirety of its world of types, terms and proofs. How it manages to do this
ought to raise eyebrows in the light of Kurt Gédel’s incompleteness theorems.

The symbolic approach to such things is to turn the syntax of proofs into an ordinal, which
to a categorist is vandalism because it thows the algebraic structure away. In fact proof theorists
also exploit their arithmetic of ordinals to keep track of iterated transformations of proofs. One
might hope to develop methods that retain both the algebra of the type theory and that of proof-
manipulation.

Above all we must escape from the idea that ordinals are linear orders for counting beyond
infinity.

The first version of this work was presented at Category Theory 1995 in Cambridge and
at Logical Foundations of Mathematics, Computer Science and Physics — Kurt Godel’s Legacy
(Géddel ’96) in Brno. Although it did not appear in the proceedings of either meeting, [Tay96b]
was circulated there and available on my web page from 1996 to 2003 and from 2006. Summaries
of the results were published in Sections 2.5, 6.3, 6.7 and 9.5 of [Tay99]. Work was resumed in 2019
in answer to a demand from those studying coalgebras to weaken the conditions on the functor.
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