A lambda calculus for real analysis

Paul Taylor

Senior Research Fellow, Department of Computer Science, University of Manchester funded by EPSRC GR/S58522

5 April 2005

www.cs.man.ac.uk/~pt/ASD pt@cs.man.ac.uk 077 604 625 87

This lecture

It takes me more than 20 mins to introduce my research to my **own** community, so this lecture will be a **classical translation** of some recent results. It will require **First Year Undergraduate Real Analysis**.

Please contact me this week by mobile (077 604 625 87) or later by email (pt@cs.man.ac.uk) to learn more.

(Maybe even invite me to your university to give a full seminar.)

Intellectual pedigree

mine: Mathematical Tripos 1979–83 PhD in Category Theory 1983–6 A mathematician in exile in Computer Science

of this general area of research:

(compact-open) topologies on function-spaces, topological lattice theory, semantics of programming languages, formal correctness of programs.

of the Abstract Stone Duality programme: locale theory ("point-less topology", *i.e.* only using open sets) category theory, domain theory.

The journey that Abstract Stone Duality has made so far: from an abstract hypothesis from category theory to computably based locally compact spaces (not just \mathbb{R}^n) to **constructive analysis**.

Constructive analysis

The classics, although I don't myself belong to this tradition.

Errett Bishop, Foundations of Constructive Analysis, 1967 A "can do" attitude to constructivity, entirely compatible with the classical results: we just have to be a lot more careful.

Errett Bishop and Douglas Bridges, Constructive Analysis, Springer, 1985

Douglas Bridges and Fred Richman, Varieties of Constructive Mathematics, CUP, 1987

The subject is based on **metrical** $(\epsilon - \delta)$ methods. $S \subset \mathbb{R}$ is **totally bounded** if it has an ϵ -net — needed to define its supremum, $S \subset \mathbb{R}$ is **located** if $d(x, S) \equiv \inf \{d(x, y) \mid y \in S\}$ is definable.

Recursive analysis — the bad news

Cantor space $2^{\mathbb{N}}$ and the closed real interval $\mathbb{I} \equiv [0,1] \subset \mathbb{R}$ are not compact.

Basic problem: definable/computable/recursive values can be **enumerated** (like the rationals — it's just a bit more complicated). Richard's Paradox 1900, Turing's Computable Numbers 1937, Specker Sequences 1949.

> Let (u_n) be such an enumeration of the definable elements of [0, 1]. Cover each u_n with the open interval $(u_n \pm \epsilon \cdot 2^{-n})$. These intervals have total length 2ϵ . With $\epsilon \equiv \frac{1}{2}$, no finite sub-collection can cover.

> > Another way: König's Lemma fails:

there is an infinite binary (Kleene) tree with no infinite computable path.

In addition to the metrical $(\epsilon - \delta)$ methods, everything has to be coded using Gödel numbers.

Recursive analysis — the good news

This doesn't happen in Abstract Stone Duality.

Cantor space $2^{\mathbb{N}}$ and the closed real interval $\mathbb{I} \equiv [0, 1] \subset \mathbb{R}$ are compact.

 \forall in ASD doesn't mean "for every definable element" — it's defined to satisfy the **formal rules** of predicate calculus.

A categorical construction ensures that subspaces always have the **subspace topology**. (But I'm not going to talk about this in this lecture.)

The mathematical arguments are **topological**, not metrical.

Programming languages can be translated naturally into ASD (denotational semantics).

Conversely, every ASD term has a natural **computational interpretation** (as a parallel, non-deterministic, higher-order logic program).

The Classical Intermediate Value Theorem

Any continuous $f : [0,1] \rightarrow \mathbb{R}$ with $f(0) \le 0 \le f(1)$ has a zero.

Indeed, $f(x_0) = 0$ where $x_0 \equiv \sup \{x \mid f(x) \le 0\}$.

A so-called "closed formula".

A program: interval halving

Let $a_0 \equiv 0$ and $e_0 \equiv 1$.

By recursion, consider $c_n \equiv \frac{1}{2}(a_n + e_n)$ and $a_{n+1}, e_{n+1} \equiv \begin{cases} a_n, c_n & \text{if } f(c_n) > 0\\ c_n, e_n & \text{if } f(c_n) \leq 0, \end{cases}$ so by induction $f(a_n) \leq 0 \leq f(e_n)$.

But a_n and e_n are respectively (non-strictly) increasing and decreasing sequences, whose differences tend to 0.

So they converge to a common value c.

By continuity, f(c) = 0.

Where is the zero?

For $-1 \le p \le +1$ and $0 \le x \le 3$ consider $f_p x \equiv \min(x-1, \max(p, x-2))$

Here is the graph of $f_p(x)$ against x for $p \approx 0$.

Where is the zero?

The behaviour of $f_p(x)$ depends qualitatively on p and x like this:

If there is some way of finding a zero of f_p , as a side-effect it will decide how p stands in relation to 0.

Let's bar the monster

 $f:\mathbb{R} \to \mathbb{R}$ doesn't hover if,

for any e < t, $\exists x. (e < x < t) \land (fx \neq 0)$.

Any nonzero polynomial doesn't hover.

Interval halving again

Suppose that f doesn't hover.

Let $a_0 \equiv 0$ and $e_0 \equiv 1$.

By recursion, consider

 $b_n \equiv \frac{1}{3}(2a_n + e_n) \quad \text{and} \quad d_n \equiv \frac{1}{3}(a_n + 2e_n).$ Then $f(c_n) \neq 0$ for some $b_n < c_n < d_n$, so put $a_{n+1}, e_{n+1} \equiv \begin{cases} a_n, c_n & \text{if } f(c_n) > 0\\ c_n, e_n & \text{if } f(c_n) < 0, \end{cases}$ so by induction $f(a_n) < 0 < f(e_n).$

But a_n and e_n are respectively (non-strictly) increasing and decreasing sequences, whose differences tend to 0.

So they converge to a common value c.

By continuity, f(c) = 0.

Stable zeroes

The revised interval halving algorithm finds zeroes with this property:

 $a \in \mathbb{R}$ is a **stable zero** of fif, for all e < a < t,

 $\exists yz. (e < y < a < z < t) \land (fy < 0 < fz \lor fy > 0 > fz).$

Check that a stable zero of a continuous function really is a zero.

Classically, a zero is stable iff every nearby function (in the sup or ℓ_∞ norm) has a nearby zero.

Straddling intervals

An open subspace $U \subset \mathbb{R}$ touches *S*, *i.e.* contains a stable zero, $a \in U \cap S$, iff *U* contains a straddling interval,

 $[e,t] \subset U$ with fe < 0 < ft or fe > 0 > ft.

Proof $[\Leftarrow]$ The straddling interval is an intermediate value problem in miniature.

If an interval [e, t] straddles with respect to f then it also does so with respect to any nearby function.

The possibility operator

Write $\Diamond U$ if U contains a straddling interval.

By hypothesis, $\Diamond I \Leftrightarrow \top$ (where *I* is some open interval containing \mathbb{I}).

Trivially, $\Diamond \emptyset \Leftrightarrow \bot$.

 $\Diamond \bigcup_{i \in I} U_i \iff \exists i. \ \Diamond U_i.$

Consider

$$V^{\pm} \equiv \{x \mid \exists y : \mathbb{R}. \exists i : I. (fy \gtrsim 0) \land [x, y] \subset U_i\}$$

so $\mathbb{I} \subset V^+ \cup V^-$.

Then $x \in (a,c) \subset V^+ \cap V^-$ by connectedness, with $fx \neq 0$ and $[x,y] \subset U_i$.

The Possibility Operator as a Program

Let \Diamond be a property of open subspaces of \mathbb{R} that preserves unions and satisfies $\Diamond U_0$ for some open interval U_0 .

Then \Diamond has an "accumulation point" $c \in U_0$, *i.e.* one of which every open neighbourhood $c \in U \subset \mathbb{R}$ satisfies $\Diamond U$. In the example of the intermediate value theorem, any such c is a stable zero.

> Interval halving again: let $a_0 \equiv 0$, $e_0 \equiv 1$ and, by recursion, $b_n \equiv \frac{1}{3}(2a_n + e_n)$ and $d_n \equiv \frac{1}{3}(a_n + 2e_n)$, so $\Diamond(a_n, e_n) \equiv \Diamond((a_n, d_n) \cup (b_n, e_n)) \Leftrightarrow \Diamond(a_n, d_n) \lor \Diamond(b_n, e_n).$ Then at least one of the disjuncts is true, so let (a_{n+1}, e_{n+1}) be either (a_n, d_n) or (b_n, e_n) .

Hence a_n and e_n converge from above and below respectively to c.

If $c \in U$ then $c \in (a_n, e_n) \subset (c \pm \epsilon) \subset U$ for some $\epsilon > 0$ and n, but $\Diamond(a_n, e_n)$ is true by construction, so $\Diamond U$ also holds, since \Diamond takes \subset to \Rightarrow .

Enclosing cells of higher dimensions

Straddling intervals can be generalised.

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ with $n \ge m$.

Let $C \subset \mathbb{R}^n$ be a sphere, cube, *etc*.

C is an **enclosing cell** if $0 \in \mathbb{R}^m$ lies in the interior of the image $f(C) \subset \mathbb{R}^m$.

(There is a definition for locally compact spaces too.)

Write $\Diamond U$ if $U \subset \mathbb{R}^n$ contains an enclosing cell.

If $\Diamond (\bigcup_{i \in I} U_i) \Leftrightarrow \exists i. \Diamond U_i$ then cell halving finds stable zeroes of f.

Modal operators, separately

$$\begin{split} Z &\equiv \{x \in \mathbb{I} \mid fx = 0\} \text{ is closed and compact.} \\ W &\equiv \{x \mid fx \neq 0\} \text{ is open.} \\ S \text{ is the subspace of stable zeroes.} \end{split}$$

For $U \subset \mathbb{R}$ open, write $\Box U$ if $Z \subset U$ (or $U \cup W = \mathbb{R}$).

 $\Box X \text{ is true and } \Box U \land \Box V \Rightarrow \Box (U \cap V)$ $\Diamond \emptyset \text{ is false and } \Diamond (U \cup V) \Rightarrow \Diamond U \lor \Diamond V.$

> $(Z \neq \emptyset)$ iff $\Box \emptyset$ is false $(S \neq \emptyset)$ iff $\Diamond \mathbb{R}$ is true

Both operators are Scott continuous.

Modal operators, together

The modal operators \Diamond and \Box for the subspaces $S \subset Z$ are related in general by:

 $\Box U \land \Diamond V \Rightarrow \Diamond (U \cap V)$ $\Box U \iff (U \cup W = X)$ $\Diamond V \Rightarrow (V \not\subset W)$

S is dense in Z iff $\Box(U \cup V) \implies \Box U \lor \Diamond V$ $\Diamond V \iff (V \not\subset W)$

In the intermediate value theorem for functions that don't hover (*e.g.* polynomials): S = Z in the **non-singular** case $S \subset Z$ in the **singular** case (*e.g.* double zeroes).

Open maps

For continuous $f: X \to Y$, if $V \subset Y$ is open, so is $f^{-1}(V) \subset X$ if $V \subset Y$ is closed, so is $f^{-1}(V) \subset X$ if $U \subset X$ is compact, so is $f(U) \subset Y$ (if $U \subset X$ is overt, so is $f(U) \subset Y$)

 $f: X \to Y$ is **open** if, whenever $U \subset X$ is open, so is $f(U) \subset Y$.

If $f: X \to Y$ is open then if $V \subset Y$ is overt, so is $f^{-1}(V) \subset X$.

If $f: X \to Y$ is open then all zeroes are stable.

Examples of open maps

If $f : \mathbb{R}^{\mathbf{n}} \to \mathbb{R}^{\mathbf{n}}$ is continuously differentiable, and det $\left(\frac{\partial f_j}{\partial x_i}\right) \neq 0$.

If $f : \mathbb{C} \to \mathbb{C}$ is analytic and not constant — even if it has coincident zeroes.

Cauchy's integral formula: a disc $C \subset \mathbb{C}$ is enclosing iff $\oint_{\partial C} \frac{dz}{f(z)} \neq 0$.

Stokes's theorem!

Possibility operators classically

Define $\Diamond U$ as $U \cap S \neq \emptyset$, for any subset $S \subset \mathbb{R}$ whatever.

Then $\Diamond (\bigcup_{i \in I} U_i)$ iff $\exists i. \Diamond U_i$.

Conversely, if \Diamond has this property, let

 $S \equiv \{a \in \mathbb{R} \mid \text{for all open } U \subset \mathbb{R}, \quad a \in U \Rightarrow \Diamond U \}.$

 $W \equiv \mathbb{R} \setminus S = \bigcup \{ U \text{ open } | \neg \Diamond U \}$

Then W is open and S is closed. $\neg \diamondsuit W$ by preservation of unions. Hence $\diamondsuit U$ holds iff $U \not\subset W$, *i.e.* $U \cap S \neq \emptyset$.

If \diamond had been derived from some S' then $S = \overline{S'}$, its closure.

Possibility operators: summary

\$\laphi\$ is defined, like compactness, in terms of unions of open subspaces, so it is a concept of **general topology**

The proof that \Diamond preserves joins uses ideas from **geometric topology**, like connectedness and sub-division of cells.

 \Diamond is like a bounded existential quantifier, so it's **logic**.

A very general **algorithm** uses \Diamond to find solutions of problems.

But classical point-set topology is too clumsy to take advantage of this.

A lambda calculus for topology — predicates

Only use **predicates** (ϕ, ψ) that denote **open subspaces**, equivalently, which are **computably observable**.

On $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$: n = m, $n \neq m$, n < m, $n \leq m$, n > m and $n \geq m$.

On \mathbb{R} : $a \neq b$, a < b and a > b, but not a = b, $a \leq b$ or $a \geq b$. (This is entirely familiar in numerical computation.)

Logically: \top (true), \perp (false), $\phi \land \psi$, $\phi \lor \psi$ and $\exists n : \mathbb{N}.\phi n$ but not $\neg \phi$ (not), $\phi \Rightarrow \psi$ or $\forall n : \mathbb{N}.\phi n$.

> We shall **also** allow $\exists x : \mathbb{R}.\phi x$ and $\forall x : \mathbb{I}.\phi x$, but **not** $\forall \epsilon > 0.\phi \epsilon$.

Statements — comparing predicates

You can't say very much in the language of predicates.

A statement is an equality $\phi \Leftrightarrow \psi$ or inequality $\phi \Rightarrow \psi$ where ϕ and ψ are predicates (technical distinction).

Predicates can be existentially quantified $(\exists n : \mathbb{N}.\phi n)$, statements cannot.

Nested implication $(\phi \Rightarrow \psi) \Rightarrow \theta$ is not allowed (in the current version).

Examples: $\phi \Rightarrow \bot \pmod{\phi}$, $(a < b) \Rightarrow \bot (a \ge b)$, $(a \ne b) \Rightarrow \bot (a = b)$.

Open and closed subspaces

If $\phi(x)$ is a predicate with a free variable (argument) $x : \mathbb{R}$ then $\{x \mid \phi(x)\} \subset \mathbb{R}$ is an open subspace and $\{x \mid \phi(x) \Leftrightarrow \bot\} \subset \mathbb{R}$ is a closed subspace.

We can think of $\phi : \mathbb{R} \to (\bigcirc)$ as a continuous function whose target is the **Sierpiński space**.

 $\{x \mid \phi(x)\} \subset \mathbb{R} \text{ is } \phi^{-1}(\top) \text{ and } \{x \mid \phi(x) \Leftrightarrow \bot\} \subset \mathbb{R} \text{ is } \phi^{-1}(\bot).$

The **Sierpiński space** $(\bigcirc \bullet)$ has two points (classically) one (called \odot or \top) is **open**, the other (\bullet or \bot) is **closed**.

It is not Hausdorff. It appears in many textbooks as a pathetic counterexample.

> It is the **key** to understanding: topologies of function-spaces, semantics of programming languages, Abstract Stone Duality.

Compact subspaces

The **neighbourhoods** of a compact subspace are more important than its **points**.

This had emerged by about 1970 in the study of topologies of function-spaces.

A compact subspace K (at least, of a Hausdorff space H) is determined by which open subspaces $U \subset H$ cover it — $K \subset U$.

We write $\Box U$ or $\Box \phi$ when this happens.

 \Box satisfies the modal laws, in particular $\Box H \Leftrightarrow \top$ and $\Box (U \cap V) \Leftrightarrow \Box U \land \Box V$.

Directed unions

By the "finite open sub-cover" definition of compactness, if $\Box \bigcup_{i \in I} U_i$ then $\Box \bigcup_{i \in F} U_i$ for some finite $F \subset I$.

This definition can be simplified by assuming something about the system $\{U_i \mid i \in I\}$.

We call it **directed** if *I* is **non-empty** (better, **inhabited**) and, for each U_i, U_j there's some U_k with $U_i \cup U_j \subset U_k$.

Then the "finite open sub-cover" definition becomes: preserves directed unions.

Scott continuity

A function between complete lattices that preserves directed unions is called **Scott continuous**.

Dana Scott (1972) defined the corresponding topology on function-spaces $X \to (\bigcirc^{\odot})$.

It is a special case (in fact, the critical one) of Ralph Fox's **compact-open topology** (1945).

The function-space $X \to \begin{pmatrix} \odot \\ \bullet \end{pmatrix}$ is the topology (lattice of opens) of X, itself equipped with the Scott topology.

If X is locally compact, so is $X \to (\overset{\odot}{\bullet})$.

In our language, all functions are continuous in the traditional Weierstrass " ϵ - δ " sense for $f : X \to \mathbb{R}$ in Scott's "directed joins" sense for function-spaces.

Any compact subspace $K \subset H$ of a Hausdorff space is closed.

In the ambient Hausdorff space H, $x \neq y$ is an open predicate (since $H \subset H \times H$ is closed).

The compact subspace $K \subset H$ has a \square operator.

The closed subspace is defined by its open/observable **non**-membership predicate.

This is $\omega x \equiv \Box(\lambda y. x \neq y).$

It says that $x \notin C$ iff $C \subset \{y \mid x \neq y\} \equiv \overline{\{x\}}$.

Any closed subspace $C \subset K$ of a compact space is compact.

The ambient compact space H has a \Box operator that we call \forall_K with $\forall_K \phi \Leftrightarrow \top$ iff $\phi \Leftrightarrow \top$.

The closed subspace has an open non-membership predicate ω .

As a compact subspace, it has a \Box operator given by $\Box \phi \equiv \forall_K (\omega \lor \phi)$

which says that ϕ and the complement ω of C together cover K.

The Intermediate Value Theorem in ASD

Develop \square as a **finitary** theory of compact subspaces using the modal laws.

Develop \Diamond as a theory of **overt** subspaces using the modal laws in an entirely lattice ("de Morgan") dual way.

Use the modal laws for compact overt $K \subset \mathbb{R}$ to define a Dedekind cut, which is max K. (Bishop-style constructive analysis uses total boundedness to do this.)

[0,1] is connected — by the usual argument.

 \Diamond (defined using straddling intervals) preserves joins.

Use interval-halving with \Diamond to find stable zeroes.

The subspaces S and Z again

In the non-singular case, \Box and \Diamond make the zero-set compact overt. It therefore has a maximum element!

The operators \Box and \Diamond are Scott-continuous throughout the parameter space (eg for $x^3 - 3px - 2q = 0$), unlike Z and S considered as sets.

In the possibly singular case (eg double zeroes) Z (all zeroes) is closed and compact, but not necessarily overt S (stable zeroes) is overt, but not necessarily closed.

Midlands Graduate School

Next week at Birmingham University. www.cs.bham.ac.uk/~pbl/mgs

Four (hour) lectures on Abstract Stone Duality.

Others on Category Theory, Lambda Calculus, Denotational Semantics, Functional Programming, Quantum Programming, Game Semantics, *etc.*

Accommodation still available: email A.Jung@cs.bham.ac.uk

My contact details again: www.cs.man.ac.uk/~pt/ASD pt@cs.man.ac.uk 077 604 625 87