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Abstract
We define well founded coalgebras and prove the recursion theorem for them: that there is a

unique coalgebra-to-algebra homomorphism to any algebra for the same functor. The functor

must preserve monos, whereas earlier work also required it to preserve their inverse images.

The argument is based on von Neumann’s recursion theorem for ordinals. Extensional well

founded coalgebras are seen as initial segments of the free algebra, even when that does not

exist.

The assumptions about the underlying category, originally sets, are examined thoroughly,

with a view to ambitious generalisation. In particular, the “monos” used for predicates and

extensionality are replaced by a factorisation system. Future work will obtain much more

powerful results by using this in a categorical form of Mostowski’s construction that imposes

extensionality.

These proofs exploit Pataraia’s fixed point theorem for dcpos, which Section 2 advocates

(independently of the rest of the paper) for much wider deployment as a much prettier (as

well as constructive) replacement for the use of the ordinals, the Bourbaki–Witt theorem and

Zorn’s Lemma.
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Many of the sections of this paper have been completely rewritten since the November 2022
or even more recent versions, some of them twice, particularly in the light of its application in
“Ordinals as Coalgebras”.

Categorical set theory is the study of ideas from Set Theory as ordinary mathematical objects,
without their foundational pretensions. The first application of our subject was to show that the
logic of an elementary topos with natural numbers is more or less the same as Zermelo Set Theory
[Mik22, Osi74].

In this paper we study well-foundedness, extensionality and the arguments behind von Neu-
mann’s recursion theorem and the Mostowski extensional quotient. We strip them of everything
else from their set- (or even topos-) theoretic origins and then identify what is needed of some
completely different setting for them to be re-deployed there.

The value of these particular ideas is that they provide ways of expressing very strong principles
of induction and recursion. These may be used in Proof Theory to prove the consistency of other
logical systems and in Process Algebra to investigate termination or persistence of processes and
ask whether one process is “the same” as another.

The role of category theory is that it is a good tool for capturing the essential features of a
mathematical argument, whilst demanding nothing by way of foundational beliefs.

In the first section we give the traditional ideas from Set Theory and universal algebra that
we are seeking to capture. Chief among these is the theorem of John von Neumann that defines
functions by recursion over well-founded relations, i.e. those for which we have induction for
predicates.

Section 2 introduces a novel order-theoretic fixed point theorem that we consider deserves a
place in the mathematical canon beyond its application in this paper. We need it here because,

1



whereas the original form of the recursion theorem relies on the fact that a poset with all joins has
a greatest element, our generalisation need not have binary joins at a key point. We demonstrate
how it maybe used for induction and recursion in familiar relational and process algebra.

Section 3 begins our categorical treatment by showing how coalgebras for a functor put these
properties of Set Theory and term algebras in a common abstract setting, summarising the earlier
work.

Section 4, which you should omit on first reading, examines our precise requirements of the
category and its notion of “mono”. In future work this will enable a considerable generalisation
of similar previous results from Set to other categories.

Section 5 shows how well founded coalgebras are generated and Section 6 proves our central
result, the recursion theorem.

Section 7 introduces extensional well founded coalgebras and shows how they behave like
“transitive sets” in Set Theory.

Section 8 shows how to impose well-foundedness and extensionality on a coalgebra, giving
adjoints to the inclusions of categories, on the additional assumption of image factorisation.

Section 9 re-introduces the requirement that the functor preserve inverse images and proves
the (relatively few) results that depend on this. Finally, Section 10 considers binary joins, in
particular the “overlapping” union in Set Theory and concludes with a survey of whether other
there could be other adjoints.

1 Background

We are going to study the axioms of foundation and extensionality.
The axiom of foundation and the notion of a well founded relation are the (to us, natural)

generalisation of the well-orderings or ordinals (X,≺) that Georg Cantor introduced [Can95,
Can97]. He stated their defining property in two ways:
(a) every non-empty subset ∅ 6= U ⊂ X has a ≺-least element; or

(b) there is no infinite descending sequence · · · ≺ d ≺ c ≺ b ≺ a.
In fact Euclid had invoked the second of these principles for the natural numbers long beforehand,
in Elements VII 31 [Fow94, p 262].

It took some time to recognise the weaker notion and how to use it to show that Zermelo’s
Set Theory and infinitary proofs are not vulnerable to circular arguments like Russell’s Paradox.
Dimitry Mirimanoff seems to have been the first to do this [Mir17a, Mir17b, Mir19], introducing
ideas such as rank that we will see later. His style is in the same spirit as our own, treating
membership like any ordinary relation.

John von Neumann proposed a meta-axiom, that the system of Set Theory be the minimal one
[vN25]. Ernst Zermelo asserted the two properties above for ∈ as his axiom of foundation [Zer30].
He formulated the general notion of a well founded relation, derived its ordinal rank and applied
it to induction and proof theory [Zer35].

If we use either of the properties (a,b) as the definition, we have to make frequent use of
excluded middle or dependent choice, respectively. For the intuitionistic definition, we identify
what we actually want to do with the notion. It is difficult to say who first stated this, because of
constructivists’ habit of retaining classical definitions verbatim and then arguing at length about
their faults, but one early formal intuitionistic account of induction is [HK66].

Definition 1.1 A binary relation ≺ on a carrier A is well founded if it obeys the induction
scheme

∀a:A. (∀b:A. b ≺ a⇒ φb) =⇒ φa

∀a:A. φa

for any predicate φ on A.
It will be convenient to dissect this triply nested implication. The innermost one,

∀b:A. b ≺ a =⇒ φb

is standardly called the induction hypothesis (for φ at a).
When ordinary mathematicians use induction to prove something, their effort goes in to justify-

ing the middle implication (the one with the long arrow, above the line), which uses the induction
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hypothesis to prove the next case. However, our focus is on the validity of induction, i.e. the
outermost implication that deduces the general case (written as the line), and therefore we call
the whole of the top line the induction premise (for φ).

We recognise that the middle implication is typically not two-way (â priori, but of course it
always becomes two-way after we have invoked induction), but in the situation where it is we call
it tight .

Remark 1.2 This still leaves the variable φ free. For simplicity we will usually speak of well-
foundedness as if it were quantified over all φ. However, the word scheme in the name indicates
that we may restrict attention to individual predicates or to a class of them of a certain logical
complexity, such as those with at most a particular number of alternations of quantifiers. Our
categorical structure is in fact able to accommodate this generalisation (Assumption 4.17) and we
will indicate for what predicates we are using induction. This consideration is particularly relevant
in proof theory, but we shall not get involved in that subject in this paper.

Example 1.3 With the successor relation n ≺ n+1 on the natural numbers, the induction scheme
is known as Peano induction:

φ0 ∀n:N. φn =⇒ φ(n+ 1)

∀n:N. φn

although this idiom predates Giuseppe Peano [Pea89] by at least three centuries.

Whilst the general notion of well-foundedness is natural and long-established, many math-
ematicians seem to be reluctant to use it. Instead they say that they are doing induction or
recursion on the length of a string, the height of a tree, its depth in computer science, or some
other such numerical measure. This is also the way in which iterative or recursive programs are
shown to terminate.

The general result that lies behind such usage is this:

Proposition 1.4 If (A,≺) is well founded and f : (B,<)→ (A,≺) is strictly monotone in the
sense that

∀b1b2 :B. b1 < b2 =⇒ fb1 ≺ fb2
then (B,<) is also well founded.

Proof If B has an infinite descending sequence then so does A, which is forbidden. Alternatively,
if ∅ 6= V ⊂ B then ∅ 6= fV ⊂ A, so there is a minimal a ∈ fV , where a = fb for some b ∈ V and
this is minimal there. The more difficult intuitionistic proof will be given in Proposition 9.2. �

From the ability to prove a predicate by induction we may derive that of defining a function
by recursion. The principal goal of this paper is to see how far we can generalise the setting of
this well founded recursion theorem . John von Neumann proved it for the ordinals in his
reformulation of their theory that became the classic one [vN28, § III] and the following is the
(mild) adaptation of his argument to intuitionistic well founded relations.

This result appears in most Set Theory textbooks, usually without attribution, but Paul
Bernays [Ber58, p 100] credits von Neumann; this book also has a detailed historical introduction
by Abraham Fraenkel, who probably knew the developments personally.

Theorem 1.5 Let (A,≺) be a carrier with a well founded binary relation and Θ another carrier
with a function θ : PΘ → Θ that takes an arbitrary subset of Θ as its argument and returns a
single element. Then there is a unique function f : A→ Θ such that

∀a:A. fa = θ ({fb | b ≺ a}).

We call this equation the recursion scheme , because we do not quantify over (Θ, θ): in this
paper we only ever consider a particular target structure.

Proof An initial segment of A is a subset B ⊂ A such that

∀bc:A. c ≺ b ∈ B =⇒ c ∈ B
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and an attempt is a partial function f : A ⇀ Θ whose support (domain of definition) B ⊂ A is
an initial segment and

∀b:A. b ∈ B =⇒ fb = θ({fc | c ≺ b}).

(a) There is a unique attempt with empty support.

(b) The union of any directed family of initial segments or attempts is another such.

(c) The restriction of ≺ to any initial segment is well founded.

(d) Any two attempts f , g with the same support B are equal, which we prove by induction
over (B,≺) for the predicate

φb ≡ (fb = gb).

(e) Hence any two attempts with supports B1 andB2 agree onB1∩B2 and so may be amalgamated
into an attempt with support B1 ∪B2.

(f) Given any attempt f with support B, there is a successor attempt g with support

C ≡ sB ≡ {c : A | ∀b:A. b ≺ c =⇒ b ∈ B} given by gc ≡ θ{b : A | b ≺ c},

whilst any attempt with support C restricts to B and these constructions are inverse.

(g) In this construction, C = B iff B = A, which we prove by induction over (A,≺) for the
predicate

φa ≡ (a ∈ B),

indeed “C = B iff B = A” is exactly the induction scheme for this predicate.

(h) The required solution to the recursion equation is the union of all of the attempts (a,b,e); this
is total because it is fixed by the successor operation (g) and unique by (d). �

It is essential to understand the steps of this traditional proof before proceeding with the rest
of this paper. We label them because they will each be the subject of lemmas in our categorical
proof.

However, we shall give our proof in a generality in which Proposition 1.4 fails (even though
that is plainly an extremely important property of well founded relations). We therefore lose steps
(c) and (e) of the proof and so cannot simply form the union of all attempts in the final part.

For these reasons, the next section gives a revised proof of the Theorem, as a guide to the way
we subsequently do it categorically.

Remark 1.6 Steps (a) and (f) in the traditional proof provide the initial and next attempts, so
by Peano recursion we can define the nth one for all n : N. Can we not then just use step (b)
at limit stages to continue this through the ordinals (here and in the fixed point theorems in the
next section)?

No:

(a) Ordinals are not “infinite numbers” in which ω follows the finite ones and we continue ever
upwards: the (classical) definition involves downward sequences. We require a proof to justify
recursion, namely the result due to von Neumann that we have just stated. Using a theorem
to prove itself is begging the question, as is citing a result from later in a textbook to prove
an early one; even a journal paper is to be understood as forming some stage in a logical
development.

(b) Even when ordinal recursion is legitimate, there are two further but commonly overlooked
components to a valid proof, besides the zero, successor and limit cases. Firstly, the ordinals
go on “forever” — Cesare Burali-Forti [BF97] showed early on that they do not form a “set”
— so when do we stop? Secondly, there is more work to be done in the target structure to
deduce that the recursion provides a solution to the problem being considered.

(c) One answer to the question of when to stop was given by Friedrich Hartogs [Har15]: For any
set X, let λ be the set of isomorphism classes of well-orderings of subsets of X. Then λ is well
ordered and there is no injection λ� X.

Hartogs’ proof was one of the earliest formal applications of Zermelo’s Set Theory [Zer08b]
and he set out the prerequisites from that and Cantor’s original work [Can97] very clearly.
Principal among the latter is that, for any two well ordered sets, one is uniquely isomorphic
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to an initial segment of the other; we would now deduce that from von Neumann’s (later)
recursion theorem (cf. Proposition 2.18), but Cantor had actually given a valid direct proof
of it.

A key feature of von Neumann’s paper (that was already present in [Mir17a]) was the use
of the global set-theoretic membership relation ∈ for the order ≺ on an ordinal, whereas for
Cantor, Hartogs and us, the relation ≺ on a well ordered or well founded set is superstructure.

(d) Hartogs’ Lemma gives us some ordinal λ that does not embed in the given set, so somewhere
it must repeat itself (classically). The second question is why is this point unique and how
does it solve the problem? We will see a new result in the next section that does this —
intuitionistically and much more simply.

(e) Remark 2.24 shows that there are lightweight alternatives to Hartogs’ Lemma for obtaining the
ordinal λ. However, instead of vindicating the use of ordinals, they suggest a deep rethinking
of how we prove things by recursion.

(f) No proof of the fixed point theorem correctly using ordinal recursion and citing Hartogs seems
to have been published prior to these alternatives, i.e. in 1928–49.

(g) Making new rules after the game has begun, such as Collection, Inaccessible Cardinals or
Universes, is also illegitimate, especially as we have valid proofs according to the original rules
(Zermelo Set Theory or an elementary topos).

(h) The traditional theory of the ordinals depends very heavily on excluded middle. There are
two existing intuitionistic accounts [JM95, Tay96a], which show that there are several different
notions. Even so, (the use of) Hartogs’ lemma remains irretrievably classical.

(i) The ordinals themselves are significant applications of the generalisations that our categorical
approach will offer, but they deserve a treatment of their own [Tay23a]. It is no more reason-
able to use an old theory to justify its replacement than it would be to power a carbon-neutral
vehicle with a steam engine.

Remark 1.7 In order to start generalising these ideas, consider first the recursion scheme: θ is
the evaluation operation for some sort of algebra Θ. In taking a set of arguments instead of a
list, we are saying that θ is idempotent and commutative with respect to them, although these
conditions are inessential.

Indeed, we can consider any free theory , i.e. one with no equations at all, but a (possibly
infinite) collection Σ of operation symbols, each r of which has a (possibly infinite) arity ar (r).
Then for any set X (of constants, generators, indeterminates or variables as you please), there is
a set

TX ≡
∐
r:Σ

Xar (r)

of terms of depth 1 built from these generators and operation symbols. With no generators, T∅
is the set of constants or nullary operation-symbols. Of course TTX is the set of terms of depth 2
and so on.

An algebra for these operation symbols is a carrier Θ that is equipped with an operation
Θar (r) → Θ for each symbol r : Σ. These may be combined into a single function on the disjoint
union:

θ : TΘ −→ Θ.

In particular, at least in the case where all of the arities are finite, there is a term- or free
algebra that is obtained by forming the union A of all of the iterates of T , applied to the empty
set. Since we have already done so exhaustively, applying T again to A yields the same thing, so

TA

ev
>∼=

<
parse

A,

where ev and parse are the functions that wrap some sub-terms in another operation-symbol and
unwrap them from the outermost one.

Therefore,
b ≺ a ≡ (r, b) ∈ parse (a)
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defines the immediate sub-term relation on A. Since A only consists of expressions that
are formed by repeated application of the operation symbols, this relation clearly satisfies the
“descending sequence” definition of well-foundedness.

Whilst pure mathematicians still typically do induction on the depth of such an expression
(cf. Proposition 1.4), it is increasingly common for theoretical computer scientists and logicians
to say directly that this is structural induction or structural recursion on the expressions or
language instead.

Returning to Set Theory, the second idea that we want to develop is the following — at first
sight innocent — property of the ∈-relation:

Definition 1.8 A (well founded) binary relation ≺ such that

∀ab:A. (∀c:A. c ≺ a ⇐⇒ c ≺ b) =⇒ a = b

is called extensional . The analogous property of sub-terms in a free algebra is that the parse
map is one-to-one, because any term is uniquely determined by its sub-terms (and outermost
operation-symbol).

Zermelo’s generalisation from well ordered to well founded systems [Zer35] introduced “noise” in
the form of repetition. Extensionality removes this so thoroughly that there are no automorphisms
aside from the identity.

Remark 1.9 In this paper we will put the ideas of well-foundedness and extensionality in a more
powerful categorical setting. Together they explain many characteristic features of Set Theory,
even when stripped of what we might suppose to be its most important ingredients. They are also
important properties of term algebras, underlying the algorithm for unification, i.e. for assigning
(sub-)terms to indeterminates in two or more terms so that they match.

In Set Theory, when we form the “union” of two supposedly independent objects, we may
find that they already overlap. (Besides being bizarre from the point of view of any other kind
of mathematics, this is irritating for those who use set theory as a foundation.) The way that
unification “matches up” sub-terms is similar to the overlapping union.

We shall find in Section 7 that the category of extensional well founded structures and the
appropriate homomorphisms is actually a pre-order, i.e. there is at most one map between any
two objects. When we put two objects together, they (typically) have a non-empty intersection
(meet in this order) and therefore an “overlapping” union.

However, we will not go any further in this paper with modelling the rest of Zermelo’s axioms
and have no generalisation of the Kuratowski–Wiener pair formula {a, {a, b}}.

Remark 1.10 Applying universal algebra back to Set Theory, when we take (the functor) T to be
the (covariant) powerset P, we see that the terms of successive depth are just sets (∈-structures).
We usually like to have free algebras for structures, which in this case would be the universal
set , but this does not exist as a legitimate object.

However, the extensional well founded structures are legitimate fragments of the universal set.
These are known in Set Theory as transitive sets, by which is meant those X for which

y ∈ x ∈ X =⇒ y ∈ X, but not necessarily z ∈ y ∈ x ∈ X =⇒ z ∈ x.

The analogue in algebra is a collection of terms that includes all of their sub-terms. This is a
familiar situation: a language processor such as a compiler forms just such a collection when it
parses a particular program or text.

Such structures are parts of the free algebra, whether the latter exists legitimately or not. More
precisely, the (possibly illegitimate) union (colimit) of the preorder of extensional well founded
structures is the free algebra.

Remark 1.11 Continuing with the fiction of the universal set, let’s use it as the target Θ of the
recursion theorem. Then, for any well founded relation (A,≺), we may define

fa recursively as the set (∈-structure) {fb | b ≺ a}.

Even if (A,≺) was not extensional, the result is, because Θ is extensional by the axioms of Set
Theory.
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Therefore, following Andrzej Mostowski [Mos49, Thm 3],
(a) any extensional well founded relation is isomorphic to a unique set (∈-structure); and

(b) any well founded relation has an extensional quotient, with a suitable universal property.

The first of these obliges us to subscribe to the ontological belief that a set is some particular
thing, instead of having a mathematical property that is shared by any isomorphic structure.
(There is the same distinction between von Neumann’s ordinals and Cantor’s well ordered sets.)
Moreover, if we admit that, then we commit ourselves even more deeply, because this ∈-structure
is not defined within Zermelo’s original Set Theory [Zer08b], but requires the Axiom-Scheme of
Replacement.

Since we are not using Set Theory as our foundations, we do not need to be concerned with
Replacement (as yet). On the other hand, the second statement is an ordinary theorem of higher
order logic. It’s a quotient, so we may construct it using an equivalence relation, albeit one that
has a co-recursive definition. This is done symbolically in Theorem 2.23 and in a more general
categorical form in Section 8.

Remark 1.12 This discussion of whether Mostowski’s construction requires Replacement or not
is a distraction. There undoubtedly are constructions that ordinary mathematicians do, but which
are not available in Zermelo Set Theory or its modern substitutes:
(a) It is common to iterate constructions, either over N or an ordinal, the simplest case being⋃

Pn(N).

(b) By methods variously known as realisability, gluing or logical relations, one can compare the
term model of a logic system with a semantic one to prove consistency or completeness. Since
this seems to conflict with Gödel’s Incompleteness Theorems, the recursion over the term
model must be one that goes beyond what that logic can prove for itself.

To give a categorical account of the axiom-scheme of replacement would go well beyond what
we can consider in this paper. We will make a proposal towards it in [Tay23b] by demonstrating
how our categorical methods can characterise transfinite iteration of functors. Of course we cannot
construct this: we will simply add a new tool to the categorical lexicon. This will lie alongside,
for example, the definition of the subobject classifier in a category with finite limits, which defines
but does not construct an elementary topos.

Mostowski’s construction is nevertheless the conceptual key to this, because our definition
of transfinite iteration will be another example of the extensional quotient. However, this is in a
framework where we use categorical tools to generalise the notions of “injective” (and “surjective”)
functions. Sections 4 and 8 explain how this is done.

Remark 1.13 Finally, since we have gone to the trouble of saying how induction and recursion
are schemes, we should also state our position vis à vis two traditions in Set Theory: one that
employs completed infinities (classes, universes, inaccessible cardinals) and another that eschews
them, developing potential infinities instead.

Completed infinities feature in ordinary mathematics in the form of free algebras, as we have
seen. André Joyal and Ieke Moerdijk [JM95], approaching the analysis of Set Theory from this
point of view, treated the universes of sets and of (three kinds of intuitionistic) ordinals as the free
algebras for the powerset functor together with “successor” functions having various properties.

It was their key contribution to model the small/large or set/class distinction using ideas that
had been developed in topology and sheaf theory to handle open maps. Their algebraic set theory
has been developed further by a number of authors [Awo13] and now gives a categorical account
of several highly powerful notions in Set Theory.

Type theories also commonly include (multiple) universes, because, when the motivations are
symbolic formulae, it is quite natural to internalise the whole system within itself. This is also
used, for example in Homotopy Type Theory, to provide results that would otherwise be obtained
impredicatively.

Universes can be expressed in native category theory as internal models that are equivalent to
full subcategories.

Our view, on the other hand, is in the tradition of potential infinities. We take on board the
fact that we cannot solve X ∼= P(X), i.e. that there are functors such as the covariant powerset
that have no free algebra. In place of this, we characterise and work with fragments of what
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ought to be the free algebra. In the case of the powerset, these fragments are the ∈-structures or
transitive sets of traditional Set Theory.

Working without completed infinities is also important if we want to understand Replacement,
because of the way that it can be dismissed as apparently trivial in the context of universes.
(In fact, that approach requires an axiom called Collection to turn large things into small one.)
Somehow Replacement allows us to express very large things using small specifications, like an
architect’s plan for a skyscraper, even without an encompassing universe [Tay23b].

Remark 1.14 In this setting we therefore need to explain what we mean when we write Set
for the category of all sets (or whatever) and functors between such categories. Categorists
commonly and happily talk about these without being clear what they mean.

Plainly, to do sheaf theory we would need to consider functors F : X op → Set as legitimate
objects, and also collections of them. These are completed infinities, although they can in fact be
re-formulated to avoid this by considering fibrations F → X instead.

But we’re not going to do sheaf theory in this paper. For us, Set and other “large” categories
are not really the completed infinities of all objects but just a shorthand for the scheme that says
what it is to be an object or morphism of the relevant kind. Similarly, a functor is a process that
turns an object or morphism of one kind into one of the other, not the completed infinity that
collects all instances of this transformation.

2 A novel fixed point theorem

In order to prove our categorical generalisation of the recursion theorem we need to know about
order-theoretic fixed points. Here we also recall the properties of simulation and bisimulation that
both the set-theoretic membership relation and coalgebra homomorphisms obey.

Remark 2.1 The most used fixed point theorem is for complete lattices, where the least fixed
point of a monotone endofunction s : X → X is∧

{x : X | sx ≤ x}.

It was stated tersely by Bronis law Knaster [Kna28] and later elaborated by Alfred Tarski [Tar55].
However, it had actually been well known at the beginning of the 20th century: it was a common-
place for Zermelo in 1908 and (in the same year as Knaster) von Neumann used it in his proof of
the Recursion Theorem 1.5.

However, there are many systems, especially in algebra, where general (in particular binary)
joins need not exist, or if they do they are unmanageably complicated. For example, in the proof
that we gave of the recursion theorem, step (e) pasted two partial functions together, relying on
an inductive argument in step (d) that they agree on their common domain.

We will generalise the recursion theorem to situations where these steps may not be valid, so
we need a more subtle result that avoids binary joins. Classically, this is accommodated by using
those of linear orders or chains (Lemma 2.24), but for a constructive result we replace these with
a looser notion:

Definition 2.2 Let (X,≤) be a poset (partially ordered set), so the relation (≤) is reflexive,
transitive and antisymmetric (x ≤ y ≤ x⇒ x = y). Then
(a) a subset I ⊂ X is directed if

∃x:X. x ∈ I and ∀xy ∈ I. ∃z ∈ I. x ≤ z ≥ y;

(b) (X,≤) is a dcpo (directed-complete poset) if it has joins of all directed subsets, written
∨
� or⋃

6; and

(c) it is a ipo (inductive poset) if it also has a least element, written ⊥ or ∅.

If an endofunction s : X → X of an ipo preserves directed joins then there is another simple
fixed point property that is well known in universal algebra and the semantics of programming
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languages, where it was promoted by Dana Scott. Here, however, we will only require the function s
to be monotone , i.e. to preserve order ,

∀x, y :X. x ≤ y =⇒ sx ≤ sy,

and also to be inflationary ,
∀x:X. x ≤ sx,

although there are numerous alternative names for these two properties.

Lemma 2.3 Any dcpo (X,≤) has a greatest inflationary monotone endofunction, t : X → X.
This is idempotent (∀x. t(tx) = tx) and its fixed points are exactly the points that are fixed by all
inflationary monotone endofunctions.

Proof Consider the poset Y of all inflationary monotone endofunctions of X, equipped with the
pointwise order,

r ≤Y s ≡ ∀x:X. rx ≤X sx.

This inherits directed joins from the pointwise values in X. Also, idX is the least element of Y ,
so it is an ipo.

Now, for any r, s ∈ Y , the composites r ;s and s ;r both lie above both r and s in the pointwise
order on Y , because

r(sx) s(rx)

rx sx

x

using both the inflationary and monotone properties.
Hence the whole of Y is directed.
Since Y is also directed-complete, it therefore has a greatest element, t : X → X.
Now, for any s ∈ Y , the composites s ; t and t ; s are in Y too, so s ; t ≥ t ≤ t ; s by the previous

argument, but also s ; t ≤ t ≥ t ; s since t is the greatest element of Y . Hence s ; t = t = t ; s and
in particular t = t ; t.

Finally, if x = tx then sx = s(tx) = tx = x for any s ∈ Y . In particular x ≡ ty satisfies this
for any y ∈ X. �

Remark 2.4 Since this Lemma and Remark 2.1 invoke the join or meet of all candidates for what
they aim to construct, they are impredicative . Indeed, the directed set Y is much bigger than
the X that we required to be directed-complete.

Impredicativity is an issue in some understandings of constructivity that we will not address in
this paper. If you would like to do so, whilst this is the Original Sin in this paper, we vow never to
commit it again, so it is just this Lemma that you will need to replace. Maybe this could exploit
the proof instead of the fact that a dcpo is well formed. Beware, however, that there seems to be
no “proof-relevant” (i.e. categorical) version of the Lemma.

Our novel fixed point theorem incorporates the idea that recursion doesn’t “pause for a breather
and then start up again”, cf. Remark 1.6(d):

Theorem 2.5 Let s : X → X be an inflationary monotone endofunction of an ipo satisfying the
special condition that

∀xy :X. x = sx ≤ y = sy =⇒ x = y.

Then
(a) X has a greatest element, which we call >;

(b) > is the unique fixed point of s;

(c) if ⊥ satisfies some predicate that is preserved by s and directed joins then this also holds
for >.

9



Proof By the Lemma, let t : X → X be the greatest inflationary monotone endofunction. Then

∀x:X. ⊥ ≤ x ≤ sx ≤ tx = s(tx),

whence ∀x. t⊥ = s(t⊥) ≤ s(tx) = tx ≥ x,

so the (≤) is equality by the special condition and t⊥ is the greatest element (>) and unique fixed
point.

For the final part, the subset U ⊂ X defined by the predicate is closed under ⊥, s and
∨
� . It

therefore satisfies the same properties as X itself, so it contains a fixed point, which must be the
same as the one in X. �

Remark 2.6 The innovation of using functions instead of subsets was made by Dito Pataraia in
1997, but he never wrote it up formally himself and died in 2011 at the untimely age of 48 [Jib11].
His original argument was more complicated but was simplified by Alex Simpson [JS97]. Domain
theorists ought to have known the Lemma already, but it seems that none of us did.

We call the third part of the conclusion Pataraia induction , although it was first exploited
in a constructive setting by Mart́ın Escardó [Esc03, Thm 2.2].

It is easy but instructive to find examples where s fails to be monotone or inflationary and
there is no top element.

Remark 2.7 Our “special condition” simplifies the proof further: it is easier to deduce the more
usual formulation that there is a least fixed point from our result giving a unique one than vice
versa.

Our tool is meant to be a scalpel, not a chainsaw. We have introduced the special condition
because the objective is often to prove that there is a top element in some system.

The special condition is plainly necessary, if the fixed point is to be unique. But, in order
to prove uniqueness, we would normally postulate two candidates without assuming any â priori
relation between them. The special condition says that we may suppose that they are in the
order relation. Compare this with Tarski’s version [Tar55, Thm 1], where there is a lattice of fixed
points, so our condition reduces that to just one.

There must have been some kind of “refinement” of the raw setting (where there a lot of
extraneous material above and beside the fixed point) to make it satisfy our special condition.
One general way of doing this would be to say that the ipo X to which we apply our result is
obtained from a larger one as the subset generated by ⊥, s and joins of either directed subsets or
chains. However, this requires second order logic, having recursion as an hors d’oevre to the main
recursive dish.

In fact there are simple first order ways of defining suitable subsets that may be larger but
serve the purpose:

Definition 2.8 We say that x : X is a well founded element of an ipo (X,≤) that also has
binary meets (∧) if

x ≤ sx and ∀a:X. (sa ∧ x ≤ a) =⇒ x ≤ a.

Without (∧), we call x tightly well founded if

x ≤ sx and ∀a:X. (sa ≤ a) =⇒ x ≤ a,

and there is a third notion with just sa = a.

Lemma 2.9 For any ipo X with a monotone endofunction s : X → X, each of the three subsets
defined by these conditions satisfies the special condition and so has a greatest element. This is
the least fixed point of s and satisfies Pataraia induction. The three conditions must yield the
same least fixed point, but the first subset may be smaller than the other two (Examples 9.4).

Proof Given x = sx ≤ y = sy, put a ≡ x in any of the properties for y. �

These names, including “special condition” are awkward. In fact, they are the poset transla-
tions of the categorical notions of well founded coalgebra and recursion that we introduce in the
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next section. The ideas are interchangeable and we need to apply them to many more example to
see which is the most natural to be used as the headline form, and what it should be called.

It would be highly productive to characterise the well founded elements of any recursive situa-
tion, because Pataraia’s Theorem says that there is automatically a greatest one, when that could
be far from obvious in the given setting. Here is the leading example:

Example 2.10 Let (A,<) be any set with a binary relation. The full powerset PA is an ipo, on
which

sX ≡ {a : A | ∀b:A. b ≺ a =⇒ b ∈ X}

is the successor operation from Theorem 1.5(f), Then X is a well founded element iff it is an initial
segment on which (<) is a well founded relation.

Proof It is an initial segment iff X ⊂ sX and the induction premise for U is sU ∩X ⊂ U , i.e.

∀a:A. (∀b:A. b < a⇒ b ∈ U) ∧ a ∈ X =⇒ a ∈ U,

which is the premise for induction on (<).
The special condition is a relative version of part (g) of the original proof: if B′ = sB′ ⊂ B =

sB ⊂ A with B well founded then ∀x ∈ B. x ∈ B′ by induction. �

Corollary 2.11 Any binary relation (A,<) contains a largest well founded initial segment, which
we call WA ⊂ A. �

Mirimanoff probably knew that, but there is a more subtle consequence of these ideas:

Corollary 2.12 Any well founded relation admits Pataraia induction on its ipo of initial segments.

Proof The subtlety is that this induction does not come directly from the relation: Example 2.10
wrapped that up in the data for Pataraia’s Theorem. It is the induction from there that is being
invoked here. �

The proof of this pudding is in the eating. To illustrate the use of Pataraia’s Theorem and
its variants, we now prove the analogous results for relations to those that we later discuss for
coalgebras, starting with the Recursion Theorem 1.5.

Theorem 2.13 Let (A,≺) be a carrier with a well founded binary relation and Θ another carrier
with a function θ : PΘ→ Θ. Then there is a unique function f : A→ Θ such that

∀a:A. fa = θ ({fb | b ≺ a}).

Proof We have seen that the initial segments form an ipo (Seg ,⊂), and similarly the attempts
form one called (Att ,≤), for which part (f) of the Theorem defines a successor too. These are
related by a “support” function

supp : Att −→ Seg

that commutes with the successor operations, as well as with ⊥ and
∨
� .

The successor doesn’t just extend an attempt from one with support B to one on sB, but
defines a bijection between them. Hence Φ(B) ⇒ Φ(sB), where Φ(B) is the predicate that says
that there is a unique attempt with support B.

We also have Φ(∅), whilst Φ is preserved by directed unions, since these are colimits, and we do
not need to consider binary unions. By Corollary 2.12, Φ(A) holds, i.e. there is a unique attempt
with total support. �

Remark 2.14 Our use of uniqueness is a novelty that will be crucial in the categorical version
and also shows that supp : Att ∼= Seg .

Since the notion of well founded element is defined in terms of the successor and order-theoretic
operations, it is essentially an algebraic idea rather than a logical one. So it follows from the
isomorphism that an attempt is well founded iff its support is. If we were instead to characterise
well founded attempts directly, we would actually have to prove uniqueness by induction anyway.
Therefore this argument is a paradigm of how well-foundedness of elements is transferred from
one Pataraia structure to another. �
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We now turn to extensional well founded relations, which were the basis of Cantor’s theory of
the ordinals and the ∈-structures of Set Theory. Since our point of view is that sets are partial
P-algebras, we adapt the recursion theorem to allow its target (Θ, θ) to be partial. This makes
it rather more complicated, so it is correspondingly less obvious that there is a greatest attempt.
Pataraia’s theorem comes to the rescue.

For this we need the notion, introduced by Mirimanoff as “isomorphisme” [Mir17a, §2], that
spells out what equality of sets means for their elements, but it is nowadays best known in Process
Algebra [San11]:

Definition 2.15 A function f : B → A between sets with binary relations is called a simulation
if it has the “lifting” property

∀a′ :A. ∀b:B. a′ ≺A fb =⇒ ∃b′ :B. a′ = fb′ ∧ b′ ≺B b.

We may define a similar property for a relation (∼) : B ↽⇀ A instead of f :

∀aa′ :A. ∀b:B. a′ ≺A a ∧ b ∼ a =⇒ ∃b′ :B. b′ ∼ a′ ∧ b′ ≺B b

and then ∼ is a bisimulation if it also satisfies the symmetrical property,

∀a:A. ∀b b′ :B. b′ ≺A b ∼ a =⇒ ∃a′ :A. b′ ∼ a′ ∧ a′ ≺A a.

Since this makes the empty relation a bisimulation, we need to be clear whether we are talking
about functions or relations. Also, the definition is finitary, so it is closed under directed unions:

Lemma 2.16 The bisimulation relations between any two sets with binary relations form an ipo
under inclusion. �

Lemma 2.17 The relative successor b ≈ a of a bisimulation relation (∼) : (B,≺B) ↽⇀ (A,≺A)
is defined by(

∀a′. a′ ≺A a⇒ ∃b′. a′ ∼ b′ ∧ b′ ≺B b
)
∧
(
∀b′. b′ ≺B b⇒ ∃a′. a′ ∼ b′ ∧ a′ ≺A a

)
.

It extends (∼) and is also a bisimulation. If (A,≺A) is extensional and (∼) : B ⇀ A is functional,

(b ∼ a1) ∧ (b ∼ a2) =⇒ a1 = a2,

then the successor (≈) is functional too.

Proof If b ≈ a1, b ≈ a2 and a′ ≺ a1 then ∃b′. b′ ∼ a′ ∧ b′ ≺ b, so

∃b′a′′. b′ ∼ a′ ≺ a1 ∧ b′ ∼ a′′ ≺ a2 ∧ b′ ≺ b,

in which a′ = a′′ since (∼) is functional, so a′ ≺ a2. The converse is similar, so a1 = a2 by
extensionality of A. �

Proposition 2.18 Between any two well founded relations (B,≺B) and (A,≺A) there is a greatest
bisimulation relation. If A is extensional then the bisimulation is functional and if B is extensional
too then it is a partial bijection.

Proof We verify the special condition for Pataraia induction. So suppose that

∀ab. a v b ⇐⇒ a vv b =⇒ a ∼ b ⇐⇒ a ≈ b

and, for a double well founded induction within this,

∀a′b′. a′ ≺A a ∧ b′ ≺B b ∧ a′ ∼ b′ =⇒ a′ v b′.

Then
a ≈ b ≡

(
∀a′. a′ ≺A a⇒ ∃b′. a′ ∼ b′ ∧ b′ ≺B b

)
∧
(
· · ·
)

⇒
(
∀a′. a′ ≺A a⇒ ∃b′. a′ v b′ ∧ b′ ≺B b

)
∧
(
· · ·
)
≡ a vv b,

so a ∼ b ⇐⇒ a v b. Thus this holds for all a ∈ A and b ∈ B.
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Hence, using extensionality, the greatest bisimulation is functional by Pataraia induction.
When this is so both ways it is a partial bijection. �

Remark 2.19 The well founded induction is another use of Corollary 2.12, applied to initial
segments of both orders together, so it operates on the product Pataraia structure. The same
applies to the use of the special condition: a bisimulation has supports on both sides that are
initial segments and its successor relates their successors, as in Theorem 2.13. �

Using Mirimanoff’s characterisation of (Set-Theoretic) subset inclusion as a bisimulation, this
result says that there is a greatest way of “zipping together” two sets, where the shared part is
their set-theoretic intersection. Cantor had done this with the classical ordinals [Can97, §13 Thms
N&E], so that one must be an initial segment of the other, since otherwise the least unmatched
elements on both sides would extend the matching.

Section 7 re-interprets these ideas for extensional well founded coalgebras, which then enjoy
very similar properties to Set Theory: All morphisms are mono and they from a preorder with
meets. Section 10 then constructs binary unions that are again like those in Set Theory.

Proposition 1.4 said that well-foundedness of relations is reflected by order-preserving functions
and in particular is inherited by initial segments, cf. Theorem 1.5(c). There is a simpler result
about the induction premise (cf. Definition 1.1), that will be an important tool (Lemma 5.5) in
our categorical construction:

Lemma 2.20 Substitution along simulation functions preserves the induction premise for induc-
tion over a well founded relation.

Proof Let f : (B,≺) → (A,<) be a simulation function and φ a predicate on A that satisfies
the induction premise,

∀a. (∀a′. a′ < a⇒ φa′) =⇒ φa.

Put ψ ≡ f∗φ, so ψb ≡ φ(fb), and suppose that it satisfies the induction hypothesis

∀b′. b′ ≺ b =⇒ ψb′

for b : B. Let a′ : A be such that a′ < a ≡ fb. Then, since f is a simulation, there is some lifting
b′ : B with a′ = fb′ and b′ ≺ b. By the induction hypothesis for B at b, this satisfies ψb′, which is
φ(fb′) or φa′.

Hence we have proved the induction hypothesis for φ on A at a ≡ fb. It follows from the
induction premise for A that φa ≡ φ(fb) ≡ ψb. Therefore we have proved that

∀b. (∀b′. b′ ≺ b⇒ ψb′) =⇒ ψb,

which is the induction premise for B. �

Corollary 2.21 Surjective simulation functions preserve well-foundedness of relations.

Proof If (B,<) is well founded, f is surjective and φ obeys the induction premise for A in the
Lemma then ∀b. ψb and ∀a. ∃b. a = fb, whence ∀a. φa [Tay96a, Lemma 2.7]. �

Now we have further applications of Pataraia’s theorem:

Lemma 2.22 Any simulation function f : (B,≺) → (A,<) from an extensional well founded
relation to any binary relation whatever is 1–1.

Proof For any initial segment C ⊂ B, let Φ(C) be the predicate that the composite C → B → A
is 1–1. This holds for C ≡ ∅ and is inherited by directed unions.

Suppose Φ(C) holds and let b1, b2 ∈ sC with fb1 = fb2 ∈ A.
Since f is a simulation function, the trivial statement a < fb1 ⇐⇒ a < fb2 becomes

(∃b′1. a = fb′1 ∧ b′1 ≺ b1) ⇐⇒ (∃b′2. a = fb′2 ∧ b′2 ≺ b2),

in which we must have fb′1 = fb′2. By construction of sC, we have b′1, b
′
2 ∈ C, so b′1 = b′2 by Φ(C).

Hence
∀b′. b′ ≺ b1 ⇐⇒ b′ ≺ b2,
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so b1 = b2 by extensionality of B. So we have proved Φ(sC). Then Pataraia induction in the form
of Corollary 2.12 gives Φ(B), which is that f : B → A is 1–1. �

We use these two results for our version of Mostowski’s construction (Remark 1.11), which is
that any well founded relation may be made extensional by forming the quotient by an equivalence
relation. This replaces the ad hoc references to co-recursion in [Tay96a, Thm 2.11] by Pataraia
induction. Section 8 generalises this to coalgebras.

Theorem 2.23 Let (X,≺) be a well founded relation.

(E,<) ≡ X/∼ .....................
h

> (E′, <′)

(X,≺)

f

∧

g

>

Then there is an extensional well founded relation (E,<) and a surjective simulation function
f : X → E, with the universal property that, for any simulation function g : X → E′, where
(E′, <′) is extensional and well founded, there is a unique simulation function h : E → E′ such
that g = h ◦ f .

Proof First consider the universal property. Extensionality of E′ at g(x) and g(y), where
x, y ∈ X, says [

∀e′. e′ <′ g(x)⇔ e′ <′ g(y)
]

=⇒ g(x) = g(y).

Write x ∼ y for g(x) = g(y) and use Definition 2.15. By an argument similar to Lemma 2.22,

(∀x′ ≺ x. ∃y′ ≺ y. x′ ∼ y′) ∧ (∀y′ ≺ y. ∃x′ ≺ x. x′ ∼ y′) =⇒ x ∼ y,

which is a bisimulation relation. By Proposition 2.18, there is a greatest of these and by Pataraia
induction it is reflexive, symmetric and transitive (an equivalence relation).

The order relation on the quotient X/(∼) is defined by

[x] ≺ [y] ≡ ∃y′. x ∼ y′ ≺ y.

Then X → X/(∼) preserves ≺ and is a surjective simulation function. Hence X/(∼) is well
founded by Corollary 2.21.

Since (∼) is fixed by the successor operation, X/(∼) is extensional. Moreover, for any denser
equivalence relation (≈), the quotient X/(∼) → X/(≈) is a simulation function out of an exten-
sional well founded relation, so it is 1–1 by Lemma 2.22 and therefore bijective. �

The rest of this section is a historical commentary on fixed point theorems. Although Pataraia
found his constructive proof of the fixed point property at the end of the 20th century, there could
have been a classical version almost at the beginning of it:

Lemma 2.24 Let s : Y → Y be a monotone endofunction of a poset with joins of chains. Then
(assuming Excluded Middle) the subset X ⊂ Y generated by these satisfies

∀x, y :X. y ≤ x ∨ sx ≤ y,

whence X is itself a chain. In fact it is well ordered. �

Corollary 2.25 The subposet X has a greatest element, which is the unique fixed point of s and
satisfies an induction principle like that in Theorem 2.5. �

Like the “Knaster–Tarski” theorem, this result is mis-attributed, to the Bourbaki group [Bou49]
and Ernst Witt [Wit51]. The credit really belongs to Ernst Zermelo [Zer08a]: see the last para-
graph on page 184 of [vH67], which proves this property, albeit for descending chains of subsets.
There sA ≡ A′ ≡ A− {φ(A)}, where φ : P+(M)→M is the choice function.
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Zermelo was perhaps a victim of my maxim that: Lemmas do the work in mathematics, whilst
Theorems, like management, just take the credit, and a good Lemma survives a philosophical or
technological revolution [Tay99, §4.2]. He proved a brilliant Lemma, but his Theorem was merely
the statement of the ideology of the day that all sets should carry a well-ordering [Moo82]. This
ideology was softened into the “lemma” for which Max Zorn denied responsibility [Cam78, Zor35],
although this is another “theorem” by my maxim, and was merely an axiom in Zorn’s paper. Most
of the classical literature on the fixed point theorem claims to be about these two dogmas.

Amongst these papers we find Lemma 2.24 re-discovered over and over again, maybe starting
with Zermelo’s collaborator Gerhard Hessenberg [Hes08, §125], although the notation there is
impenetrable. Walter Felscher [Fel62] compared many further versions of it.

So the historical question is why Corollary 2.25 failed to find its proper place in the core of the
curriculum, but was instead buried under crude transfinite recursion. I only know of one textbook
outside set theory [Lan65] that includes Lemma 2.24, but even there it is in an appendix of a
re-printing.

You may perhaps understand this if you try to find your own proof. The natural induction
step swaps the two variables and cases, making the proof very tricky and unmemorable. On the
other hand, once you find one proof and then look at the literature, you will see that there are
multiple strategies.

Even if you don’t care about using Excluded Middle, maybe you agree with G.H. Hardy’s
maxim that “there is no permanent place in the world for ugly mathematics” [Har40, §10]. Unfor-
tunately, he was wrong, because the classical theory of the ordinals is a zombie, and a behemoth
if you make full disclosure of the relevant proofs [vN28, Har15] down to your chosen foundations
— such as those of Zermelo [Zer08b], which he formulated in order to prove Lemma 2.24.

Zermelo’s induction argument is brilliant. But it is still awkward.
Pataraia’s proof is much much prettier. It is so simple and natural that a student who has seen

it once could easily reproduce it in an exam. Moreover, in this section we have started building a
theory of Pataraia structures.

For those who do care about constructivity, Andrej Bauer and Peter LeFanu Lumsdaine in-
vestigated the difference between joins of chains and of directed subsets (Definition 2.2) in the
effective topos [Bau09, BL12]. As a surprising contrast, Todd Wilson showed that the key double
induction argument in Lemma 2.24 does not use excluded middle [Wil01]. However, the resulting
notion of well-ordering just says that every inhabited subset has a least element, as in Cantor’s
condition, which is not enough for intuitionistic induction.

However passionately we advocate more subtle methods, people will still retrogress to recursion
“beyond infinity” and even wilfully mis-report the work of others [Wik04]. The youthful Casimir
(Kazimierz) Kuratowski [Kur22] argued a century ago that such methods are unnecessary. He gave
worked examples and references from set theory, topology and measure theory, said repeatedly
that he was doing induction and included Lemma 2.24 (loc. cit., Thm III). Sadly, even he, much
later in his career, based his topology textbook on the usual stuff about cardinals and ordinals
[Kur61].

We have given several different ways of achieving the conditions and so the conclusions of
Pataraia’s Theorem. We will make use of them all in this paper. A reader in twenty years’
time may consider that we should have exploited well founded elements more vigorously than
we do (cf. Proposition 3.7). This is because these ideas arose from the difficulty of proving
Proposition 7.14.

Anyway, we have promised to describe well founded coalgebras.

3 Well founded coalgebras

We now show how the ideas from Set Theory, universal algebra and process algebra in the previous
two sections can be expressed in category theory. We build on the work of Christian Mikkelsen
and Gerhard Osius. This was done in the years following the introduction of the notion of an
elementary topos by Bill Lawvere and Myles Tierney [Law70], when the key issues were to optimise
the categorical axioms and show that toposes could do anything that sets could do.
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The main part of Mikkelsen’s thesis [Mik22] gave an important simplification of the categorical
definition of a topos, showing how colimits could be derived from limits, after his supervisor Anders
Kock had derived exponentials from powersets [KM74]. As an appendix, he gave the first proof
of the recursion theorem in a topos, in a very “diagrammatic” style; apparently he devised the
argument himself, not having known von Neumann’s Theorem 1.5.

Gerhard Osius was one of several people who demonstrated how to interpret “ordinary” math-
ematical notation (higher order logic) in a topos. The aspect of this work that was not also done
by other authors was was to take ∈-structures seriously as mathematical objects in a categorical
setting [Osi74, §§4&6]. He also summarised Mikkelsen’s proof of the recursion theorem in more
familiar notation [Osi75, §6].

It is a pity that neither of them continued studying categorical logic: Osius became a professor
of statistics (and died in 2019) and Mikkelsen a schoolteacher, having been unable to find a
permanent university job.

The extension of their theory to any endofunctor T of a topos that preserves inverse images
was made in [Tay99, §6.3] and sketched for other categories in [Tay96b]. In this paper we weaken
the requirement on T to preservation of mono(morphism)s, but in the next section we show how
the latter may be replaced by special notions of inclusion in other categories.

We give precise references to some corresponding results in these earlier works, for historical
comparison, but the ones here are often much more general. (Unfortunately, I mis-attributed
Mikkelsen’s work to Osius in my earlier work.)

We work throughout in the logic of an elementary topos S, remembering to thank Osius and
others for allowing us to write this in the vernacular of mathematics. You may therefore treat
S as Set, except that we do not use Excluded Middle or the Axiom of Choice, although the key
Lemma 2.3 is impredicative.

So far, we have discussed a binary relation on a carrier A. There are many ways of representing
a relation in category or type theory, but the one that we choose is as a function (morphism)

A
α
> PA by a > {b | b ≺ a} ⊂ A.

This is directly analogous to the parse operation for a free algebra (Remark 1.7), where ≺ or ∈
correspond to the immediate sub-term relation.

We can do the same for any functor T whatever, although we will throughout require it to
preserve monos:

Definition 3.1 A coalgebra for an endofunctor T : C → C of any category is an object A of C
together with a morphism α : A . TA. We say (provisionally) that (A,α) is extensional if α
is mono in C, cf. Definition 1.8.

TA
Tf

. TB

A

α

4

f
. B

β

4

A homomorphism of coalgebras is a C-morphism f : A . B that makes the square commute,
which we indicate by the triangle arrowhead. We mark the structure map α in the same way
because it is a homomorphism to (TA, Tα). We write T -CoAlg or just CoAlg for the category
of coalgebras and homomorphisms.

This paper develops an entire theory that is remarkably similar to Set Theory, but just using
a functor that need have hardly any of the properties of the powerset. This alone is a massive
declaration of foundational autonomy. Nevertheless, to relate coalgebras to the background in Set
Theory, we first need a full understanding of the powerset as a functor in a topos:

Notation 3.2 The covariant powerset functor P : S → S is defined on an object X by
PX ≡ ΩX and on a function f : X → Y by

PfU ≡ {fx | x ∈ U} ≡ {y : Y | ∃x:X. y = fx ∧ x ∈ U} ⊂ Y
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for U ⊂ X. We shall also need to define, for V ⊂ Y ,

f∗V ≡ {x : X | fx ∈ V }
f∗U ≡ {y : Y | ∀x:X. fx = y =⇒ x ∈ U}.

These also provide the morphism parts of functors S → S that are respectively contravariant and
covariant, since (g ; f)∗W = f∗(g∗W ) and (g ; f)∗U = g∗(f∗U). More importantly for us, there
are (order-)adjunctions

U > > X PX

V > > Y

f

∨
PY.

Pf

∨

a f∗

∧

a f∗

∨

Diagrammatically, Pf and f∗ are given by composition and pullback respectively. The logical
formulae that define PfU and f∗U are the same except that one involves an existential and the
other a universal quantifier. We will use f∗ in Section 9. �

Gerhard Osius’s principal insight was to characterise set-theoretic inclusions as homomorphisms
of extensional recursive P-coalgebras [Osi74, §6], although we will replace recursion with well-
foundedness.

Lemma 3.3 A function f : (B,≺B)→ (A,≺A) is a homomorphism of P-coalgebras iff it is strictly
monotone, i.e. it preserves the binary relation as in Proposition 1.4,

∀b1, b2 :B. b1 ≺B b2 =⇒ fb1 ≺A fb2,

and a simulation (Definition 2.15),

∀a′ :A. ∀b:B. a′ ≺A fb =⇒ ∃b′ :B. a′ = fb′ ∧ b′ ≺B b.

B
β

> PB ∃b′ .....................
≺B

> b B

⊃

A

f

∨ α
> PA

Pf

∨
a

f

∨

.................. ≺A
> fb

f

∨
A

f

5

In this case, the relation (a ∼ b) ≡ (a = fb) is actually a bisimulation.

Proof The inclusion β ; Pf ⊂ f ; α (as marked in the diagram on the left) holds iff f is strictly
monotone and the reverse inclusion (illustrated on the right) iff f is a simulation. For a bisimulation
we also require

∀ab′. b′ ≺B b ∧ fb = a =⇒ ∃a′. b′ = fa′ ∧ a′ ≺A a,

but this follows from strict monotonicity, with a′ ≡ fb′ ≺A fb = a. �

Corollary 3.4 If f : B ⊂ A is a subcoalgebra inclusion then the lifting is unique, so being a
homomorphism says that B carries the restriction of ≺ from A and is down-closed or an initial
segment ,

∀ab:A. a ≺ b ∈ B =⇒ a ∈ B,

just as we have used in the proof of the recursion theorem. �

Observe that (infinitary) directed unions of initial segments can only build ascending ≺-
sequences.
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We are ready to formulate the two concepts that are connected by our main result.

Definition 3.5 A coalgebra α : A . TA is well founded if in any pullback diagram in the
category C of the form

TU >
Ti

> TA

H

∧

>
j

> U >
i

> A

α

4

the maps i and therefore j are necessarily isomorphisms. To clarify, we mean that when we form
the pullback H of Ti and α, the map H → A factors through i : U → A.

We write T -WfCoAlg or just WfCoAlg for the category of well founded coalgebras and
coalgebra homomorphisms. The “scheme” issues in Remark 1.2 will be considered in the next
section.

Essentially this “broken pullback” appears (with T ≡ P) on page 67 of [Mik22] and it is written
symbolically as α−1(PU) ⊂ U =⇒ U = A in [Osi74, §4] and [Osi75, Prop 6.1]. It was first given
as the definition of well-foundedness in [Tay96b, Tay99].

The result that justifies this name is implicit in the work of Mikkelsen and Osius, but not very
clearly expressed there:

Proposition 3.6 A binary relation (A,≺) is well founded in the earlier sense iff the corresponding
(A,α) is a well founded P-coalgebra.

Proof Write U ≡ {x : A | φx} for some predicate φ defined on A.
An element (a, V ) ∈ H ⊂ A× TU of the pullback consists of a : A and V ⊂ U ⊂ A such that

α(a) ≡ {x : A | x ≺ a} = V.

Thus V is determined uniquely by a (and the structure α : A . TA), but for such a V to exist,
a must satisfy

{x : A | x ≺ a} ⊂ U, i .e. ∀x:A. x ≺ a =⇒ φx.

The pullback H therefore corresponds to the induction hypothesis (Definition 1.1).
The induction premise is that, for each such a : A that satisfies the hypothesis, we have a ∈ U

or φa. In the diagram this means that H ⊂ U . The tight induction premise corresponds to having
H ∼= U instead; this makes U ⊂ A a subcoalgebra for which the square is a pullback.

Well-foundedness of the coalgebra says that whenever we have a diagram of this form then
U ∼= A, just as the induction scheme says that whenever the premise holds then we must have
∀a:A. φa. �

We also have agreement with Definition 2.8, but, since we have promised to discuss well founded
coalgebras, that is what we will do:

Proposition 3.7 The relative successor can be defined on subobjects of the carrier of a coalgebra.
Then such a subobject is a well founded element iff it is a well founded subcoalgebra.

TU ⊂
Tj

> TB ⊂
Ti

. TA

sU

∧

⊂ > sB

∧

⊂ . A

α

4

H
∪

∧

⊂ > U ⊂ > B
∪

4

id
. B

i

∪

4

β

/
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Proof Given a coalgebra α : A . TA and a subobject i : B ⊂ > A of its carrier, the (upper
right) pullback sB is the successor subobject. The condition B ≤ sB on subobjects is the lower
right square; this is equivalent to having a subcoalgebra structure β, by composition and pullback.

Now let U ⊂ > B be a subobject of the carrier B, so its successor sU is defined in the same
way. Then the pullback H of TU and B factors through sU and states both
• sU ∩B ≡ H ⊂ U for B to be a well founded element and

• the broken pullback for (B, β) to be a well founded coalgebra. �

The other side of the main result is recursion:

Definition 3.8 A coalgebra α : A . TA obeys the recursion scheme if, for every algebra
θ : TΘ→ Θ, there is a unique map f : A→ Θ such that the square

TA
Tf

> TΘ

A

α

4

f
> Θ

θ

∨

commutes. The notion is a scheme because we only ever consider particular algebras (Θ, θ). A
map of this kind has also been called a coalgebra-to-algebra homomorphism [Epp03].

To obtain parametric recursion , in which the top line is replaced by

Tf × id : TA×A > TΘ×A,

we just need to make Lemma 6.5 a bit more complicated. In fact Mikkelsen had an even more
general recursion scheme than this, although still with T ≡ P [Mik22, pp 66–67] [Osi75, Def 6.2].
Osius’s account of categorical Set Theory [Osi74] used recursion instead of well-foundedness (in-
duction).

Example 3.9 The predecessor and test for zero function define a coalgebra on N for the functor
TX ≡ 1 +X on S. Then recursion defines f : N→ Θ by the two cases

f0 = θ(?) and fn = θ
(
f(n− 1)

)
.

In a topos, well-foundedness is necessary for recursion [Mik22, p 68] [Osi75, Prop 6.3] [Tay99,
Exercise 6.14]:

Proposition 3.10 In a topos, if α : A . TA obeys the recursion scheme then it is well founded.

Proof The subobject classifier (set of truth values) Θ ≡ Ω ≡ P(1) carries an algebra structure
for any operation whatever, namely by interpreting it as (infinitary) conjunction or universal
quantification. Then f : A→ Θ is a homomorphism iff

fa ⇐⇒
(
∀x. x ≺ a⇒ fx

)
.

This is the tight (⇔) version of the induction premise, whilst the constant function f : a 7→ > is
also a homomorphism. So uniqueness of f amounts to the induction scheme.

H > TU > T1 > 1 < U

A
∨

∨

. TA

Ti

∨

∨

Tf
> TΩ

T>

∨

∨

θ = χT>
> Ω

>

∨

∨

<
f

A

i

∨

∨

This argument generalises. Let θ : TΩ → Ω be the characteristic function of the subset T> :
T1� TΩ, where > : 1� Ω is the element “true”. The induction premise is α ; Tf ; θ ⇒ f and
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the tight premise has equality (bi-implication), but this is also satisfied by the constant function
with value >. �

Remark 3.11 This result should be treated with circumspection, because taking the object of
truth values as the target algebra means that we are relying on higher order logic. (This point is
obscured classically by the identification of Ω with a discrete two-element set.)

For example, induction for the predicate φx ≡ (x 6≺ x) shows that well founded relations must
be irreflexive. However, this makes the idea too clumsy to analyse fixed points of iteration, as we
might hope to do in future applications of the theory.

On the other hand, experience shows that we must count ourselves lucky to find a condition
for termination of a heavily recursive program which is sufficient for the case at hand: asking for
it to be necessary as well is too much.

Remark 4.18 replaces higher order Ω with similar objects for particular logical complexity
levels.

4 Categorical requirements

Our theory applies to an endofunctor T that preserves monos, but we have not yet said anything
about what we require of the category C on which it acts. Beyond that, as we generalise C further
and further away from Set, we find that it have many different kinds of “inclusions” that (have
but) are not necessarily characterised by the standard cancellation property that defines (what we
shall call plain) monos in a category.

Besides the functor T , the freedom to choose different categories and notions of mono in them
gives considerable power to this theory.

We address those questions in this section, but really this is a technical analysis of the proof
to follow. Therefore, even if you are proficient in categorical logic, it would still be better to
understand the next two or three sections grosso modo before reading this one, so that you can
see why the following subtleties are needed. So, this is like the configuration section of a piece
of software, that logically has to come first, but which you must not touch until you know what
you’re doing.

On first reading, you should therefore simply take C ≡ S ≡ Set, read both arrowtails as
injective functions and assume that the functor T : Set → Set preserves them. Then you may
omit this section.

The simplest statement of more general but sufficient conditions is this:

Provisional assumption 4.1 The category C
(a) has inverse images (pullbacks) of monos along coalgebra homomorphisms;

(b) has an initial object ∅ and all maps ∅ → X are mono;

(c) has directed unions of subobjects (Definitions 2.2 and 4.3), and

(d) is well powered, whilst

(e) the functor T : C → C preserves monos.

Besides defining “unions” and “well powered”, we also need to examine all of these assumptions
more carefully.

We will use some other finite limits in C, but only incidentally, not as part of the proof of
our main theorem: Lemma 6.6 uses binary products to show how to handle parametric recursion.
Lemma 6.4 uses equalisers to prove uniqueness of recursion, but we can deduce that in another
way, without using them. The terminal object 1 is never used.

Much of this section is about replacing the “monos” in (a,e) with some special class of maps
that we use for “predicates” and those in (b,c,d) with another possibly smaller class of “initial
segments”.

Remark 4.2 Any category of finitary algebras satisfies (a,c,d), but part (b) is more delicate.
Recall from universal algebra that, in an appropriately constructed category of algebras, the
initial object typically arises as the collection of terms generated by a given set of symbols
(cf. Remark 1.7).
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We can mimic this for any object I of any category: Working instead with the (coslice or
cocomma) category whose objects are monos I ↪→ X and whose morphisms are commutative
triangles, the initial object is id I and all maps out of it are monos. This construction leaves the
other provisional assumptions intact, because the subobjects, inverse images and directed unions
in the coslice are essentially the same as those in the original category.

For example, the category of fields does not meet our requirements as it stands, but cutting
it down to those of a particular characteristic does: this selects one of the components of the
category and then Q or Fp is the initial object. We also need to fix the characteristic if we want
to work with rings (or commutative rings), because that ensures that all maps from the initial
object (Z or Zn) are mono.

Our main Recursion Theorem 1.5 works by building up partial maps from the empty one. This
means in particular that the initial object must serve as the least subobject of any object. This is
why maps out of the initial object need to be mono, which is not the case for the initial ring Z.

More generally, in order to combine partial maps we need to make the colimits of monos in
the category behave like unions of subobjects of each object. So we first need to be clear what
“unions” are in general; this is rather basic category theory (of the kind that makes it a far superior
foundational tool to Set Theory) but I cannot find an attribution for it.

Definition 4.3 A union in a category is a diagram or its colimit such that
(a) the maps in the diagram are mono;

(b) the maps in the colimiting cocone are mono;

(c) for any other cocone consisting of monos, the colimit mediator is also mono.

Proposition 4.4 Set (or any topos S) has directed unions.

Proof (Sketch) A colimit in Set is given by the quotient of a coproduct by an equivalence
relation that is obtained from the diagram. The different components of a coproduct are disjoint.

Two elements are identified in the colimiting cocone iff they are linked by a finite zig-zag in
the relation. Since the diagram is directed, it has some further stage (beyond the zig-zag but still
within the diagram) that is a cocone over the zig-zag. Since this cocone consists of monos, the
two elements were already equal.

Now consider the kernel (pullback against itself) of the mediator to any other cocone of monos.
Since colimits are stable under pullback, this kernel is a doubly-indexed union. But since the
diagram is directed, this is equivalent to a singly-indexed union, which is in fact the original
diagram. Hence the projections from the kernel are isomorphisms and so the mediator is mono.�

In other categories, the second part of the argument shows that the mediators in Defini-
tion 4.3(c) are plain monos whenever colimits are stable under pullback. But this is not sufficient
for other kinds of inclusions. We give the analogous results for pushouts in a (pre)topos more
formally in Section 10.

To emphasise the importance of this property, we give an example of its failure:

Example 4.5 The directed union requirement fails for Setop.

Proof It is clearer to discuss the dual categorical properties in Set itself.
Classically, all maps X → 1 are epi, except when X ≡ ∅. All maps in a limiting cone over a

cofiltered diagram of epis are epi, if we assume the axiom of choice.
However, Choice and excluded middle do not help in making the mediator epi too. Consider

the following chain diagram, in which each column denotes a set and the successive maps between
the finite sets squash the top two elements:

>
...

...
3 .......................> 3 > · · ·>

2 .......................> 2 > · · · > 2
>

1 .......................> 1 > · · · > 1 > 1
>

0 .......................> 0 > · · · > 0 > 0 > 0
>

N ...................> N> > · · · > 3 > 2 > 1
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Its limit is N>, but there is also a cone of epis with vertex N, but for which > is not in the image
of the mediator, i.e. this is not surjective onto N>.

Example 10.4 considers pullbacks. �

Remark 4.6 Venanzio Capretta, Tarmo Uustalu and Varmo Vene considered the categorical dual
of our notion of well founded coalgebra, which they called an antifounded algebra [CUV09].
They presented a number of illuminating counterexamples that falsify our main recursion theorem
unless we put other conditions on the category. Their simplest example is that suc : TN → N is
an antifounded algebra for T ≡ id : Set → Set, but there is no homomorphism from the trivial
coalgebra id : 1→ T1, because its value should be the fixed point of suc , which we would like to
be > in N>. It would be instructive to compare their other counterexamples to our proofs, to see
the necessity of the conditions in this section. �

These examples show that the filtered union condition is necessary, but infinitary colimits will
only play a background role in this paper. This is why we do not give a formal account of the
next issue:

Definition 4.7 A category is well powered if, for each object X, there is a “set” of isomorphism
classes of monos U ⊂ > X.

On the face of it, the word “set” is an embarrassment, given that we aim to eliminate Set
Theory from mathematical foundations. But, as mathematicians, we pay our words extra to mean
what we want them to mean [Car72, Chapter 6]. In general, we do this by specifying the ways in
which we intend to use the words, i.e. the axioms.

.
A “set” of objects is not a chaotic jumble but a single object that is dependent on some

parameter. In the geometric tradition, this arose as the object (such as a tangent space) varied
from one place to another in a space. In type theory (and indeed longstanding symbolic usage in
real analysis), it simply means a formula containing an unknown.

What we require of dependency is just to be able to substitute other formulae for the unknown
parameter. This parameter has a certain type. Such types and their formulae form a category S,
called the base , which may be Set, an elementary topos or even something simpler. Then, for
each type Γ in S, the objects whose parameter is of type Γ together form the fibre over Γ.

Substitution of a formula for a parameter (or along a morphism f) is an operation f∗ on
dependent objects. There are two techniques for capturing how f∗ takes one fibre to another:
(a) if we consider the fibres as separate structures, they are the object part and f∗ is the morphism

part of a functor that is contravariant in f , giving an indexed structure; but

(b) the fibres may be combined into a single structure, called a fibration , in which f∗ acts by
pullback.

The account that develops well-poweredness in most detail, in the indexed style, is [PS78], although
its goal is the adjoint functor theorem rather than our needs. The indexed approach has to contend
with choices of isomorphic objects, which the fibred one avoids, but at greater learning cost. Brief
accounts in the fibred style are in [Joh02, Example B1.3.14] and [Str05, §11]. Unfortunately, both
techniques have rather obscure notation and huge diagrams, so, since we already have some very
complicated ones, we will content ourselves a verbal description of how they work.

Definition 4.8 A generic object G is a parametric one that has the universal property that any
particular object P is obtained as P ∼= f∗G, by substitution of a value for the parameter in the
generic one, The morphism f that achieves this is called the name of P .

The type of names is an object of the base category S and the generic object belongs to the
fibre over this type. In particular, when the “objects” in question are monos i : U � X targeted
at a particular object X of C, the type of names is called Sub (X) and the generic subobject of X
belongs to the fibre over this type.

Using the definition of genericity, any external structure that respects substitution induces an
internal structure on the type of names in S. For example, triangles of monos in C give rise to
an internal order on Sub (X). In this sense we say that the external structure is equivalent to an
internal one.

It is instructive to draw a few of these diagrams to show how, for example, pullbacks in C yield
meets in Sub (X), making it an internal semilattice in S. Then you will see that Sub (X) is like the
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handle of a marionette, with manoeuvres linked to the actions of the doll. With practice, we can
just describe what the doll does, so long as we remember how it does it. We don’t write out the
diagram of strings because it conveys comparatively little information per cm2 and is not really
needed. In fact, the doll is well powered exactly when it is impotent, being able to do no more nor
less than what the puppeteer makes it do.

Nevertheless, there is perhaps a PhD in collecting the applications of well powered categories
from the literature and formalising results such as Proposition 4.10. This account would be
analogous to those by Osius and others on the logic of a topos; indeed the subobject classifier
provides the generic mono in a topos. We do not use universes or types of types here (Remark 1.13),
but they can be presented categorically in a similar way, although without uniqueness of names.

Corollary 4.9 Any construction on a generic object that respects substitution corresponds
uniquely to a morphism of the base category. In particular, the construction of one subobject
of X from another corresponds to an endomorphism of Sub (X).

Proof An operation on a parametric object yields another object with the same parameter, i.e. in
the same fibre, whilst binary operations such as categorical products combine the parameters using
pullbacks in S. We then use the universal property of the generic object of the resulting kind to
define the morphism of the base category. �

So far we have only discussed finitary structure such as composition and pullback. The original
reason for requiring a “small” set of subobjects was so that we could legitimately form their union.

Proposition 4.10 External S-indexed unions in a well powered category C correspond to joins
in Sub (X).

Proof Any of the accounts of indexed and fibred categories explains how they handle colimits.
Of course the “set” of objects of which we form the colimit is a single parametric one as before. In
fact, the union operation is left adjoint to substitution and has an even simpler characterisation
in that the opposite of the fibration functor is also a fibration.

The universal property of the generic subobject translates this into a join in the internal poset
Sub (X). �

Remark 4.11 Pataraia’s Theorem 2.5 is for internal ipos in S. The role of the union and well
powered conditions that we have described is to provide an equivalence amongst external colimits,
external unions of subobjects and internal joins. The same link also relates constructions in C to
morphisms between objects of S. In particular, the “relative successor” that we construct in the
category in Constructions 5.2ff and 6.5 corresponds to a monotone inflationary endofunction of
the internal ipo.

This has a fixed point by Pataraia’s Theorem, which is valid precisely because the well powered
condition turns colimits into joins in the object Sub (X) that is an internal poset in a topos. We
translate this back into the category, as an object on which the construction yields an isomorphic
object. �

Remark 4.12 There is yet another reason why we need a “set” of subobjects, namely to justify
universal quantification over them as predicates. (In Set Theory this distinction is known as
unbounded versus bounded quantification .)

When we introduced well-foundedness in Definitions 1.1 and 3.5, we called it a scheme, which
means a property that we assert for each individual predicate φ. We will develop the general
theory of well-foundedness in this way.

On the other hand, when we come to apply well-foundedness in the proof of our main theorem,
we need it to be a single legitimate property in the logic of an elementary topos. For this it cannot
be a scheme but must be quantified over all predicates φ.

Once again, by a “set” of predicates we mean a single generic predicate with a parameter.
Well-foundedness with respect to a particular predicate φ is expressed in Sub (X) as above, with
a parameter φ. Universal quantification over φ is now the right adjoint to substitution for φ, as is
amply explained in the topos literature, cf. Notation 3.2. �
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Notation 4.13 We now turn to investigating the classes of “inclusions” that we might use in
place of plain categorical monos when applying our ideas to objects with richer structure than sets
have. We will use inclusions for three purposes in this paper:
(a) as the extents of predicates that test well-foundedness;

(b) as the inclusions of subcoalgebras that are the supports of attempts; and

(c) as the structure maps of extensional coalgebras.

All supports must be predicates to prove totality of recursion (Lemma 5.4), whilst supports
and extensionality are thoroughly mixed up in Construction 7.10, so we must treat these as the
same thing. Therefore we potentially have two classes of inclusions, one contained in the other,
and we write

> > for predicates and ⊂ > for supports and extensionality.

It turns out that supports are always coalgebra homomorphisms, so we actually write ⊂ . for
them, whilst predicates just belong to the base category C.

It is tempting (thinking in terms of so-called Descriptive Set Theory) to call U > > X a
subspace and U ⊂ > X an open subspace of X. Unfortunately, this need not be the same as an
open subspace in whatever topology the object X might carry.

Beware that these two classes of monos are additional structure for the situation, along with
the category C and functor T . Since our primary interest is likely to be in C and T , we are at
liberty to choose the two classes of monos in whatever way yields the optimum results, although
we may then want to show that these are independent of the choices.

Remark 4.14 As you will see in the next section, we have some conflict in the objectives for
this paper between proving the central recursion theorem and developing the whole theory of well
founded coalgebras. For the general theory, we might typically want
(a) a large class of predicates so that we can make liberal use of induction, but

(b) a small class of supports.

For the proof of the recursion theorem, it turns out that
we only need to do induction over the supports,

so the two classes are the same.

We simply need a usable class of extensional well founded coalgebras that contains the iterates
of the functor T applied to the initial object, as tightly as possible.

Therefore, in the particular application category, we would like to find some notion of inclusion
that is both tractable and restrictive.

It is straightforward to substitute these chosen inclusions for the “monos” in the definitions
above of unions and being well powered. However, Proposition 4.4 only works for plain monos
and so needs to be replaced with some other argument, which is why we formulated Definition 4.3
instead of just asking that colimits be stable under pullback.

It may be possible to control the unions even further, such as by making the diagrams com-
putable in some sense, using techniques from various forms of synthetic domain theory, but we
leave that for another day.

For the general theory we do distinguish between the classes and so need to axiomatise them
separately. In doing this, it is convenient to make an auxiliary definition for the closure conditions
that are common to both classes:

Definition 4.15 A class of T -monos M must
(a) contain all isomorphisms;

(b) contain all maps from the initial object (cf. Remark 4.2);

(c) be closed under composition;

(d) be preserved by the functor T ;

(e) be preserved by pullback along T -coalgebra homomorphisms; and

(f) satisfy the cancellation property for plain monos, ∀fg. f ; i = g ; i =⇒ f = g.
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The reason why we need the cancellation property is this: For the initial object A ≡ ∅, there
is a map p : A → U with p ; m = idA. The ubiquitous idiom in using well-foundedness gives the
same thing. We use the cancellation property to deduce that m ; p = id U .

Another easy but useful property that is also known as cancellation may be deduced as a
“warm-up” exercise in the kind of diagram-chasing that we shall use throughout this paper:

Lemma 4.16 For any class of T -monos M,
(a) if i ;m ∈M and m is a plain mono then i ∈M too; and

(b) in the broken pullback for the induction premise (Definition 3.5), if the predicate U
i
� X

belongs to M then so does H
j
� U .

Proof Hint: The maps id , (i ;m), i and m form a pullback square. �

We are now ready to state the conditions for the two classes:

Assumption 4.17 The maps > > used for predicates form a class of T -monos M for which
also
(a) M includes all inclusions of initial segments ⊂ > ; and

(b) each map i ∈M belongs to some well-powered subclass M′ ⊂M of T -monos.

For additional results beyond the main recursion theorem,
(c) the class could include all regular monos (equalisers, cf. Lemma 6.4);

(d) the functor T could preserve inverse image diagrams (Section 9); or

(e) the inverse image operators f∗ applied to predicates could have right adjoints f∗.

Recall that, in categorical logic, inverse images correspond to substitution, equalisers to equa-
tions, composition of monos to existential quantification and the right adjoint f∗ to universal
quantification, cf. Notation 3.2. The conditions above are therefore natural and very flexible for
considering precise restrictions on the logical strength of the predicates over which we may per-
form induction. This is possible (contrary to what was said in [Tay96b, Prop 6.7]) because we are
making a distinction between the roles of predicates and initial segments.

Remark 4.18 Suppose that the class M has a dominance > : 1 > > Σ [Ros86]. This means
a map of which every M-map is the inverse image along a unique map, like Ω for all monos in a
topos and the Sierpiński space Σ for open inclusions of topological spaces. Then Proposition 3.10
specialises to M with Θ ≡ Σ. �

Now we turn to the other use of “monos” in the theory.

Assumption 4.19 The maps ⊂ > used for inclusions of subcoalgebras and for structure maps
of extensional coalgebras must form a class of T -monos (Definition 4.15) that
(a) is contained in the class of used for predicates;

(b) admits directed unions (Definitions 2.2 and 4.3); and

(c) is well powered (Definition 4.7).

Again, for additional results we may also assume that
(d) this class is part of a factorisation system (Section 8); or

(e) these monos admit pushouts that are unions (Section 10).

Remark 4.20 Since the monos in this class arise as composites of inclusions and structure maps
of coalgebras, they are always homomorphisms, whereas predicates define monos in the underlying
category.

We will just call them initial segments, to exploit the intuition from ordinals.
We write them as ⊂ . , where two ends of the arrow signify two aspects:

(a) the triangle arrowhead ( . ) says that the map is a coalgebra homomorphism, which
captures the traditional order-theoretic ideas (cf. Lemma 3.3); whilst

(b) the hook tail ( ⊂ ) says that the underlying C-map belongs to a special class of monos:
this aspect is a novelty in this paper.
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Examples 4.21 We will exploit the flexibility of using different classes of monos in our inves-
tigation of constructive ordinals [Tay23a]. There we will consider three classes in the category
Pos of posets and monotone functions, on which the “lower-sets” functor D plays the role of the
powerset:
(a) plain monos, which are inclusions of arbitrary subsets with a possibly sparser order relation;

we call this class I, but D does not preserve it;

(b) regular monos, which are inclusions that carry the restriction of the order relation; this class
is called R, the functor D preserves R-maps but not their inverse images and the pushouts
are poorly behaved; and

(c) inclusions of lower subsets, again with the restricted order; now D preserves this class L and
its inverse images and the pushouts are well behaved.

5 Generating well founded coalgebras

After a lengthy introduction, we now begin the study of how the category of well founded coalgebras
is built up. If you skipped the previous section, you may just take the underlying category C to
be Set and both kinds of “monos” ( > > and ⊂ . ) to be 1–1 functions. However, this theory
also applies, for example, when the monos belong to either of the classes R or L but not I in Pos
(Example 4.21).

In our discussion of order-theoretic fixed point theorems, we saw that the directed joins played
a background role in any particular situation and most of the work goes into constructing the
successor operation and proving the “special condition” for it. So our first four results are about
the successor operation on subcoalgebras that we introduced in Proposition 3.7. This has been
called the next time operator elsewhere.

Lemma 5.1 The functor T preserves well founded coalgebras.

Proof This is special case of Lemma 5.6 with c ≡ id , but it would be instructive to prove it
directly. �

Construction 5.2 Let i : (B, β) ⊂ . (A,α) be a subcoalgebra. Then its relative successor
k : (C, γ) ⊂ . (A,α) is given by pullback of α and Ti.

A
α

. TA

C

k

∪

4

c
. TB

Ti

∪

4

B

i

⊂

.

β

.
j

⊂

.

TC

Tk

/

⊃

Tj

⊂

.
γ

.

The pullback mediator j : B → C makes (B, β) ⊂ . (C, γ) ⊂ . (A,α) as subcoalgebras (initial
segments) when we define γ ≡ c ; Tj.

We will write sB for the relative successor (C); the operation s is inflationary because j :
B ⊂ . sB.

Proof Since the functor T and inverse images preserve initial segments (Definition 4.15) and the
latter obey the cancellation property (Lemma 4.16), if i is an initial segment then so successively
are Ti, k, j, Tk and Tj. Finally, c, j and k are coalgebra homomorphisms, because

γ ; Tc = c ; Tj ; Tc = c ; Tβ

j ; γ = j ; c ; Tj = β ; Tj

k ; α = c ; Ti = c ; Tj ; Tk = γ ; Tk �
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Lemma 5.3 The relative successor construction s is monotone (functorial) in B.

A
α

. TA

B ⊂
j

.

i

⊂

.

sB

k

∪

4

c
. TB

Ti

∪

4

⊂
Tj

. TsB

Tk

/

⊃

B′

`

∪

4

⊂
j′

. sB′

s`

∪

4

c′
. TB′

T`

∪

4

⊂
Tj′

. TsB′

Ts`

∪

4

Proof The diagram repeats the Construction for initial segments B′ and B, where the square
from C ≡ sB to TA and rectangle from sB′ to TA are both pullbacks. Applying functoriality and
well known properties of pullbacks, to the inclusion B′ ⊂ . B, the rectangle is the composite of
two pullback squares. �

The next result provides the special condition for Pataraia’s Theorem 2.5 and is actually the
sole place in our proof of the recursion theorem where we use well-foundedness. This step could
alternatively be seen as using the property of B that it is a well founded element of the ipo of
subobjects of A (Proposition 3.7), with x ≡ B and a ≡ B′ in Definition 2.8.

Lemma 5.4 In the previous diagram, if (B, β) is well founded and and (B′, β′) is fixed by the
relative successor (j′ : B′ ∼= sB′) then ` : B′ ∼= B.

Proof In the previous diagram, the square from sB′ to TB is a pullback, but when j′ is an
isomorphism and j is mono, the one from B′ to TB′ is also a pullback. It is the one in Definition 3.5
of well-foundedness, except that K = U = B′. Therefore B′ ∼= B.

Observe, however, that the monos in this diagram are marked as initial segments rather than
predicates. This is why we required all initial segments to be predicates in Assumption 4.17. �

This has already invoked the notion of well-foundedness, so we need to prove that it is preserved
by the successor. In the case of the covariant powerset, any subcoalgebra of a well founded
coalgebra is again well founded, by Proposition 1.4. Using this, we could deduce well-foundedness
of sB ≡ C from that of TB and hence from that of B by Lemma 5.1. However, since we have
weakened the requirements on the functor, we need a more complicated proof.

First we give the categorical version of Lemma 2.20 about bisimulations, since Lemma 3.3
generalised them to coalgebra homomorphisms, whilst pullback captures substitution.

Lemma 5.5 The induction premise (broken pullback in Definition 3.5) is stable under pullback
against coalgebra homomorphisms.

TV >
Tj

> TB

K

∧

TU >
Ti

>

>
β

4

TA

Tf

.

V >
j

>

>..................
......>

B

>

>

H

∧

> >

>

U >
i

>

pbk

>

A

α

4

f

.

Beware that we are not yet saying anything about i being an isomorphism.

Proof The thick lines show the homomorphism f : B . A and the given induction premise
H � U for the predicate i : U � A.
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Let j : V � B be the inverse image of i along f . Apply T to this pullback, to give the
parallelogram at the top, although we are not assuming that this is a pullback.

Form the inverse image K � B of Tj along β, so that K is the induction hypothesis for
V � B.

The top, back and right quadrilaterals commute (from K via A or TU to TA), so there is a
pullback mediator K → H that makes the left and bottom quadrilaterals commute, i.e. from K
to TU and to A. The map K → H deduces the induction hypothesis for U from that for V .

Because of this, there is a pullback mediator K → V that makes everything commute, in
particular from K to B. Then K → V is the required induction premise. �

Now we prove the sandwich lemma that shows that the relative successor preserves well-
foundedness.

Lemma 5.6 Let (B, β) be a well founded coalgebra and j : B → C and c : C → TB maps such
that β = j ; c. Put γ ≡ c ; Tj. Then (C, γ) is also a well founded coalgebra and j and c are
homomorphisms.

Proof They are homomorphisms because, as in Construction 5.2,

j ; γ ≡ j ; c ; Tj = β ; Tj and γ ; Tc ≡ c ; Tj ; Tc = c ; Tβ.

Now let k : W � C satisfy the induction premise given by the broken pullback H at the back and
form the inverse image of this along j, using Lemma 5.5. This gives the induction premise K for
the predicate ` : V � B:

TW >
Tk

> TC

TV >...........................................................................
T`

>
....

....
....

....
...>∧

TB

Tj
.Th

<............................................................

H > > W >
k

> C

γ

4

c
/

K

∧.........................
>.............................>
....

....
....

....
...>

V >.......................................
`

>
....

....
....

....
...>

B

β

4

j

.
h

<...........................

Since B is well founded, ` : V ∼= B and so there is a map h : B →W making the triangle with C
commute. The one with TB, TW and TC also commutes.

The triangle on the right commutes too (γ = c ; Tj), so the maps C → TB → TW and
id : C → C form a commutative square at TC. This factors through the pullback H, splitting the
inclusion H �W � C as required [Tay96b, Lemma 8.2]. �

The proof of the Recursion Theorem 1.5 forms the union of attempts in part (h), so we turn to
considering colimits next, but see Definition 4.3 for the relationship between colimits and unions
in general categories.

Note, however, that we are not asking for new colimits: we are merely enhancing the properties
of those that already exist in the category C, by showing that the categories of coalgebras and of
well founded coalgebras inherit them.

Although we state the Proposition for general colimits, we only use the initial object and
directed unions (Definition 2.2) in our main proof of the recursion theorem. We will consider
pushouts in Section 10.

Lemma 5.7 The initial object ∅ of C carries a unique T -coalgebra structure, which is well founded
and is the least subcoalgebra of any coalgebra.

Proof Easy, but cf. Theorem 1.5(a), Remark 4.2 and Definition 4.15(b,f). �

Proposition 5.8 The forgetful functors WfCoAlg −→ CoAlg −→ C create colimits. That is, the
colimit of any diagram of coalgebras and homomorphisms is given by the colimit of their carriers,
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if this exists, and then the structure map is uniquely determined. If the individual coalgebras are
well founded then so is their colimit (cf. Theorem 1.5(b)).

Proof The structure map α on the colimit is the colimit mediator, as shown in the diagram on
the left, where the colimiting cocone consists of coalgebra homomorphisms, i.e. the parallelograms
from Ai to TA commute.

TA TU >
Ti

> TA

TAi .

.

TAj

.

TUi >....................................................
Tki

>
.....

.....
.....

.....
.> ∧

TAi

.

A

α

4......................
H > > U >

k
> A

α

4

Ai

αi

4

.

.

Aj

αj

4

.

Ki

∧........................
>...................>
.....

.....
.....

.....
...>

Ui >.......................
pbk

ki
>

.....
.....

.....
.....

...>

Ai

αi

4

.

Now suppose that the αi are well founded and let k : U � A be a predicate satisfying the induction
premise for the colimit α (the back rectangle, from H to TA).

Form the inverse images Ki of this induction premise against the homomorphisms Ai . A
of the colimiting cocone, using Lemma 5.5.

Since each Ai is well founded, ki : Ui ∼= Ai.
Now U is the vertex of a cocone over the diagram Ai, so it has a mediator from the colimit A,

and i : U ∼= A as required [Tay96b, Prop 6.6]. �

This establishes the order-theoretic setting for the fixed point theorems from Section 2.

Corollary 5.9 The category of subcoalgebras of any coalgebra (A,α) and inclusions between
them is equivalent to an S-internal ipo Seg (A,α). The well founded subcoalgebras form a subipo

WfSeg (A,α) ⊂ Seg (A,α)

of this, i.e. a subset (S-subobject) that contains the least element and is closed under directed
joins.

Proof Assumption 4.19, Lemma 5.7 and Proposition 5.8 provide the colimits in C, CoAlg
and WfCoAlg. However, we need Definition 4.3 to make these colimits agree with unions of
subcoalgebras and then the well powered condition (Proposition 4.10) to link the external unions
with the internal joins. Finally, the well powered condition is used again to justify quantification
over the class of predicates in the definition of well-foundedness (Remark 4.12). �

We are now ready to formulate the idiom of induction that we will require for our uses of
Pataraia induction in the next two sections, where the induction predicate is the initial segment
i : B ⊂ . A, cf. Theorem 1.5(g). This is the categorical form of Corollary 2.11ff.

Proposition 5.10 For any well founded coalgebra (A,α), the relative successor defines an endo-
function of the ipo Seg (A,α) whose unique fixed point is the top element, A itself.

Any property Φ(B) of initial segments of A that holds for ∅ and is closed under isomorphism,
the relative successor and filtered colimits is also valid for A itself

Proof The well powered requirement that we used to define the ipo in Corollary 5.9 also says
that categorical constructions correspond to endofunctions of it (Corollary 4.9). By Lemmas 5.2
and 5.3, the relative successor therefore defines a monotone inflationary function s : Seg (A,α)→
Seg (A,α).

We don’t need Pataraia’s construction to obtain the top element of the ipo, because we already
know that it is A. Since A is well founded, Lemma 5.4 says directly that it is the unique fixed
point of s.

Note that the statement of well-foundedness makes a quantification over subcoalgebras, which
also requires the well powered condition (Remark 4.12).
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The point where we need Pataraia’s Theorem here is to apply its induction principle to sub-
coalgebras, which is the second part of the statement. �

There is a related result for general coalgebras, where we also use the construction in Pataraia’s
Theorem.

Proposition 5.11 Any coalgebra A
α
. TA has a greatest well founded subcoalgebra,

WA
ω

. T (WA)

A

εA

5

∩

α
. TA

TεA

5

∩

and this is independent of the choice of classes of predicates and initial segments.

Proof Corollary 5.9 also defined the subipo WfSeg (A,α) ⊂ Seg (A,α) of well founded subcoal-
gebras. By Lemma 5.6, the relative successor restricts to an endofunction of the smaller ipo, where
it is inflationary and monotone.

Next we verify the special condition in Pataraia’s Theorem 2.5: By Lemma 5.4, if the subcoal-
gebra B is well founded with respect to initial segments and B′ ⊂ B are subcoalgebras that are
each fixed by the successor then B′ = B. Hence WfSeg (A,α) has a top element, say (WA,ω).

As an element of the larger ipo Seg (A,α), WA is characterised as the least fixed point of the
successor. The statement of this property is independent of the notion of well-foundedness: If we
re-define the latter for a larger class of predicates that satisfies Definition 4.15, even though there
may be fewer well founded subcoalgebras, WA is still one of them and the proof that it is the
largest one also remains valid. �

Theorem 8.18 improves this greatest well founded subcoalgebra to a right adjoint or coreflection,
on additional assumptions.

The results of this section also bear some resemblance to the way sets are built up in Zermelo’s
Set Theory [Zer08b], where the Sandwich Lemma corresponds roughly to subsets of powersets, so
we call the next result Zermelo induction :

Theorem 5.12 Any property of coalgebras that holds for ∅ and is preserved by directed unions
and sandwiching à la Lemma 5.6 is valid for all well founded coalgebras.

Proof Although this appears to be about the class of well founded coalgebras, it is a scheme of
results about the goal (A,α) as usual, because we just require the predicate Φ(B) to be defined
for B ∈ Seg (TA). So this is a restatement of Proposition 5.10.

The sandwich property, that Φ(B) implies Φ(C) whenever C splits β : B . C . TB, means
that the relative successor (Lemma 5.9) for initial segments of A preserves Φ. �

6 The recursion theorem

Now we are ready to prove the recursion theorem for well founded coalgebras. Since we only
assume that the functor T preserves monos and not their inverse images, the proof is more subtle
than the one in [Tay99, §6.3]. It is based on our revised argument for well founded relations in
Theorem 2.13, which uses directed unions of attempts, instead of forming the union of all of them.
In particular, we do not assume that we have binary unions, although we will return to them in
Section 10.

The proof has similar components to those in the previous section, dealing with the empty
attempt, successors, directed unions and the special condition for Pataraia’s Theorem. The par-
ticular novelty of our proof is the more careful analysis of the successor. Like the previous section,
this one applies to the classes R,L ⊂ Pos but not I in Example 4.21.

Remark 6.1 An attempt from a coalgebra α : A . TA to an algebra θ : TΘ→ Θ is intended
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to be a partial map f : A ⇀ Θ that is a subhomomorphism in the sense that

TA
Tf

⇀ TΘ

v

A

α

4

f
⇀ Θ

θ

∨

i.e. if the composite via TA is defined then so is the direct map to Θ and then they are equal,
cf. the definition in Theorem 1.5.

Composition of partial functions in a category uses inverse images. In order to define a category
of coalgebras and partial homomorphisms, the functor T should therefore preserve inverse image
diagrams, as the powerset and term algebra functors do.

However, the structure maps α and θ are total and we never need to compose partial maps.
The notion of attempt therefore has a simple equivalent form that is sufficient to carry out the
proof of the theorem:

Definition 6.2 An attempt from A to Θ is a diagram of the form

TA /
Ti

⊃ TB
Tf

. TΘ

A

α

4

/
i

⊃ B

β

4

f
. Θ

θ

∨

That is, a subcoalgebra inclusion (initial segment) i : B ⊂ . A together with coalgebra-to-algebra
homomorphism f : B . Θ. A map f satisfies the recursion scheme (Definition 3.8) exactly
when it is a total attempt , with i : B ∼= A.

We also need a well powered assumption for attempts, which is easily adapted from that for
initial segments (Definition 4.7ff). Alternatively we may consider them as subobjects of A × Θ
instead of those of A. Then, for any given coalgebra and algebra, there is a set or S-object
Att (A,α,Θ, θ) of attempts from A to Θ, cf. Seg (A,α) in Corollary 5.9.

Lemma 6.3 There is a “support” function (morphism of S)

supp : Att (A,α,Θ, θ) −→ Seg (A,α) by (A /
i
⊃ B

f
. Θ) > (B ⊂

i
. A).

Proof An application of Corollary 4.9. �

One way to show that attempts are unique is by an easy application of well-foundedness:

Lemma 6.4 Let A be a well founded coalgebra, Θ an algebra and f, g : A⇒ Θ be total attempts.
Then f = g (cf. Theorem 1.5(d)).

Proof The two parallel squares on the right commute since f and g are total attempts. Let
i : E � A⇒ Θ be the equaliser in C.

TE >
Ti

> TA
Tg

>

Tf
>
TΘ

E

H

∧

> >
......

......
......

......>

A

α

4

f
>

g
>

i
>

>
Θ

θ

∨

Form the pullback H of A → TA ← TE; the composites H ⇒ TΘ are equal by construction, so
those H � A⇒ Θ are also equal. Then H � A factors through the equaliser, so H � E � A.
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Hence i : E ∼= A by well-foundedness of A and so f = g. [Mik22, page 67] [Osi74, Prop 6.5] [Osi75,
Prop 6.3] [Tay96a, 2.5] [Tay96b, Prop 6.5] [Tay99, Prop 6.3.9]. �

You will object that we did not ask for equalisers in Section 4, either in the category itself or
in the class of predicates over which we may perform induction. This lemma is valid in Set, and
also in Pos if we use R for predicates, but not using L (Example 4.21).

However, it transpires that there is a more subtle proof by induction on the structure of
subcoalgebras that does not need equalisers after all, and so is valid for L:

Lemma 6.5 There is a bijection between attempts

A /
i
⊃ B

f
. Θ and A /

j
⊃ sB

g
. Θ,

where sB is the relative successor of B (Construction 5.2). Hence the successor lifts not only the
existence but also the uniqueness of an attempt.

TsB

TA /
Ti

⊃

Tj

/

⊃

TB
Tf

>

Tk

/

⊃

TΘ

Tg

>

A

α

4

/
k

⊃ sB

c

4

g ≡ c ; Tf ; Θ
>

γ ≡ c ; Tk

/
Θ

θ

∨

B

β

/

f

>

j

/

⊃

i

/

⊃

Proof Let (A,α) /
i
⊃ (B, β)

f
. (Θ, θ) be an attempt, so

i ; α = β ; Tα and f = β ; Tf θ

Then the relative successor attempt is defined by

γ ≡ c ; Tj and g ≡ c ; Tf ; θ

and satisfies

f = β : Tf ; θ = j ; c ; Tf ; θ = j ; g

g ≡ c ; Tf ; θ = c ; Tj ; Tc ; TTf ; Tθ ; θ = c ; Tj ; Tg ; θ ≡ γ ; Tg ; θ.

So (A,α) /
j
⊃ (sB, γ)

g
. (Θ, θ) is also an attempt, extending f .

Conversely, f ≡ i ; g satisfies

f ≡ j ; g = j′γ ; Tg ; θ = j ; c ; Tj ; Tg ; θ = β ; Tf ; θ

g′ ≡ c ; Tf ; θ = c ; Tj ; Tg ; θ = γ ; Tg ; θ = g,

establishing the bijection. �

The parametric version is similar and is the only place where we use binary products:

Lemma 6.6 There is a bijection between parametric attempts given by

g ≡ 〈k, (c ; Tf)〉 ; θ and f = j ; g. �
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B
〈i, β〉

> A× TB

sB

j

5

∩

〈k, γ〉
>

〈k, c〉
>

A× TsB

A× Tj

∨
f

> Θ

g

∨

.................
<

θ
A× TΘ

A× Tg

∨

.................
<

A× Tf

Lemma 6.7 The initial object is the support of a unique attempt. For any directed diagram
of subcoalgebras, if each member is the support of a unique attempt then so is the union of the
diagram.

Proof The statements are the universal properties of the initial object and filtered colimits,
but we need to say that they are unions (Definition 4.3). Also cf. Remark 4.2, Lemma 5.7 and
Proposition 5.8. �

We can now achieve our principal goal, the Recursion Theorem , based on Theorem 2.13 for
well founded relations.

Theorem 6.8 From any well founded coalgebra (A,α) to any algebra (Θ, θ) there is a unique
total attempt or coalgebra-to-algebra homomorphism.

Proof This is an application of Pataraia’s induction over the ipo Seg (A,α) in the form of
Proposition 5.10.

There the relative successor defined an endofunction of Seg whose unique fixed point is the
top element, A itself. Similarly, Lemma 6.5 defined an endomorphism of Att (A,α,Θ, θ) and a
map supp : Att → Seg that commutes with the two successors (Corollary 4.9). This situation is
wholly about objects and morphisms of the topos S.

Now consider the predicate Φ(B) on the initial segments i : B ⊂ . A that says that there is
a unique attempt with support B. That is,

Φ(B) ≡ ∃!a ∈ Att (A,α,Θ, θ). supp (a) = B.

Then Φ(∅) and Φ is preserved by directed unions by Lemma 6.7 and by the successor by Lemma 6.5.
Hence, by the induction principle, Φ(A) holds, This says that there is a unique attempt with

support A, i.e. a total one, or a solution to the recursion equation.
The statement of the Theorem is independent of the notion of initial segment that we choose.

Also, if we enlarge the class of predicates then there are just fewer well founded coalgebras and
the result remains the same [Mik22, pp 68–70] [Osi75, Prop 6.5] [Tay99, Thm 6.3.13] �

We have developed the theory of well founded coalgebras to approximate the initial algebra
when the functor T does not have one, such as in the case of the powerset. When the initial
algebra does exist, we therefore need to link the two accounts together.

Two of the steps in the circular equivalence below are based on observations by Joachim
Lambek [Lam68] and by Daniel Lehmann and Michael Smyth [LS81, §5.2]. Lambek discusses
systems of coherently commuting functors and gives a criterion for the existence of a common
fixed point.

Proposition 6.9 The structure maps of the initial algebra, final coalgebra and final well founded
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coalgebra, if they exist, are isomorphisms.

TΘ
<

Tθ

.........
Tα

...... TTΘ TA
Tα

.
<.........

Tθ
....... TTA

Θ

θ

∨
<

θ

...........
α
........ TΘ

Tθ

∨
A

α

4

α
.

<...........
θ
......... TA

Tα

4

These objects are therefore both algebras and coalgebras and we call them fixed points of the
functor. Coalgebra-to-algebra homomorphisms from or to them are respectively the same as plain
algebra or coalgebra homomorphisms.

The successor relative (Lemma 5.2) to the initial algebra is just the functor T .

Proof This is illustrated by the diagrams. It also applies to the final well founded coalgebra
because the functor T preserves well-foundedness by Lemma 5.1. In Lemma 5.2, since A ∼= TA
also C ∼= TB. �

Proposition 6.10 The initial algebra A is well founded quâ coalgebra.

TU
>

Ti
>

<........................
Tp

........................ TA

H

∼=

∧

>
j

> U
>

i
>

<...........
p
........... A

∼= α

4

Proof Since the structure map is invertible, so is its pullback, so TU ∼= H
j
� U makes U an

algebra and i : U � A an algebra monomorphism. But this is split since A is initial quâ algebra.
Hence A is well founded quâ coalgebra. �

Corollary 6.11 If any of the following exists then it satisfies the other properties too:
(a) a final well founded coalgebra;

(b) a well founded coalgebra whose structure map is an isomorphism;

(c) an initial fixed point;

(d) an initial algebra.

Moreover, it is unique up to unique isomorphism.

Proof The Recursion Theorem 6.8 says that the final well founded coalgebra has the universal
property of the initial algebra, so b⇒c. Proposition 6.10 gives d⇒b and Proposition 6.9 gives
a⇒b and c⇔d.

For b⇒a, let (B, β) be a well founded coalgebra with β invertible, so (B, β−1) is an algebra.
Then for any well founded coalgebra (A,α) the recursion theorem gives a unique homomorphism
A . B. This is the coalgebra homomorphism that makes B terminal. �

Corollary 6.12 If T has a final coalgebra F then its greatest well founded subcoalgebra A ≡WF
is the initial algebra.

Proof The structure map of F is an isomorphism, so by cancellation of monos, that of A is
mono too. But TA is another well founded subcoalgebra of F , so A ∼= TA, whence A is the initial
algebra. �

This seems to have been known in some form for a long time, in a sense since [Mir17a]. That
there is a homomorphism A → F follows from Lambek’s lemma and his paper says more about
the category of fixed points, in which A and F are initial and final. However, the fact that A→ F
is mono must depend on the assumptions in Section 4. Peter Freyd considered the situation where
A ∼= F , which he called algebraic compactness [Fre91].

Theorem 7.6 and Corollary 9.7 have more to say about the initial object.
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7 Extensionality

Now that we have some understanding of the Axiom of Foundation generalised to coalgebras, we
turn to the Axiom of Extensionality.

Definition 7.1 A coalgebra α : A . TA is extensional if α is an initial segment.
That is, it belongs to the same class of monos that we used for subcoalgebras in our proof of the

recursion theorem (Assumption 4.19). If you skipped Section 4, you should simply understand α to
be mono, cf. Definition 1.8 when T ≡ P, but these results are also applicable for α ∈ R,L ⊂ Pos
(Examples 4.21).

An ensemble is an extensional well founded coalgebra. If need be, the name could be qualified
by stating the category, functor and two classes of monos that are used in the definition. The
name is justified by the similarity that we will demonstrate in this section between their behaviour
and that of transitive sets in Set Theory (Remark 1.10), being fragments of the initial T -algebra.
The latter doesn’t exist in the original situation T ≡ P but could for other functors.

We write Ens ⊂ ExtCoAlg ⊂ CoAlg for the full subcategories of ensembles and extensional
coalgebras, with coalgebra homomorphisms.

Gerhard Osius used the name transitive set object (cf. Remark 1.10) for our P-ensembles and
defined a general set-object to be an S-subobject of one of these, but not necessarily a subcoalgebra
[Osi74, Def. 7.14]. From this he developed Set Theory along the lines of Zermelo, in fact giving a
logical subtopos of S. See [Tay96a, §3] for another account of this, but we won’t go any further
here.

We see the effect of extensionality on the source and target of coalgebra homomorphisms,
separately. These are further applications of Pataraia induction over the initial segments B of the
well founded coalgebra A, as in Proposition 5.10.

Lemma 7.2 Let α : A . TA and δ : D . TD be coalgebras, with A well founded.
(a) If D is extensional then there is at most one homomorphism A . D; for this we only

require δ : D → TD to be plain mono, not all of Assumptions 4.19 or even that Tδ also be
mono.

(b) If A isM-extensional then any homomorphism f : A . D is inM; this requires a stronger
cancellation property than we have stated, namely h ; δ ∈M⇒ h ∈M.

Hence the category Ens is a preorder and its morphisms belong to the class M.

. D ⊂
δ

. TD /

A

f

4

g

4

α
. TA

Tf

4

Tg

4

B ⊂
j

.

i

⊂

.

sB

k

∪

4

c
. TB

Ti

∪

4

β
4

. D
δ

. TD /

A

f

4

⊂
α

. TA

Tf

4

B
∪
⊂

j
.

i

⊂

.

sB

k

∪

4

⊂
c

. TB

Ti

∪

4

⊂

∩

β
4

Proof As in Lemma 6.7, the properties hold for B ≡ ∅ and are preserved by directed unions
because of Assumption 4.19, in particular that colimit mediators are in M in part (b).

The successor operation was defined in Construction 5.2. Here are the induction steps for the
two predicates Φ(B):
(a) Suppose that i ; f = i ; g : B . D. Then Ti ;Tf = Ti ;Tg and the diagram commutes from

sB to TD. But δ is (plain) mono, so k ; f = k ; g : sB . D.

(b) Suppose that B ⊂ . A . D is mono (in M). Since the class is closed under T and
composition and the whole diagram commutes, sB . TD is also mono (in M). If M has
the stronger cancellation property then sB . D is in M too.

When both A and D are extensional, the fact that δ is plain mono in part (a) suffices to give the
cancellation property for M in part (b), by Lemma 4.16.
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Hence these properties hold for the fixed point B ≡ A. �

The first part is essentially the same fact as Lemmas 6.5 and 6.7.

Examples 7.3
(a) Each of the parts holds for 1–1 maps in Set.

(b) All of the classes I,R,L ⊂ Pos in Examples 4.21 satisfy (a), so define preorders.

(c) Of these, only R satisfies part (b), taken on its own, i.e. when A is an R-ensemble but D is
an arbitrary coalgebra.

(d) If α ∈ L and δ ∈ I (plain mono) then any homomorphism A . D belongs to L. �

The preorder Ens inherits the ipo structure from the underlying category:

Lemma 7.4 The forgetful functors

Ens −→WfCoAlg −→ CoAlg −→ C

create filtered colimits and the initial object ∅.
Proof For WfCoAlg → C this is Proposition 5.8. For Ens we use the requirements on ∅ and
directed unions in Assumption 4.19. �

Lemma 7.5 The functor T preserves ensembles. The only one that it fixes (up to isomorphism)
is the initial algebra, if this exists.

Proof Since T preserves well-foundedness by Lemma 5.1 and M by assumption. The second
part is Corollary 6.11. �

Theorem 7.6 The functor T has an initial algebra iff it has a set of isomorphism classes of
ensembles.

Proof If there is an initial algebra then it is an ensemble by Propositions 6.9 and 6.10 and other
ensembles are initial segments of it by Lemma 7.2. Being well powered (Definition 4.7) says that
there is a “set” of isomorphism classes of these.

The word “set” in the converse must therefore be understood in the same way: it means that
the preorder Ens is equivalent to an internal poset in S. This is an ipo by Lemma 7.4 and the
functor T provides its successor operation, to which we apply Pataraia’s Theorem 2.5. The unique
fixed point of T is the initial algebra. �

This set, or its cardinality, is known as the rank of the functor T , although the word rank is
also used for the ordinal reflection of any well founded relation.

Applying Pataraia induction to this, we deduce

Corollary 7.7 If there is an initial algebra, it satisfies any property of coalgebras that holds of
the initial object and is preserved by isomorphism, the functor and filtered colimits. �

Remark 7.8 Now we will show that the preorder Ens has binary meets.
If this were a typical category-theoretic problem, we would approach it by lifting pullbacks

from the underlying category to coalgebras and ensembles. However, we should not expect to be
able to do that unless the functor T preserves intersections (Proposition 9.5).

Even if we could construct pullbacks easily, we would still have to choose roots for them, i.e. the
target corners of the squares. In a preorder these are just called common upper bounds, the least
of which is the join. However, as we will see in Section 10 and [Tay23a], constructing this is a
difficult problem in itself and depends on finding the meet first.

What we have instead, and without that assumption, is a generalisation of set-theoretic in-
tersection. Indeed, the idea goes back to Cantor’s original investigation of the classical ordinals,
which he “zipped together” [Can97, §13 Thms N&E].

The diagram in the main Construction may be daunting, but it is just a double version of
Construction 5.2 for subcoalgebras. Alternatively, it is an adaptation of Construction 6.5 for
attempts in the Recursion Theorem, where the target is now a coalgebra, considered as a partial
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algebra whose evaluation part is the identity. It more complicated because we have to trim the
support according to the partial target.

If you would like to compare this with the relational version in Proposition 2.18, recall from
Lemma 3.3 that coalgebra homomorphisms define bisimulations. Since such relations are com-
posable and reversible, the span of homomorphisms becomes a single relation. Functionality for
relations corresponds to i being mono and the partial bijection to both i and f being mono.

Definition 7.9 A span between two coalgebras (A,α) and (D, δ) is a pair (i, f) of coalgebra
homomorphisms:

A
α

. TA

B
β

.

i

.

TB

Ti

4

D
δ

.

f .

TD

Tf
5

We will just use this in the case where all of the coalgebras are extensional and (B is) well founded.
Hence, by Lemma 7.2, all of the homomorphisms are initial segments.

Beware, therefore, that we are relying heavily on the Assumptions 4.19 about the class of
monos, as well as the foregoing theory of well-foundedness.

Construction 7.10 The relative successor of a span (A,α) /
i
⊃ (B, β)

f
. (D, δ).

Proof When A, D and B are ensembles, all of the maps in the diagram are initial segments,
by Lemma 7.2, whilst for general coalgebras they need not be. We mark some of them as mono
to indicate how this assumption for i and δ evolves in the construction. From this we see that
it is not possible to separate the two roles of monos, cf. Notation 4.13. Well-foundedness is not
assumed in this Construction itself.

. A
α

. TA /
Tk

⊃ TC1

β

C1

k

∪

4

B

i

∪
⊂...........................

j
. C

h1

⊂

.

pbk TB

Ti

∪

4

⊂.......................
Tj

.

.

c1

.
TC

Th1

∪

4

C2
c2⊂

.

h2 .

γ

.

f

. D

g5
⊂

δ
. TD

Tf

5

/
Tg

TC2

Th2

5

Let C1, C2 and C be the pullbacks shown. If i and δ are initial segments then so are Ti, k, c2, h1

and h1 ; k, because T , pullback and composition preserve them (Definition 4.15).
This construction makes C the limit of a W-diagram that is essentially a double form of the
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pullback in Construction 5.2:

A

TA

α

.

sB ≡ C
h1 ; c1

h2 ; c2
.

h1 ; k

⊂

.

TB

Ti

⊂

.

TD

Tf

.

D

h2 ; g
. δ⊂

.

Now B is the vertex of another cone over the W, with arrows i, β and f . Hence there is a unique
mediator j : B → C to the limit, with

i = j ; h1 ; k, β = j ; h1 ; c1 = j ; h2 ; c2 and f = j ; h2 ; g.

When the previous maps, in particular i and h1 ;k, are initial segments, so is j by the Cancellation
Lemma 4.16.

Now we make C a coalgebra by defining γ ≡ h1 ; c1 ; Tj. Then j is a homomorphism because

j ; γ ≡ j ; h1 ; c1 ; Tj = β ; Tj.

The new span with support C is given by h1 ; k : C → A and h2 ; g : C → D, whose composites
with j are i and f . Then h1 ; k and h2 ; g are homomorphisms because

(h1 ; k) ; α = h1 ; c1 ; Ti = h1 ; c1 ; Tj ; T (h1 ; k) = γ ; T (h1 ; k)

and (h2 ; g) ; δ = h2 ; c2 ; Tf = h2 ; c2 ; Tj ; T (h2 ; g) = γ ; T (h2 ; g).

The remaining maps in the diagram may be shown to be initial segments by interchanging the
roles of A and D. �

Lemma 7.11 The relative successor s is monotone (functorial) in B′ . B, cf. Lemma 5.3.

Proof The proof amounts to the mediator between two W-limits that share the nodes A, TA,
D and TD but differ on TB′ . TB, cf. the next diagram. The map j : B ⊂ . C in the
Construction makes the successor inflationary. �

Lemma 7.12 If B is well founded then so is C ≡ sB.

Proof By Lemma 5.6, since C is sandwiched between B and TB. �

The next result is the special condition for Pataraia’s Theorem 2.5. It replaces the single
pullback in Lemma 5.4 with a double one, the W-limit.

Lemma 7.13 If B is well founded and B′ ∼= sB′ ⊂
k
. B then k : B′ ∼= B.

A
α

. TA

p
> TB′

Ti′⊂

.

i

4

Γ .....................
j

> B′

i′

⊂

.

β′
.

q
> B
∪ β

k

⊂

.
. TB

Ti

∪

4

Tk

⊂

.

D

f ′

4

⊂
δ

.

f
/

TD

Tf ′

5 Tf
/
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Proof That B′ is a fixed point means that it is already the limit of the W that defines its
successor, namely

A
α

. TA /
Ti′

⊃ TB′
Tf ′

. TD /
δ

⊃ D.

We claim that the homomorphism quadrilateral for B′ ⊂
k
. B (shown in bold) is a pullback, so

let Γ be the vertex of a cone, with p ; Tk = q ; β. Then

q ; i : Γ→ A, p : Γ→ TB′ and q ; f : Γ→ D

define a cone over the W for B′ because

q ; i ; α = q ; β ; Ti = p ; Tk ; Ti = p ; Ti′

and q ; f ; δ = q ; β ; Tf = p ; Tk ; Tf = p ; Tf ′.

Since B′ is the limit, there is a unique mediator j : Γ→ B′ with

j ; i′ = j ; k ; i = q ; i, j ; β′ = p and j ; f ′ = q ; f

whence j ; k = q since i is mono. Thus j provides the mediator that is required for B′ to be the
pullback. However, B is well founded by hypothesis, so any such pullback degenerates, making
k : B′ ∼= B. �

Proposition 7.14 Ens is a preorder with binary meets. Moreover, whenever a meet-span of
ensembles is part of a commutative square of them then this is a pullback in Ens.

C

B ⊂ .

⊂......................
D

⊂

.

A
5

∩

⊂ .

⊂

.

E
5

∩

Proof In any preorder considered as a category, the universal property of the meet of two objects
is exactly that there is a greatest span between them.

Using Assumption 4.19, there is a unique span with B ≡ ∅. For any directed union, there is a
unique pair of mediators and they are initial segments. As before, to make the category equivalent
to an internal ipo, we need a well-poweredness condition, which comes from the requirement that
(at least half of) the maps in Construction 7.10 are initial segments.

Therefore, the ipo of spans has a top element by Pataraia’s Theorem 2.5, cf. Proposition 5.10.
There is no need for a common upper bound E to define a meet in a preorder, in the way that

there is for a pullback in a category. However, if such E does exist then any pair A / ⊃ C ⊂ . D
of homomorphisms from an ensemble form a commuting square, since there is at most one homo-
morphism C . E by Lemma 7.2(a).

Therefore, since E played no active role in this argument, the universal property of the pullback
holds irrespective of its root. �

Switching back from preorders to categorical language, the meet therefore has the property
that we would normally call a product. We avoid that word because the construction looks like
set-theoretic intersection and nothing like the Cartesian or Kuratowski–Wiener product. Set-
theoretically, the maps A← C → D do have to be subset inclusions and not arbitrary functions.
Categorically, A← C → D must be coalgebra homomorphisms and not just C-maps.

Examples 7.15 The consequences for the classes I,R,L ⊂ Pos in Example 4.21 are that:
(a) for I, the homomorphisms between these “extensional” well founded D-coalgebras that are

not necessarily mono;

(b) for R, meets like this exist but may be different from the pullbacks in Pos;

(c) for L, the two constructions for meets agree, but we have to use this one as a step towards
finding the common upper bounds that make the pullback meaningful. �
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Summing up this section, in particular Lemmas 7.2–7.5, Corollary 6.11 and Proposition 7.14,
we have

Theorem 7.16 The category Ens of ensembles and coalgebra homomorphisms
(a) is a preorder with

(b) a least (isomorphism class of) object(s),

(c) directed unions,

(d) binary meets and

(e) an inflationary monotone successor, namely the functor T .
Moreover,
(f) the greatest ensemble is the initial algebra, if either of these exists, and is the unique fixed

point of T . �

Remark 7.17 We might try to drop the requirement that all the maps in this section be initial
segments, in order to define pullbacks of well founded coalgebras (without assuming that T pre-
serves them, as we do in Proposition 9.5). The well-poweredness condition would fail, but we
could recover this by factorising the test maps to the pullback. That technique is the subject of
the next section.

8 Imposing the properties

In this section we generalise Mostowski’s construction by constructing left adjoints to the forgetful
functors ExtCoAlg → CoAlg and Ens → WfCoAlg and also show that the greatest well
founded part of a coalgebra provides the right adjoints to WfCoAlg → CoAlg and Ens →
ExtCoAlg.

The key idea in doing this is (the categorical abstraction of) the fact that any function can
be expressed as the composite of a surjection and the inclusion of its image. One of the earliest
achievements of category theory, or rather of Modern or Universal Algebra, was to bring together
the various “isomorphism theorems” relating these for groups, rings, vector spaces, etc. The
abstract formulation was given by Peter Freyd and Max Kelly [FK72]:

Definition 8.1 Two maps e : X >> Q and m : V ⊂ > Y in any category are orthogonal ,
written e ⊥ m, if, for any two maps f and g such that the square commutes, there is a unique
morphism p : Q→ V making the two triangles commute:

X
e

>> Q

V

f

∨
⊂

m
>

p

<...
....

....
....

....
....

....
....

.

Y

g

∨

Then a factorisation system is a pair of classes of morphisms (E ,M) such that
(a) the classes E and M each contain all isomorphisms;

(b) they are each closed under composition;

(c) e ⊥ m for every e ∈ E and m ∈M and

(d) every morphism f : X → Y can be expressed as f = e ;m with e ∈ E and m ∈M.

Examples 8.2
(a) Inclusions (1–1 maps, monomorphisms) and surjections (onto maps, epimorphisms) in Set or

a topos, where surjections are quotients by equivalence relations and this class is stable under
pullbacks.

(b) More generally in type theories, if the factorisation is stable under pullback then the E class
is associated with an existential quantifier [HP89] [Tay99, §9.3].

(c) In a general category with inverse images, a map e that is orthogonal to all monos is called
an extremal epi and is characterised by ∀m ∈M. e = m ; f =⇒ m = id .
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(d) The class I ⊂ Pos of plain monos (Example 4.21) is part of a factorisation system, whose
“epis” are surjective functions that generate the order on the codomain. However, the lowersets
functor D does not preserve the class I.

(e) The class R of regular monos in Pos is part of a factorisation system with plain epis, which
are monotone functions that are surjective on points.

(f) The class L of lower inclusions is part of a factorisation system whose “epis” are cofinal
functions in the usual sense, so they do not have the cancellation property and are not well
co-powered.

Lemma 8.3 In a factorisation system,
(a) the factorisation f = e ;m is unique up to unique isomorphism;

(b) if f ∈ E ∩M then f is an isomorphism;

(c) if the pullback of anM-map exists in the category then it is also inM (so Assumptions 4.1(a)
and 4.15(e) become redundant);

(d) E has the cancellation property that if f, (f ; e) ∈ E then e ∈ E , cf. Lemma 4.16;

(e) if f ∈ C has f ⊥ m for all m ∈ M then f ∈ E (in fact quantification over M is not needed:
we only use this for the M-part of the factorisation of f);

(f) if the maps in a directed or pushout diagram are all in E then so are those in the colimiting
cocone; and

(g) the mediator from such a colimit to a cocone consisting of E-maps is also in E .

X0 >> Xi > colim > Θ

∨∨

U
∨
> >

<...
....

....
....

....
..

Y
∨

Proof (a–e) Easy, but see e.g. Lemma 5.7.6 and Proposition 5.7.7 in [Tay99]. (f) Any pushout
has a root X0 (with maps to all of the other vertices of the diagram), and any directed diagram is
equivalent to one with a root. Using (X0 � Xi) ⊥ (U � Y ), there is a unique mediator Xi → U .
These maps form a cocone, with mediator colim → U . Finally, (g) follows from (e,f). �

Lemma 8.4 If the functor T preserves M then factorisation lifts to coalgebra homomorphisms.

TE
Te

. TC ⊂
Tm

. TA

E

4

e
.. C

4................
⊂

m
. A

4

Proof Let f : E . A be a coalgebra homomorphism that factorises as f = e ; m in C with
e ∈ E and m ∈M. Since T preserves M we have e ⊥ Tm and so there is a unique map C → TC
making the squares commute, i.e. factorising the homomorphism. �

Indeed all of the factorisations that we do in this section are of homomorphisms. The notion
could be expressed directly for them and it may be necessary to do this in future applications, not
just to lift them from the underlying category C.

Now we apply these ideas to Mostowski’s construction. In the familiar setting, it provides an
onto function between sets with binary relations, so it corresponds to an equivalence relation.

We constructed this in Theorem 2.23 using corecursion. However, as we have seen throughout
this work, iterative constructions are often better understood by making a more detailed study of
the single step and then using a general-purpose tool for the iteration.
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In this case, the step is the factorisation of the structure map into its onto and 1–1 parts. So
that is what we do now, using our more abstract categorical tools.

Assumption 8.5 Instead of Assumption 4.19, we now require
(a) initial segments form part of a factorisation system (E ,M), whose E-maps we call cofinal ;

(b) cofinal maps admit the cancellation property for epis; and

(c) the class E of cofinal maps is well co-powered, whilst

(d) predicates obey Assumption 4.17 as before.

For the present topic, initial segments need not be preserved by T , have directed unions or
form a well powered class, although they may be restricted by the requirements on predicates.

Hence these requirements are satisfied by 1–1 functions in Set and also by I,R ⊂ Pos but not
L in Example 4.21, along with the corresponding classes of epis.

As in Remark 4.20 for initial segments, the term cofinal is intended to hint at certain intuitions
that are linked to the fact that all of the maps that we call cofinal are coalgebra homomorphisms.
However, the notion is not necessarily the same as the traditional order-theoretic one. It is a
novelty of this work that E can be a special class of morphisms in a category that need not be a
topos.

Construction 8.6 The successor quotient (C, γ) of any coalgebra (B, β) is given by factoris-
ing β as a cofinal homomorphism followed by an initial segment, as shown below.

If B is well founded then so is C.
B is fixed by the construction (e : B ∼= C) iff it is extensional (β ∈M).
Any homomorphism f : (B, β) . (E, ε) to an extensional coalgebra factors uniquely

through C.

TTB

TC

Ti
/

TB

Tβ

4

Te
.

Tf
. TE

Tg
........................

C

γ

4

i
/

⊃

B

β

4

f
.

e
..

E

ε

∪

4

g
..........................

Proof Let β = e;i be the factorisation, via C, and put γ ≡ i;Te. Then the three triangles on the
left commute, so (C, γ) is a coalgebra and e : B .. C and i : C ⊂ . TB are homomorphisms.

Well-foundedness is preserved by the Sandwich Lemma 5.6. This is still valid because we
haven’t changed the assumptions about predicates and it didn’t depend in initial segments.

If e : B ∼= C then β ∼= i ∈M, so B is extensional, and conversely.
Since e : B .. C is orthogonal to ε : E ⊂ . TE, there is a unique map g : C → E such

that e ; g = f and i ; Tf = g ; ε. Hence g is a homomorphism:

γ ; Tg ≡ i ; Te ; Tg = i ; Tf = g ; ε.

For this we do not need Ti ∈ M, to factorise a pre-defined homomorphism or the cancellation
properties of plain epis or monos, just uniqueness of the mediator in Definition 8.1. �

In order to apply Pataraia’s Theorem 2.5 we must first show that the situation in the category C
is equivalent to an internal ipo in S.

Lemma 8.7 Each co-slice category X/E (whose objects are E-maps from X and whose morphisms
are commutative triangles) is equivalent to an ipo. This holds in C, CoAlg and WfCoAlg.
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Proof By the cancellation property for epis (e ; f = e ; g ⇒ f = g) the co-slice category is a
preorder.

The notion of being well copowered in Assumption 8.5 is the obvious analogue of being well
powered (Definition 4.7), i.e. that the external category is equivalent to an internal poset in the
base topos S.

The identity idX is its initial or least object and filtered colimits provide directed joins.
The same argument restricts from C to CoAlg and WfCoAlg because colimits are created

(Proposition 5.8). �

Remark 8.8 What about the Special Condition? It postulates two fixed points, which by the
Construction are extensional and the map between them is in E . If we can show that this map is
also in M then it is an isomorphism, and so an equality in the ipo as required.

Lemma 7.2(b) does this, on the additional assumptions that the domain be well founded and
that M-maps obey Assumption 4.19.

This is all very well in Set, but for the classes in Pos in Example 4.21, the combined As-
sumptions are only satisfied by R. When we investigate the ordinals in [Tay23a] we will find that
R-ensembles give an initially promising but ultimately unsatisfactory notion. We will need to use
the class I of plain monos in Pos, which is not preserved by the downsets functor D and does not
satisfy Lemma 7.2(b).

There is another problem with this method: it assumes well-foundedness to prove the Special
Condition. So we cannot use the latter (and Pataraia induction) to prove the former. We would
need to use Lemma 8.15 below, which makes other assumptions.

Remark 8.9 To rescue this, we return to our introduction of Pataraia’s theorem. In a general
fixed point situation in an ipo, there may be many fixed points but no greatest element. We cut
this down to a sub-ipo that satisfies the Special Condition by means of one of the versions of well
founded elements in Definition 2.8.

So far we have only really used this in a single form, in Lemma 5.4, which was anyway the
motivating example. To rephrase it in the more abstract categorical terms of this section, a well
founded relation on a set X corresponds to a well founded element of the slice PX ≡M/X ⊂ Set
(Example 2.10) and a well founded subcoalgebra of A is a well founded element of SubA ≡M/A ⊂
CoAlg (Proposition 3.7), each with respect to the successor operations defined there.

So, for a new application of the idea, we consider the well founded elements of the co-slice
category A/E or ipo in Lemma 8.7. This is not the dual suggested in Remark 4.6, but maybe it
is the appropriate analogue of well-foundedness for extensionality.

Definition 8.10 We call a cofinal homomorphism g : A .. B well projected if it factors
uniquely into every a cofinal homomorphism f : A .. E with E extensional.

Tf

TA
Tg

. TB ................. TE
5

A

α

4

g
.. B

β

4

.................... E

ε

∪

4

f
4
4

Lemma 8.11 Well projected maps form a sub-ipo of A/E that is closed under the successor
quotient. The latter has a unique fixed point, which is extensional and is the greatest element of
the ipo.

Proof The identity idA (the initial object of A/E) is well projected. Construction 8.6 preserves
this, and so do joins or colimits by definition.

For the Special Condition, suppose that A .. C
f
.. B is a map between fixed points in the

sub-ipo. Applying well-projectedness of A .. B to the extensional coalgebra C provides f−1.
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Therefore there is a greatest or terminal well projected quotient, it is fixed by the successor
and so it is extensional. �

Theorem 8.12 The forgetful functors ExtCoAlg → CoAlg and Ens → WfCoAlg have left
adjoints, whose unit ηA : A .. RA is cofinal.

Proof Given any homomorphism A . E to an extensional coalgebra, this factors uniquely
through the successor quotient by Construction 8.6, and through colimits by definition. Hence by
Pataraia induction it does so through the fixed point, which therefore yields the left adjoint. The
unit ηA of the adjunction is the structure map of the fixed point, which is cofinal.

When A is well founded, so are all of its well projected quotients, by Pataraia induction:
the successor quotient in Construction 8.6 preserves this by Lemma 5.6 and colimits do so by
Proposition 5.8. �

Corollary 8.13 If C has pushouts then so do ExtCoAlg and Ens.

Proof The forgetful functors WfCoAlg → CoAlg → C create colimits (Proposition 5.8) and
any left adjoint preserves them. That is, the pushout in ExtCoAlg or Ens is the extensional
reflection of that in CoAlg or WfCoAlg, the latter being calculated in C. �

Warning 8.14 Assumption 8.5 that the category be well copowered with respect to a class E of
maps that are “surjective” in only the most tenuous of senses must not be taken lightly. Indeed,
we will propose the existence of the extensional reflection when E fails to be well co-powered as a
candidate for the categorical form of the axiom-scheme of replacement [Tay23b].

In particular, the pushout in Ens provided by the Corollary could be much larger than the
given objects or C-pushout; Theorem 10.6 looks at when the latter is already extensional.

We showed in Proposition 5.11 than any coalgebra as a largest well founded subcoalgebra
εA : WA ⊂ . A. Is W a functor and right adjoint to the inclusion WfCoAlg → CoAlg? As
a first step, if the class of predicates is part of a factorisation system then we have a categorical
version of Corollary 2.21:

Lemma 8.15 Let E be a well founded coalgebra and e : E >> C be homomorphism in the
orthogonal class to the predicates. Then C is also well founded.

TW >.......................................................
Tj

> TE

TV >
Ti

>

...................>
ε
∧

TC

Te

.

K

∧.........................
>........... ............> W >..................

j

pbk
> E

H

∧

> >

...................>

V >
i

>

...................>
C

γ

∧

e
>>

Proof Let i : V > > C be a predicate that satisfies the induction premise given by the broken
pullback from H to TC (at the front).

Pull this back along the homomorphism e : E .. C, using Lemma 5.5.
By well-foundedness of E, we have j : W ∼= E.
Since (e : E >> C) ∈ E and it factors through (i : V > > C) ∈ M, the latter is also an

isomorphism, using orthogonality and cancellation for the mono i [Tay96b, Prop 7.8]. �

Remark 8.16 Unfortunately we can’t make much use of this Lemma unless the two classes of
monos are the same.

Recall that all initial segments must be predicates: we made Assumptions 4.17(a) and 4.19(a)
in order to prove Lemma 5.4. Since orthogonality defines a Galois connection between classes of
epis and monos, this means that the opposite inclusion holds for the corresponding classes of epis.
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The inclusion WA ⊂ A is an initial segment, so in order to compare it with another homomor-
phism to A we will need to factorise the latter as a cofinal map followed by an initial segment.

Therefore, if we use a richer class of predicates (say to model other features of categorical logic,
cf. Assumption 4.17) then there could be more cofinal maps than we are permitted to use in the
Lemma.

We observed in the proof of Proposition 5.11 that it did not depend on which class of monos
we used for the predicates to define well-foundedness. Therefore we obtain the same result if we
cut this class down to just the initial segments and use the same factorisation system for both
purposes.

On the other hand, the resulting notion of well-foundedness could be weaker than we might
need for other logical applications.

Unfortunately, we cannot judge whether this restriction is significant because neither this paper
nor [Tay23a] tests different systems of predicates; the classes I,R,L ⊂ Pos all yield equivalent
forms of induction to that over all subsets in Set.

Assumption 8.17 For the following,
(a) predicates and initial segments are the same class of monos;

(b) they obey both Assumptions 4.17 and 4.19 as previously; and

(c) they form the M class of a factorisation system.

Theorem 8.18 The inclusion WfCoAlg� CoAlg has a right adjoint (coreflection), W , whose
counit is an initial segment. This construction preserves extensionality.

E
f

. A

C

e

5
5

⊂
k

.

j

⊂

.

WA

i

∪

4

Proof We claim that the largest well founded subcoalgebra i : WA ⊂ . A (Proposition 5.11)
provides the adjoint. That is, any coalgebra homomorphism f : E . A with E well founded
factors uniquely through i.

Let E
e
.. C ⊂

j
. A be the factorisation in C of f as a cofinal map followed by an initial

segment. By Lemma 8.4, C is a coalgebra and e and j are homomorphisms. Then C is well
founded by Lemma 8.15 and it is a subcoalgebra of A by construction.

It is therefore a subcoalgebra of WA, since WA was the largest such. The map E . WA
is unique since i : WA ⊂ . A is mono.

Now suppose A is extensional, so A ⊂ . TA is an initial segment. The map WA ⊂ . A
is also one and is preserved by T . By cancellation, WA ⊂ . TWA is an initial segment too,
i.e. WA is extensional. �

Lemma 8.19 If M obeys these Assumptions and A is well founded then all quotients are well
projected.

Proof The assumptions justify the argument in Remark 8.8 that the whole ipo X/E obeys the
Special Condition. So it has a unique fixed point, but Theorem 8.12 found one in the sub-ipo,
so they must be the same. (This is another Pataraia induction.) That is, the terminal object of
X/E is well projected. But if A .. B .. C where C is well projected then so is B. Hence all
quotients are well projected. �

We have shown that R preserves well-foundedness and W preserves extensionality, so do these
functors commute? This seems to require the additional assumption that we consider in the next
section.

9 When the functor preserves inverse images

Previous work on this subject required the functor to preserve inverse images of monos, but this
new account has only used preservation of the monos themselves. We now re-impose the stronger
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assumption and prove the relatively few earlier results that depend on it. Principal amongst these
is Proposition 1.4, which is a very important result for the way that well founded relations are
used in practice across mathematics.

There is a second essential requirement for this proof, namely the universal quantifier. In the
categorical formulation this appears in the form of the adjunction f∗ a f∗. Gerhard Osius noted
this in his version of the result [Osi74, Prop 6.3(a)]. Any topos has it (Notation 3.2), but since we
are considering more general categories, we state it as a further assumption on the subobjects:

Assumption 9.1 In addition to the assumptions in Section 4,
(a) the functor T : C → C must preserve inverse image diagrams of predicates along coalgebra

homomorphisms; and

(b) each inverse image operation f∗ must have a right adjoint f∗ on predicates, at least when f
is a coalgebra homomorphism.

Besides 1–1 maps in Set, the results in this section also hold for L ⊂ Pos but not I or R
[Tay23a].

As an aid to understanding our categorical proof, we first give it for well founded relations, in
as similar a form as possible. See [Tay99, Prop 2.6.2] for a box-style proof in natural deduction
for well founded relations.

Proposition 9.2 Let (A,≺) be a well founded relation and f : (B,<) → (A,≺) a strictly
monotone function in the sense that

∀bb′ :B. b′ < b =⇒ fb′ ≺ fb

then (B,<) is also well founded.

Proof Let ψ be a predicate on B satisfying the induction premise

∀b. (∀b′. b′ < b⇒ ψb′) =⇒ ψb.

For comparison with the categorical proof below, cf. Proposition 3.6, this is K ⊂ V , where

K ≡ {b : B | ∀b′. b′ < b⇒ ψb′} ⊂ B and V ≡ {b : B | ψb} ⊂ B.

The key step is to define f∗V ≡ {a : A | φa} ⊂ A, where φa ≡ (∀b′. fb′ = a⇒ ψb), and

H ≡ {a : A | ∀a′. a′ ≺ a⇒ φa′} ≡ {a : A | ∀b′. fb′ ≺ a =⇒ ψb′} ⊂ A.

Strict monotonicity and the induction premise give f∗H ⊂ K ⊂ V , which is

∀b. (∀b′. fb′ ≺ fb⇒ ψb′) =⇒ (∀b′. b′ < b⇒ ψb′) =⇒ ψb.

Quantifying over {b′ | fb′ = a}, we obtain H ⊂ f∗V , which is

∀a. (∀a′. a′ ≺ a⇒ φa′) ⇐⇒ (∀b′. fb′ ≺ a⇒ ψb′) =⇒ (∀b′. fb′ = a⇒ ψb′) ≡ φa.

Then ∀a. φa since (A,≺) is well founded, whence ∀b. ψb as required. �

We now prove the result for general functors that preserve inverse images and coalgebra ho-
momorphisms that are equipped with f∗. Notice, however, that the hypothesis that f be a
coalgebra homomorphism is actually stronger (in the case of T ≡ P) than being strictly monotone
(cf. Lemma 3.3).

Theorem 9.3 Let f : (B, β) . (A,α) be a coalgebra homomorphism with f∗, where (A,α) is
well founded. Then (B, β) is also well founded.

Proof Given the diagram marked in thick lines, apply the right adjoint f∗ to j : V � B, to get
i : f∗V � A. The counit of this adjunction is ε : f∗f∗V → V and makes the little triangle (∗)
commute, where f∗ is given by pullback (inverse image) of i along f . The upper part of the
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diagram is the T -image of the lower part, including this pullback but not K. Let H ≡ α∗T (f∗V )
be the pullback of Ti and α and f∗H its pullback along f .

(Tf)∗T (f∗V ) = T (f∗f∗V )
pbk

> T (f∗V )

TV >
Tj

>

Tε

<

∧..............
TB

Tf
.

>

>

∧

TA

Ti

>

>

f∗H

..............

pbk
> H pbk

K

∧

> >
<....

....
....

....
....

....
....

V >
j

(∗)
> B

β

4

f
.

>

>

..............
A

α

4

>

>

f∗f∗V

ε

∧

∧

pbk
>

>

>

f∗V
∨

..............

i

>

>

By construction, the whole diagram of solid lines commutes from f∗H to TA. In particular,
f∗H � B → TB and f∗H → H → T (f∗V ) agree at TA, so there is a pullback mediator
f∗H → T (f∗f∗V ). Then f∗H → T (f∗f∗V )→ TV agrees with f∗H � B at TB, so there is also
a pullback mediator f∗H → K.

This shows that f∗H ⊂ K ⊂ V as C-subobjects of B. Therefore, by the adjunction f∗ a f∗,
we have H ⊂ f∗V as subobjects of A.

That is, there is a map H → f∗V that makes the right-hand part of the diagram into a broken
pullback. Now, since A is well founded, i : f∗V ∼= A, so f∗f∗V ∼= B and j : V ∼= B [Tay96b,
Prop 7.3]. �

Examples 9.4 To show that the additional hypotheses are necessary, we substitute preorders for
categories in the whole theory, so a well founded coalgebra becomes a well founded element in the
sense of Definition 2.8.

y ≤ sy = ss⊥ y ≤ sy ≤ ssy ≤ sssy ≤ · · · ≤ sωy

∨ ∨ ∨ ∨ ∨ ∨
⊥ ≤ s⊥ ⊥ ≤ s⊥ ≤ ss⊥ ≤ sss⊥ ≤ · · · ≤ sω⊥

ww
In both diagrams, the elements sn⊥ and sω⊥ are well founded, but y is not, because s⊥ ∧ y ≤ ⊥
but y � ⊥.

The first example is a Heyting semilattice, but s does not preserve the meet y ∧ s⊥ = ⊥.
The second is also distributive but it is not a Heyting semilattice, since y ∧ (−) does not

preserve the directed join
∨
� sn⊥. However, s preserves meets because, for n < ω and m ≤ ω,

sn⊥ ∧ smy = smin(n,m)⊥. �

The Theorem seems to be needed to construct inverse images of well founded coalgebras.

Proposition 9.5 The functors Ens −→WfCoAlg −→ CoAlg −→ C create inverse images.

TD . TC

D .

δ

....
....

....
....

.. ∩

C

γ
.

TB
∨ Tf

. TA

Tg

5

∩

B
5

∩

f
.

β
.

A

g

5

∩

α

.
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Proof The diagram shows how to find the inverse image (D, δ) of coalgebras B . A /⊃ C for
a functor T that preserves them. The structure map δ is the mediator to the pullback with T
applied.

If either of the given coalgebras B or C is well founded then so is D, by Theorem 9.3.
If B is extensional then so is D by the cancellation property for monos. �

Recall that Corollary 7.14 gave a quite different construction of binary meets, which are pull-
backs in Ens if common upper bounds exist. However, if T does not preserve inverse images in C
then the pullbacks in Ens and C need not agree [Tay23a].

Now that we have a straightforward way of working with pullbacks of coalgebras, there are
some other things we need to know about them:

Lemma 9.6 The naturality square for the counit ε : W ⊂ . id of the well founded part functor
is a pullback.

C
g

WB
Wf

.

k
...........

WA
5

h

. B

εB

5

∩

f
. A

εA

5

∩

Proof Since WA is well founded, so is C by Theorem 9.3. Therefore h : C . B factors
through WB and k is unique such that h = k ; εB . Then

k ;Wf ; εA = k ; εB ; f = h ; f = g ; εA,

so k ;Wf = g since εA is (plain) mono. �

Using this, we may construct the well founded part of any T -coalgebra (Theorem 8.18) in a
uniform way:

Corollary 9.7 If T has a final coalgebra F (and hence an initial algebra I by Corollary 6.12)
then the well founded part WA of any coalgebra A is given by the inverse image on the left:

WA > I = WF WfCoAlg ' CoAlg/I

A

f∗i

5

∩

f
. F

i

5

∩

CoAlg
∨

∨

a W

∧

' CoAlg/F
∨

∨

a i∗

∧

Proof Any category with a terminal object is equivalent to the slice by it. By Proposition 6.10,
the initial algebra I is the terminal well founded coalgebra, whilst by Theorem 9.3, any coalgebra
having a homomorphism to I is well founded. Hence we have equivalences as shown on the right,
commuting with the forgetful functors. The latter both have right adjoints, which must also be
equivalent. �

A further application is to show that the functors R and W in the previous section commute,
of course relying on all of the Assumptions that we have stated.

Lemma 9.8 In CoAlg, the class E of cofinal maps is stable under pullback.
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f∗C . C

D /
//

f∗f∗D
5

...........

. f∗D
5

............

/....... f∗f
∗C

.
f∗e

. B
5

∩

f
.

⊂

.
A
5

∩

//

e

Proof By Assumption 9.1(b), the pullback functor f∗ has a right adjoint f∗.
The pullback in question is the outside of the figure. With the aim of showing that f∗e is

cofinal, we factorise it, through D ⊂ . B, and apply the right adjoint to give f∗D ⊂ . A.
Now, for f∗C .. D over B, we apply the adjoint correspondence to yield C . f∗D.
The given cofinal map e now factors through an initial segment, so the latter is an isomorphism.

Therefore, so is its pullback f∗f∗D ⊂ . B, whence D ⊂ . B is also an isomorphism.
This leaves just the E-part of the factorisation of f∗e. �

Corollary 9.9 The functor W preserves the class E .

Proof Let f ∈ E in the pullback in Lemma 9.6, so Wf ≡ ε∗Af ∈ E too. �

Proposition 9.10 The functors R and W commute up to unique isomorphism.

WX ⊂
εX

. X
ηX

.. RX

RWX

ηWX

5
5

⊂.................................................

RεX

⊂

.

WRX

εRX

∪

4

WηX

.

Proof The two triangles in the diagram express naturality of the unit η of the extensional
quotient functor R and the counit ε of the well founded part functor W , with respect to each
other. They have εY ∈ M and ηY ∈ E for all Y, for the same factorisation system, but beware
that they don’t belong to the same adjunction!

Since RεX is a homomorphism between ensembles, it is in M by Lemma 7.2(b). Then the
figure-of-eight is an instance of the orthogonality diagram (Definition 8.1), so that there is a unique
fill-in RWX . WRX, which is an initial segment by cancellation.

Since also WηX ∈ E by the Lemma, it is an isomorphism. �

10 Pushouts

Besides the preservation of pullbacks, we have also avoided using pushouts (binary joins) in this
work, by developing a much more delicate proof for directed joins that uses Pataraia’s fixed point
theorem. We now restore the pushouts, inspired by Gerhard Osius’s treatment of them in his
reconstruction of Set Theory within a topos.

We will still pay attention to our analysis of special classes of monos in the base category C,
but now the additional assumptions make it much more like Set or a topos than we have so far
needed. Of the classes of “monos” in Pos (Example 4.21), L satisfies them but I and R do not
[Tay23a].

In addition to the Assumptions that we have accumulated, we need a “union” property for
pushouts analogous to Proposition 4.4 for directed unions. See [Bar87, LS05, GL12] for further
accounts of well behaved pushouts.
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We will discuss these properties of pushouts in Set and Setop. The first result is known as the
Amalgamation Lemma :

Lemma 10.1 In Set or any pretopos, the pushout of a pair of monos B <
m
< A >

n
> C is another

pair of monos and is also a pullback.

Proof The following is a congruence:

(A+B) + (A+ C)
[m;ν0, ν0, n;ν1, ν1]

>

[m;ν1, ν0, n;ν0, ν1]
> B + C.

If f : B → Θ and g : C → Θ make a commutative square then [f, g] : B + C → Θ coequalises the
congruence. Since the quotient is effective, to verify monos and equalisers, it suffices to inspect
the congruence [FS90, 1.651] [Tay99, 5.8.10]. �

Lemma 10.2 The dual property also holds in Set or any effective regular category, such as a
category of finitary algebras.

Proof The pullback of B
m
� A

n
� C is D ≡ {(b, c) | mb = nc : A}. Suppose B

u← E
v→ C make a

commutative square from D. For each a : A, since m and n are surjective there are b : B and c : C
with a = mb = nc, so (b, c) ∈ D and ub = vc. Then if a = mb′ = nc′ too, also ub = vc′ = ub′ = vc.
Hence we may unambiguously define the mediator e : A→ E by ea ≡ ub. �

Lemma 10.3 In Set or any pretopos, if A, B, Θ and C form a pullback and A, B, D and C form
a pushout, with all of these maps mono, then the mediator d : D → Θ is also mono.

Proof Regarding pullbacks, first note that if the square rooted at D is one then so is that to Θ,
but the converse requires D → Θ to be (plain) mono.

We consider the kernel of d (the pullback of d against itself), K ⊂ D ×D.
Since D is the union of its subobjects B and C and the pullback d∗ preserves unions, D×D is

the union of four parts, B×B, B×C, C×B and C×C, and K is the union of their intersections
with it. Putting these parts together, we have a surjection

ker (i ; d) = K ∩B ×B = ∆B

pbk (i ; d, j ; d) = K ∩B × C = ∆A

pbk (j ; d, i ; d) = K ∩ C ×B = ∆A

ker (j ; d) = K ∩ C × C = ∆C

 >> K ⊂ D ×D

so the kernel K ⊂ D×D is ∆B ∪∆C , which is the diagonal ∆D. Hence d is mono, as required.�

Example 10.4 The dual of this Lemma fails in Set.

B ≡ {a, b} <<

A = 1

m

<<

psh D = {ac, ad, bc, bd} < <

π0

<<

Θ ≡ {ad, ac, bc}

C ≡ {c, d} <<
π1<<

n

<<
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Proof Any pullback D rooted at A ≡ 1 is a product, so D = B ×C. For the whole diagram to
commute A⇔ Θ, using the same ideas as in Lemma 10.2, the three elements of Θ give the three
equations

nd = ma = nc = mb : A,

whence the pushout rooted at Θ is 1. However, the pullback mediator D ← Θ is not epi. �

As in the previous section, the results in this one also hold for L ⊂ Pos but not I or R
[Tay23a].

So long as the base category C also has these properties, we can paste two attempts together,
as in Theorem 1.5(e):

Lemma 10.5 Well founded subcoalgebras and attempts admit binary joins.

B

E /.............⊃/

⊃

B ∪ C/

⊃

B ∩ C >

/

⊃
Θ
∨

>

C

>

/

⊃/

⊃

/

⊃

∧

Proof Suppose that the outer diamond defines two attempts with well founded supports B
and C. Let B∩C be the intersection (pullback) of these subobjects of E, so B∩C is a well founded
coalgebra by Proposition 9.5. Either by Lemma 6.4 using an equaliser or the alternative method
following it that used Pataraia induction, the restrictions B ∩ C → B → Θ and B ∩ C → C → Θ
agree. By the union property we have A / ⊃ B ∪ C . Θ. �

We are now ready to give the categorical explanation of the strange “overlapping union” in
Set Theory: putting B and C together does not yield a coproduct B+C but their pushout rooted
at their meet A ≡ B ∩ C from Corollary 7.14.

We already know from Proposition 5.8 that the functors WfCoAlg −→ CoAlg −→ C create
colimits, whilst by Theorem 7.16, Ens→WfCoAlg creates filtered colimits and the initial object.
Corollary 8.13 showed that Ens has binary joins, but relied on the extensional reflection for this.
What we show now is that they are inherited from C, under the additional assumptions of this
section.

The pushout is over the meet in Ens, given by Theorem 7.16, rather than that in Proposi-
tion 9.5. The reasons for this are explored further in [Tay23a].

Theorem 10.6 The preorder Ens has binary joins, given by pushout in C over the binary meet.

B ⊂
β

. TB

A ≡ B ∩ C
⊂

.

D
δ

.

i

⊂

.
TD

Ti
⊂

.

C ⊂
γ

.

j

⊂

.
⊂

.
TC

Tj
⊂

.

Proof Let (B, β) and (C, γ) be ensembles, so β and γ are initial segments.
By Theorem 7.16, they have a meet A ≡ B∩C, and the maps B ← A→ C are initial segments.
Let D be the pushout in C; it is well founded by Proposition 5.8. By the union assumption

(cf. Lemma 10.1), i and j are initial segments, as are Ti, Tj, β ; Ti and γ ; Tj.
The key point is that B ∩ C is the pullback rooted at either D or TD, by Corollary 7.14.
Therefore δ : D → TD is an initial segment by the union assumption (cf. Lemma 10.3), making

D extensional. �
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The argument that Osius gave for this [Osi74, Thm 6.6] is rather more complicated (with a
big diagram). Throughout his paper he used recursion instead of well-foundedness (cf. Proposi-
tion 3.10) and of course T ≡ P, but for this particular result he used the partial map classifier C̃
(nowadays written C⊥) in a topos.

We conclude by examining whether the functors that we have considered could possibly have
further adjoints.

Question 10.7 Corollary 9.7 says that W is like inverse image, whilst Assumption 9.1(b) required
that to have a right adjoint. Could W : CoAlg →WfCoAlg itself have a right adjoint? What
would it mean?

Lemma 10.8 The forgetful functor CoAlg→ C has a right adjoint iff there is a final T -coalgebra
in each slice C/X. �

Lemma 10.9 If U : CoAlg→ C has a left adjoint L and there is a final coalgebra F then F ∼= 1.
Then the initial algebra and all ensembles are subobjects of 1.

Proof For any X ∈ C, there is a unique homomorphism LX . F and so a unique C-map
X → F , so F ∼= 1. �

Lemma 10.10 If the forgetful functor U : WfCoAlg → CoAlg has left adjoint L then it and
U a W are equivalences. If there is a final coalgebra then it would also be the initial algebra,
cf. Peter Freyd’s principle of algebraic compactness [Fre91].

Proof The unit η : A→ ULA provides a map from any coalgebra to a well founded one, so by
Proposition 9.3 A is well founded. �

Example 10.11 Ens→WfCoAlg does not create or even preserve colimits and so does not have
a right adjoint: Binary coproducts are idempotent (A+ A ∼= A) in Ens but disjoint (A ∩ A = ∅)
(in C by hypothesis and so also) in WfCoAlg. For a concrete example, the extensional well
founded relation 0 ≺ 1 is embedded twice in V. �

Example 10.12 The rank functor R : WfCoAlg → Ens does not have a left adjoint because it
takes the pullback

0 ⊂ . 1 0 ⊂ . 1

to

1
5

∩

⊂
0
. 2

1
5

∩

1
5

∩

===== 1

wwwww
where 2 carries the empty relation, which is well founded but not extensional.

Further work

The original purpose of this work was to provide an intuitionistic categorical account of transfinite
recursion for my book [Tay99]. However, there was no way to use Hartogs’ Lemma [Har15]
constructively, and then out of the blue came Pataraia’s far simpler proof of the fixed point
theorem, but domain theorists ought to have found it much earlier.

What we did learn from the intuitionistic ordinals [JM95, Tay96a] is that their irreflexive
membership and reflexive containment relations must be considered separately. In symbolic logic
this at least doubles the work, but category theory was invented to organise such difficulties, by
isolating the essential argument, whilst wrapping the complications in an appropriate choice of
categories and functors.

Therefore the next task is to apply the present work to the category of posets instead of sets
[Tay23a]; we haven’t included that here because there are too many order-theoretic facts and
fallacies to check. Then the ideas can be extended to other categories, which might have fixpoint
objects [CP92] or accommodate corecursion alongside recursion, cf. Remark 4.6.

This is why we went to some trouble in Section 4 to pin down just what we were using in
the original setting. In other categories there are many alternatives to the näıve ideas of 1–1 and
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onto mappings that we could use for the predicates over which we do induction and for defining
extensionality.

Extensionality is not as innocent as it looks: equality is like marriage in that it transfers any
property of one partner to the other. Dana Scott showed that it is essential for giving the axiom
of replacement its power: without it, that is provably consistent in Zermelo Set Theory [Sco66].

We expect to see even more dramatic results from applying the extensional reflection (The-
orem 8.12) to other categorical settings. Using various notions of “initial segment” and “cofinal
map” turns sets (∈-structures) into ordinals and thin ordinals into plump ones. Transfinite itera-
tion of functors is also an example of this process.

To perform these over Set Theory requires Replacement, but, being adjoints, they are expressed
in the mother tongue of category theory, so we can regard them as candidates for new axioms to
replace Replacement.

We have also explained how extensional well founded coalgebras are “fragments” of the initial
algebra, whether that exists or not. Even if it does, it may be very complicated, whilst it may be
easier to characterise its fragments instead.

Since there is plenty to do in “concrete” categories, it is not really an issue that we haven’t
fully explained how they are well powered. Any fibration defines a factorisation system, in which
we would require prone maps to be initial segments and cofinal ones to be vertical. If we are going
that deep into foundations, we should also deconstruct what is needed of the base category S to
prove Pataraia’s Theorem, in particular the directed completeness and impredicativity.

All of these considerations come together when the algebra is some type theory. There is a
categorical construction called gluing [Tay99, §7.7] or logical relations that apparently magically
proves consistency and termination results. It invokes the universal property of the free algebra,
i.e. recursion over the entirety of its world of types, terms and proofs. How it manages to do this
ought to raise eyebrows in the light of Kurt Gödel’s incompleteness theorems.

The symbolic approach to such things is to turn the syntax of proofs into an ordinal, which to
a categorist is vandalism because it throws the algebraic structure away. In fact proof theorists
also exploit their arithmetic of ordinals to keep track of iterated transformations of proofs. One
might hope to develop methods that retain both the algebra of the type theory and that of proof-
manipulation.

Above all we must escape from the idea that ordinals are linear orders for counting beyond
infinity.

The earliest version of this work was presented at Category Theory 1995 in Cambridge and
at Logical Foundations of Mathematics, Computer Science and Physics — Kurt Gödel’s Legacy
(Gödel ’96) in Brno. Although it did not appear in the proceedings of either meeting, [Tay96b]
was circulated there and available on my web page from 1996 to 2003 and from 2006. Summaries
of the results were published in Sections 2.5, 6.3, 6.7 and 9.5 of [Tay99]. Work was resumed in 2019
in answer to a demand from those studying coalgebras to weaken the conditions on the functor.

My research has been funded by my late parents, Cedric and Brenda Taylor. I am now
an Honorary Senior Research Fellow in the School of Computer Science in the University of
Birmingham and thank Achim Jung for his longstanding friendship. Other acknowledgements to
follow.
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mathématiques. Fundamenta Mathematicae, 3:76–108, 1922.

[Kur61] Kazimierz Kuratowski. Introduction To Set Theory and Topology. Pergamon Press, 1961.

[Lam68] Joachim Lambek. A fixpoint theorem for complete categories. Mathematische Zeitschrift, 103:151–161,
April 1968.

[Lan65] Serge Lang. Algebra. Addison-Wesley, 1965. Third edition published by Springer-Verlag in 2002.

[Law70] F. William Lawvere. Quantifiers and sheaves. In Actes du Congrès International des Mathématiciens,
volume 1, pages 329–334, 1970.

[LMW75] F. William Lawvere, Christian Maurer, and Gavin Wraith, editors. Model Theory and Topoi, volume
445 of Lecture Notes in Mathematics. Springer, 1975.

[LS81] Daniel Lehmann and Michael Smyth. Algebraic specifications of data types: a synthetic approach.
Mathematical Systems Theory, 14:97–139, 1981.
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