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Programme of Lectures

Monday Methodology
5pm Euclidean Principle [C] Geometric and Higher Order Logic

Underlying Set Functor [H] An Elementary Theory of Various
Categories of Spaces and Locales

Tuesday Recursive compactness
4pm Monadic λ-calculus [B] Subspaces in ASD

Dedekind reals [I] Dedekind Reals in ASD
Cantor Space notes available privately

Wednesday Intermediate value theorem [J] A λ-calculus for real analysis
4pm

Thursday ASD for locales and beyond [H]
4pm The extended calculus
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What is the relationship between ASD
and Escardó’s Synthetic Topology?

Mart́ın Escardó uses λ-calculus to describe proofs

that are founded in traditional point-set topology or locale theory.

His quantifiers mean “for every” and “there exists”, referring to points.

His recursive theory therefore runs into well known problems

with compactness of Cantor Space 2N and I ≡ [0,1] ⊂ R.

ASD is a direct, complete axiomatisation of topology (not via set theory).

The quantifiers satisfy the formal rules

of predicate calculus and categorical logic.

(For reasons in addition to this)

Cantor Space 2N and I ≡ [0,1] ⊂ R are compact

in both the topos-based and recursive versions of the theory.
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Another Disclaimer

The lectures will be about ideas and arguments.

For axioms see the handout.

For theorems and proofs see the papers.

ASD is about topology

it’s not about sets with collections of subsets (so called “topological spaces”)

it’s not about infinitary lattices (locales)
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The underlying methodology

Traditional theory ................................................................................................. New theory

Category Theory

(adjunctions)
>

Critical theorems

>

(Bespoke) Type Theory

(introduction/elimination rules)

New proofs

>

Set theory

Standard model

∨

Classical interpretation

<..
...
...
...
...
...
...
...
...
...
...

Computation

Compilation

>
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Why Category Theory?

It doesn’t pre-judge foundations or notation.

(If you start with set theory, you’re stuck with it.)

It distills decades of abstract mathematical experience.

It allows ideas from one mathematical discipline
to be compared with those of another.

It translates ideas from one mathematical discipline
into the language of another.

It can express normal forms,
or, equally easily, generators and relations.

It can be its own meta-language.

It’s good for stating foundational principles (axioms).
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Why Type Theory?

It is much closer to the way in which mathematicians write mathematics

(at least since René Descartes’ time).

It’s fluent (for some things),

whereas diagrams are clumsy (for some things).

Its transformation rules (β)

have a natural “direction” (forwards/backwards), which

(fortuitously)

has a useful computational interpretation.

(Universal properties, pullbacks, etc., have no such natural direction.)

It’s good for mathematical arguments (theorems).

It’s good for computation (programs).
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Category Theory and Type Theory

The methodology depends on a fluent translation, in particular:

Adjunctions (universal properties) = Introduction and elimination rules.

Γ×X
p
>Y

=========
Γ

p̃
>Y X

=
Γ, x : X ` p(x) : Y

=================
Γ ` λx:X. p(x) : X → Y

ev : Y X ×X → Y = f : X → Y, x : X ` fx : Y

naturality = substitution

See my book for the details of the translation.
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The Critical Axioms of Topology

The Sierpiński space Σ as a “space of truth values”

Extensional correspondence between open U ⊂ X and φ : X → Σ.

(Classical spaces have underlying sets of points.)

Subspaces have the subspace topology.

Compact subspaces are determined by their neighbourhoods, not their points.
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Subsets and predicates — symbolically

The Axiom of Comprehension:

form the subset U ≡ {x | φ(x)} from the predicate φ(x) ≡ (x ∈ U)

where φ(x) is expressed in some logical language.

This is really just notation.

U and φ are the same thing:

Membership (a ∈ U) is application (φa)

Set formation {x | φ(x)} is λ-abstraction λx. φ(x).

U and φ are not the same thing:

Set theory carries historical Platonist baggage — “collections”

λ-calculus carries historical Formalist baggage — computation.
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Subsets and predicates — diagrammatically

The correspondence between U ≡ {x | φ(x)} ⊂ X and φ(x) ≡ (x ∈ U)

is given by a pullback diagram.

Γ

U >

.................>
{>}

?

>

X
∨

∩

φ
>

a

>

{>,⊥}
∨

To test the pullback, consider a : X.

This may have parameters (free variables)

u1 : U1, . . . , uk : Uk.

Type-theoretically, we write Γ ` a : X.

Categorically, we write

Γ ≡ U1 × · · · × Uk
a
>X.

If a satisfies φ then φa = >,

so the kite commutes.

Then a belongs to U ,

so there’s a map a : Γ→ U .

It’s unique — there’s only one element a ∈ U
that’s the same as a ∈ X.
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Subsets and predicates — diagrammatically

But U and φ also uniquely determine each other.

(Extensionality — here we part company with Per Martin-Löf.)

U >{>}

X
∨

∩

φ
>{>,⊥}

∨

We say that φ : X → {>,⊥} classifies U ⊂ X.

In the intuitionistic logic of an elementary topos,

{>,⊥} is replaced by another object, called Ω, with the same property.

(It is often much more complicated.)
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The same thing in topology

U >{�}

X
∨

∩

φ
>(�• )

∨

Now let U ⊂ X be an open subspace.

Then φ : X → (�• ) is a continuous function,

{�} ⊂ (�• ) is open.

Again, classically,

the correspondence U ↔ φ is unique.

The Sierpiński space (�• ) appeared in topology textbooks for decades

as a pathetic (counter)example.

It is key to domain theory and Abstract Stone Duality.

Again, constructively, we replace (�• ) by something more complicated,
called Σ, with the same property.

But it’s nowhere near as complicated as the set Ω.
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The same thing for closed subspaces

C >{•}

X
∨

u

φ
>(�• )

∨

Now let C ⊂ X be a closed subspace.

Then φ : X → (�• ) is a continuous function,

so long as {•} ⊂ (�• ) is closed.

So � ∈ (�• ) classifies open subspaces

and • ∈ (�• ) co-classifies classifies subspaces.

Using the same map φ : X → (�• ).

So (by uniqueness) open and closed subspaces are in bijection.
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Inverse images

As exponentials are defined by a universal property,

the assignment X 7→ ΣX extends to a contravariant endofunctor,

Σ(−) : C → Cop.

It takes f : Y → X to Σf : ΣX → ΣY by

Σf(φ) = φ ◦ f = f ; φ = λy. φ(fy).

The effect of Σf is to form the pullback or inverse image along f :

V ..........................>U >1

Y
∨

∩..................... f
>X
∨

∩

φ
>Σ

>

∨
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Intersections and conjunctions

1 >1

1< Σ

>

∨

∩

Σ

>

∨
<

π1 Σ×Σ

id×>

∨

∩

∧
>Σ

>

∨
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The Euclidean Principle

Since classifiers for isomorphic subobjects are equal,

> [σ] ∩ [F>]⊂ > [F>] >1

[σ]
∨

∩

⊂ >X
∨

∩

(id,>)
>

(id, σ)
>
X ×Σ

F
>Σ

>

∨

∩

∼=

> [σ] ∩ [Fσ]
∪

∧

⊂ > [Fσ]
∪

∧

>1

>

∪

∧

σ(x) ∧ F (x, σ(x)) ⇔ σ(x) ∧ F (x,>)
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The Phoa Principle — topologically

Since > : Σ uniquely classifies open subspaces, σ ∧ Fσ ⇔ σ ∧ F>

Since ⊥ : Σ uniquely (co)classifies closed subspaces, σ ∨ Fσ ⇔ σ ∨ F⊥

Since all F : Σ→ Σ preserve the order, F⊥ ⇒ Fσ ⇒ F>

Hence Fσ ⇔ F⊥ ∨ σ ∧ F>

Proof, assuming distributivity:

Fσ = (Fσ ∨ σ) ∧ Fσ = (F⊥ ∨ σ) ∧ Fσ = (F⊥ ∧ Fσ) ∨ (σ ∧ Fσ) = F⊥ ∨ (σ ∧ F>).

Conversely, this equation entails the laws of a distributive lattice,

both Euclidean principles and monotonicity.
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The Phoa Principle — computationally

Σ is called unit in ML and void in C and Java.

A program of type Σ may or may not terminate. Just that.

It is known as an observation.

A program of type Σ→ Σ turns observations into observations.

It may terminate even though its input doesn’t Fσ ⇔ F⊥ ⇔ >

terminate iff its input does Fσ ⇔ σ

not terminate even though its input does Fσ ⇔ F> ⇔ ⊥

But that’s all.

So Fσ ⇔ F⊥ ∨ σ ∧ F>.
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The Phoa Principle — logically

The Phoa principle justifies rules for negation

like those of Gentzen’s classical sequent calculus:

Γ, σ ⇔ > ` α ⇒ β
==============

Γ ` σ ∧ α ⇒ β

Γ, σ ⇔ ⊥ ` β ⇒ α
==============

Γ ` β ⇒ σ ∨ α
Proof: The intersection of the open/closed subspaces

co/classified by σ and α

is contained in that co/classified by β.

Remarkably, we can even prove statements by cases,

Γ, σ ⇔ > ` α⇒ β Γ, σ ⇔ ⊥ ` α⇒ β

Γ ` α⇒ β

but the proof isn’t obvious.
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Discrete and Hausdorff Spaces

What if X ⊂ X ×X is open or closed?

N >{�} H >{•}

N ×N

∆

∨

∩

=N
>Σ

>

∨
H ×H

∆

∨

u

6=H
>Σ

⊥

∨

Γ ` n = m : N
=================
Γ ` (n =N m) ⇔ > : Σ

Γ ` h = k : H
================
Γ ` (h 6=H k) ⇔ ⊥ : Σ
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Properties of Equality and Apartness

Substitution, reflexivity, symmetry and transitivity, and their duals:

φm ∧ (n = m) ⇒ φn φh ∨ (h 6= k) ⇐ φk

(n = n) ⇔ > (h 6= h) ⇔ ⊥

(n = m) ⇔ (m = n) (h 6= k) ⇔ (k 6= h)

(n = m) ∧ (m = k) ⇒ (n = k) (h 6= k) ∨ (k 6= `) ⇐ (h 6= `)

Proof: λmn. φm∧ (n = m) and λmn. φn∧ (n = m) classify the same open subspace of N ×N .

λhk. φ ∨ (h 6= k) and λhk. φk ∧ (h 6= k) co-classify the same closed subspace of H ×H.
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Overt and compact spaces

A space X is called overt or compact

if there is a term ∃X : ΣX → Σ or ∀X : ΣX → Σ

that satisfies the type-theoretic rules

Γ, x : X ` φx ⇒ σ
==============

Γ ` ∃x. φx ⇒ σ

Γ, x : X ` σ ⇒ φx
==============

Γ ` σ ⇒ ∀x. φx
which correspond to the adjunctions

X ΣX

1

!
∨

Σ

∃X
∨
a Σ!
∧
a ∀X
∨

They do not mean “there exists” and “for every” on points!
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Frobenius and modal laws

∃x. σ ∧ φx ⇔ σ ∧ ∃x. φx (∀x. φx) ∧ (∃x. ψx) ⇒ ∃x. (φx ∧ ψx)

∀x. σ ∨ φx ⇔ σ ∨ ∀x. φx (∀x. φx) ∨ (∃x. ψx) ⇐ ∀x. (φx ∨ ψx)

Proof: First, (∃x.⊥) ⇔ ⊥,

by putting σ ≡ ⊥ in the definition.

Now let Fσ ≡ ∃x. σ ∧ φx
in the Phoa principle Fσ ⇔ F⊥ ∨ σ ∧ F>,

so ∃x. σ ∧ φx ≡ Fσ ⇔ F⊥ ∨ σ ∧ F> ⇔ (∃x.⊥) ∨ σ ∧ (∃x. φx) ⇔ σ ∧ (∃x. φx).

Exercise to prove the others.
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Reasoning with the quantifiers

So long as the types of the variables really are overt or compact,
we may reason with the quantifiers in the usual ways:

If we find a particular Γ ` a : X that satisfies Γ ` φa⇔ >,
then we may of course assert Γ ` ∃x. φx⇔ >.

This simple step tends to pass unnoticed in the middle of an argument,
often in the form φa⇒ ∃x. φx.

Similarly, if the judgement Γ ` ∀x. φx⇔ > has been proved,
and we have a particular value Γ ` a : X,

then we may deduce Γ ` φa⇔ >.
Again, we often write φa⇐ ∀x. φx.

The familiar mathematical idiom “there exists” is valid:
∃x. φx is asserted and then x is temporarily used in the subsequent argument.

The λ-calculus formulation automatically allows substitution under the quantifiers,
whereas in categorical logic this property must be stated separately,

and is known as the Beck–Chevalley condition.
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Lattice duality in topology

The theory so far was motivated partly by the category Set.

Most of it still applies to Set and Pos.

Recall the three parts of the Phoa principle:

sets posets spaces

Euclid σ ∧ Fσ ⇔ σ ∧ F> X X X

dual Euclid σ ∨ Fσ ⇔ σ ∨ F⊥ σ ∨ ¬σ ¬¬σ ⇒ σ X

monotonicity F⊥ ⇒ Fσ ⇒ F> × X X

Lattice (“de Morgan”) holds in classical set and order theory.

The Phoa (and dual Euclidean) principles hold in intuitionistic locale theory.

Quite a lot of topology can be developed with the Phoa principle.

Lattice duality is very illuminating.
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Breaking the duality in topology

Traditional topology and locale theory treat
∨

and ∧ asymmetrically:

infinitary
∨

but finitary ∧.

Consequently, it’s difficult to see the analogies between

sets and compact Hausdorff spaces

open maps and proper maps

Of course, the duality must be broken.

But making everything preserve directed joins automatically,

we put them in the background

and otherwise treat ∨ and ∧ symmetrically.

There are several ways of stating the Scott continuity axiom:

as continuity, fixed points, limit–colimit coincidence, bases, etc.

We shall do so in whatever way is clearest in each circumstance.
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The full subcategory of overt discrete objects

= ∃

1 (x1 = x2) ≡ > ∃1 ≡ id : Σ1 → Σ

X × Y ((x, y) = (x′, y′)) ≡ ((x = x′) ∧ (y = y′)) ∃(x, y). φ(x, y) ≡ ∃x. ∃y. φ(x, y)

i : U ⊂ X (u1 =U u2) ≡ (iu1 =X iu2) ∃u. φu ≡ ∃x. θx ∧ φx

X + Y (ν0x = ν0x
′) ≡ (x = x′) ∃z:X + Y . φz ≡ ∃x. φ(ν0x) ∨ ∃y. φ(ν1y)

Q ≡ X/∼ [x] =Q [x′] ≡ (x ∼ x′) · · ·

ListX · · · · · ·
where U is classified by θ and Scott continuity is needed for List(X).

This structure is called an Arithmetic Universe.
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Making ASD agree with traditional topology

Traditional topology and locale theory

are built on top of a theory of “sets” (objects with no topology)

either Set Theory or (Martin-Löf or other) Type Theory or a Topos.

ASD axiomatises topology directly — there are no (pre-existing) sets.

If they are to “agree” we must first identify the “sets” in ASD

i.e. which of the objects in ASD have a “trivial” topology.

We choose overt discrete objects to play to role of “sets”.

Does this subcategory look at all like set theory?

Can we reconstruct traditional topology on top of it?

How does the result compare to the ASD category?
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Discrete and Indiscriminate Topologies

In classical point-set topology we have the triple adjunction

Topological spaces

Sets

discrete

∧

a U

∨

a indiscriminate

∧.....................

where the middle functor yields the underlying set of points of a space

its left adjoint equips a set with the discrete topology, in which all subsets are open

its right adjoint equips a set X with the indiscriminate topology,

in which only ∅ and X are open (but this isn’t sober, so we shall not use it).

(NB: U : Loc→ Set also exists in locale theory — it just isn’t faithful.)
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Discrete topology and underlying sets in ASD

Consider the same adjunction in ASD

S (the whole ASD category)

E (overt discrete objects)

∆

∧

a U

∨

.....................

∆ is the inclusion of a full subcategory — usually anonymous

What happens if we assume that it has a right adjoint ∆ a U?
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The structure induced by ∆ a U

For any type (space, object of S) X,

UX is another type, the underlying set of X.

But UX is overt discrete, whatever X was.

So it has

an existential quantifier, (∃UX) : ΣUX → Σ

and an equality, (=UX) : UX × UX → Σ.

(=UΣN) solves the Halting Problem,

so this has no computational interpretation.

(That’s why we listed it as an Axiom in brackets.)
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A Type Theory for Underlying Sets

The adjunction ∆ a U also has an effect on terms.

∆Γ
a
>X in S

===========
Γ

τ. a
>UX in E

or
Γ ` a : X

=========
Γ ` τ. a : UX

The context Γ must belong to E — i.e. its types must be overt discrete.

So, we have a transformation (U-introduction)

Γ ` a : X

Γ ` τ. a : UX
the counit (U-elimination), which is a function-symbol

x : UX ` εx : X

satisfying the β- and η-rules

Γ ` ε(τ. a) = a : X and x : UX ` x = (τ. εx) : UX.

In short, τ. may be applied to any term
so long as all of its free variables are of overt discrete type.
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Returning to topology

Any mono i : X → D from an overt object to a discrete one

is an open inclusion.

So maybe:

The classifier Ω for all monos in E
is the same as

The classifier Σ for open monos in S.

Not quite — Ω is a set, whilst Σ is a space.

In fact, Ω = UΣ.
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Overt discrete objects form a topos

Theorem If ∆ a U exists then E is an elementary topos with subobject classifier Ω ≡ UΣ.

Proof Since E has finite limits, we show that UΣY is the powerset of Y ∈ obE.

R >1

X × Y

i

∨

∩

φ
>Σ

>

∨

R >(∈Σ
Y ) >1

(∈Ω
Y ) >

>

>

1 ========

X × Y

i

∨

∩

φ̃ ∧ idY
>ΣY × Y

∨ ev
>Σ

>

∨

UΣY × Y
∨

>

>

>

UΣ
∨ ε

>
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A bigger subcategory than E

Let L ⊂ S be the full subcategory of objects L of the form

L> >ΣN >
>

ΣM

(an equaliser) with N and M overt discrete.

(L will be the category of locales in the extended calculus.)
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Converse

If E is a topos then the inclusion E ⊂ L has a right adjoint.

The mono > : 1⊂ >Ω in E — is open in S.
It’s classified by some εΣ : ΩΣ→ Σ.

Put UΣ ≡ Ω.

Since U, Σ(−) and equalisers are all right adjoints,
the construction lifts to ΣN and its equalisers.

Γ >X>
i

>ΣN
u

>

v
>

ΣM

UX

∧......................
>

Ui
>

.......................................>
ΩN

εNΣ

∧

>

Uv
>

>
ΩM

εMΣ

∧

>
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A Curious Corollary

To set this up, we only needed > and ∧ in Σ.

⊥ and ∨ in Σ are definable.

S has finite coproducts (from the monadic assumption).

Any coreflective subcategory E ⊂ S is closed under (colimits,
but in particular) finite coproducts.

So 0 and 2 are overt.
Their existential quantifiers are

∃0 ≡ ⊥ : Σ0 ≡ 1→ Σ and ∃2 ≡ ∨ : Σ2 ≡ Σ×Σ→ Σ.

Distributivity follows from the Euclidean principle.

Hence there is no “sequential” version (i.e. without ∨)
of ASD with the underlying set axiom.

(There might well still be one without it.)
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Intrinsic and Imposed Structure

S is a category that we have (partly, so far) axiomatised as a type theory.

We claim that it is an intrinsic notion of “topological space”.

For example, Σ has an intrinsic lattice structure (>,∧,⊥,∨).

All maps ΣY → ΣX in S preserve the order arising from this.

E is a topos, in which we can do mathematics

in the traditional (at least, late 20th century) way.

For example, Ω ≡ UΣ has an imposed lattice structure (>,f,⊥,g),

where f : UΣ× UΣ→ UΣ is U(∧ : Σ×Σ→ Σ).

Maps in E don’t have to preserve this

unless we impose an extra condition to say so.
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ΩX ≡ UΣX as a complete Heyting algebra

Using the type theory for underlying sets, we can define

Heyting implication, (⇒) : ΩX ×ΩX → ΩX, by

φ, ψ : UΣX ` (φ⇒ ψ) ≡ τ. λx. ∃θ:UΣX . εθx ∧ (φf θ 4 ψ) : UΣX ,

so ε(φ⇒ ψ)x ⇔ ∃θ. εθx ∧ (φf θ 4 ψ),

Heyting negation, (¬) : ΩX → ΩX, by ¬φ ≡ (φ⇒ ⊥),

the lower sets, ↓ : ΩX → ΩΩX, by

φ : UΣX ` ↓φ ≡ τ. λψ:UΣX . (ψ 4 φ) : UΣUΣX
,

and the join,
∨

: ΣΩX → ΣX, by

F : ΣUΣX
`
∨
F ≡ λx:X. ∃θ:UΣX . F θ ∧ (εθ)x : ΣX .
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Direct and inverse image maps

Let f : X → Y in S. Then f∗ a f∗, where

the inverse image, f∗ ≡ Ωf ≡ UΣf : ΩY → ΩX, is defined by

ψ : UΣY ` f∗ψ ≡ τ. λx:X. (εψ)(fx) : UΣX

and the direct image, f∗ : ΩX → ΩY , by

φ : UΣX ` f∗φ ≡ τ. λy:Y . ∃θ:UΣY . (εθ)y ∧ (f∗θ 4 φ) : UΣY .
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What you’re supposed to remember from today

Euclidean principle: σ ∧ Fσ ⇔ σ ∧ F> (equivalent to subobject classifier)

Phoa principle: Fσ ⇔ F⊥ ∨ σ ∧ F> (for (�• ) as a double classifier)

The “underlying set” functor ∆ a U gives the topos-based theory

which will match the standard theory (locales over an elementary topos)

but has no computational interpretation.
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Something we haven’t axiomatised yet

Subspaces.

You don’t get much from 1, N, ×, Σ(−) and U.

(They’re needed to make sense of what we’ve done today.)

A job for tomorrow.
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