Midlands Graduate School 2005

Abstract Stone Duality

Paul Taylor

University of Manchester
Funded by UK EPSRC GR/S58522
www.cs.man.ac.uk/~pt/ASD
pt@cs.man.ac.uk
07760462587

Type theory and category theory

Given any (possibly dependent) type theory with all the structural rules (in particular weakening), there is an elementary sketch:
its objects or vertices are the contexts
its generating morphisms or edges are of two kinds:
display maps $\hat{x}:[\Gamma, x: X] \longrightarrow \Gamma$ for each type $\Gamma \vdash X$ type cuts $[a / x]: \Gamma \rightarrow[\Gamma, x: X]$ for each term $\Gamma \vdash a: X$

Extended substitution lemma

$$
\begin{array}{ll}
\widehat{x} ; \widehat{y} & =\widehat{y} ; \widehat{x} \\
\widehat{x} ;[b / y] & =[b / y] ; \widehat{x} \\
{[a / x] ; \widehat{x}} & =\text { id } \\
{[a / x] ;[b / y]} & =\left[[a / x]^{*} b / y\right] ;[a / x] \\
{[y / x] ; \widehat{x} ;[x / y] ; \widehat{y}} & =\text { id } \\
& \text { where } y \text { is not free in } a .
\end{array}
$$

Normalisation theorem: every $\left[x_{1}: X_{1}, \ldots, x_{n}: X_{n}\right] \rightarrow\left[y_{1}: Y_{1}, \ldots, y_{m}: Y_{m}\right]$ is

$$
\left[a_{m} / z_{m}\right] ; \cdots ;\left[a_{1} / z_{1}\right] ; \widehat{x}_{n} ; \cdots ; \widehat{x}_{1} ;\left[y_{m} / z_{m}\right] ; \cdots ;\left[y_{1} / z_{1}\right] ; \widehat{y}_{m} ; \cdots ; \widehat{y}_{1}
$$

Universal properties and introduction/elimination rules can then be compared directly.

Where to find the details?

Practical Foundations of Mathematics

Cambridge Strudies in Advanced Mathematics 59

Cambridge University Press, 1999

ISBN 0521337798

Today: the Monadic λ-calculus

Why it's needed - in the Russian School of recursive analysis, Cantor space $2^{\mathbb{N}}$ and the closed real interval $\mathbb{I} \equiv[0,1] \subset \mathbb{R}$ are not compact.

Subspace topology for locally compact spaces — Σ-split subspaces.

How to construct models of the monadic λ-calculus.

Cantor space $2^{\mathbb{N}} \longrightarrow 2_{\perp}^{\mathbb{N}}$ and Dedekind reals $\mathbb{R} \longrightarrow \Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}$.

Textbook recursive analysis - Enumeration

A type theory is written in a certain alphabet: $x, \wedge, \Rightarrow,(, \vdash,:, \ldots$ in which we can enumerate all strings of letters.

There is a primitive recursive function

$$
\left.\begin{array}{c}
v(n) \equiv \begin{cases}1 & \text { if } n \text { encodes a valid deduction } \\
0 & \text { otherwise }\end{cases} \\
\text { If the type theory has a "universal type" }
\end{array}\right\} \begin{aligned}
& \text { there is a function } \mathbb{N} \rightarrow X \text { defined by } \\
& u_{n} \equiv \begin{cases}a & \text { if } n \text { encodes a valid deduction of }(\vdash a: X) \\
x_{0} & \text { otherwise }\end{cases}
\end{aligned}
$$

A pathological open set

Cantor space and the closed unit interval are both metric and measure spaces.
Let u_{n} be an enumeration of the definable elements of either of them.

Define $\phi x \equiv \exists n .\left|x-u_{n}\right|<2^{-n-1}$.

By construction, if a is definable, so $a=u_{m}$ for some m, so $\phi a \Leftrightarrow \top$.

Does this make ϕ an open cover?

If ϕ is a cover then the space is not compact.

Observe that ϕ is the directed union of ϕ_{m} where each $\phi_{m} x \equiv \exists n<m .\left|x-u_{n}\right|<2^{-n-1}$
is a union of m intervals of total length $1-2^{-m-1}<1$, so certainly doesn't cover.

Another way to see this: König's Lemma fails.
ϕ defines an infinite binary (Kleene) tree with no infinite computable path.

Is ϕ a cover?

Is the following (ω-) rule valid?
for all definable $\vdash a: X, \quad \vdash \phi a \Leftrightarrow \top$
$x: X \vdash \phi x \Leftrightarrow \top$
Maybe the system in which we're working does allow this - maybe it doesn't.

The problem is not an absolute one

The Dedekind reals and Cantor space are defined by univeral properties.
Cantor space is the exponential $2^{\mathbb{N}}$.
The Dedekind reals form an equaliser (which we'll see later).
These universal properties need not be preserved by functors.
Let \mathcal{S} be a category
that has objects C and R which have these universal properties ("by definition") but other "undesirable" features (failure of compactness) "by Proof".

Let $i: \mathcal{S} \rightarrow \mathcal{S}^{\prime}$ be some construction, together with its comparison functor.
$i C$ and $i R$ are objects of \mathcal{S}^{\prime},
where they may still have some of the properties that they had before, but not others.
\mathcal{S}^{\prime} have have "its own" C^{\prime} and R^{\prime} satisfying the same universal properties verbatim, but maybe now they have "desirable" properties (compactness).

But $C^{\prime} \neq i C, R^{\prime} \neq i R-$ probably $i C$ and $i R$ are not interesting.

How can we construct a new category with "good" R and C ?

We'll come back to this later.

First we'll find out what a "good" Dedekind real line looks like.

The Dedekind reals

A Dedekind cut (δ, v) is a pair of predicates $\Gamma, q: Q \vdash \delta q, v q: \Sigma$, such that

$$
\begin{array}{ll}
\Gamma, u: Q & \vdash v u \Leftrightarrow \exists t: Q \cdot v t \wedge(t<u) \\
\Gamma, d: Q & \vdash \delta d \Leftrightarrow \exists e: Q \cdot(d<e) \wedge \delta e \\
\Gamma & \vdash \exists u: Q \cdot v u \Leftrightarrow \top \\
\Gamma & \vdash \exists d: Q \cdot \delta d \Leftrightarrow \top \\
\Gamma, d, u: Q & \vdash \delta d \wedge v u \Rightarrow(d<u) \\
\Gamma, d, u: Q & \vdash(d<u) \Rightarrow(\delta d \vee v u)
\end{array}
$$

v rounded upper δ rounded lower bounded above bounded below disjoint located

We therefore expect R to be the equaliser

The Dedekind reals

Since real numbers $a: R$ are represented by cuts, $(\delta, v): \Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}$, we also need to represent all functions $f: R \rightarrow R$ (and, more fundamentally, $\phi: R \rightarrow \Sigma$) in the λ-calculus by terms whose variables and values also have type $\Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}$

So R should have the subspace topology (another way of saying this is that Σ is injective).

The Dedekind reals

Instead of a merely existential property of the extension of functions or open subspaces one at a time, we postulate a (Scott) continuous function $I: \Sigma^{R} \rightarrow \Sigma^{\Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}}$ that does the extension in a "canonical" way.

This is to satisfy

$$
\begin{aligned}
& x: R, \phi: \Sigma^{R} \vdash I \phi(i x) \Leftrightarrow \phi x: \Sigma \\
& \text { making } \Sigma^{R} \text { a retract of } \Sigma^{\mathbb{Q}_{\times}} \Sigma^{\mathbb{Q}}
\end{aligned}
$$

Therefore Σ^{R}, and so R itself, are determined abstractly by an idempotent

$$
\mathcal{E} \equiv I \cdot \Sigma^{i}: \Sigma^{\Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}} \rightarrow \Sigma^{\Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}}
$$

We shall need to define \mathcal{E} as a λ-term involving Q, its order $(<)$ and its powers ($\Sigma^{\mathbb{Q}}$ etc.) - but not R, as that's what we're trying to define.

The Dedekind reals

Dedekind cuts embed $i: \mathbb{R} \mapsto \Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}$ by

$$
a \mapsto(\lambda d . d<a, \lambda u . a<u)
$$

and the map $I: \Sigma^{\mathbb{R}} \rightharpoondown \Sigma^{\Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}}$ is defined by
$(U \subset \mathbb{R})$ open $\mapsto \lambda \delta v . \exists d u . \delta d \wedge v u \wedge([d, u] \subset U)$.
The map I is Scott continuous
(i.e. it takes directed unions of open subsets of \mathbb{R} to directed joins in the lattice $\Sigma^{\Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}} \text {) }}$ by the Heine-Borel theorem (compactness of the closed interval $[d, u]$).

Then

$$
\begin{aligned}
& \phi a \equiv(a \in U) \mapsto I \phi(i a) \equiv(\exists d u . a \in(d, u) \subset[d, u] \subset U) \Longleftrightarrow(a \in U) \equiv \phi a . \\
& \text { which expresses local compactness of } \mathbb{R} . \\
& \text { Hence } \Sigma^{\mathbb{R}} \triangleleft \Sigma^{\Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}}, \text { where the lattice } \Sigma^{\mathbb{R}} \text { of open subsets of } \mathbb{R} \\
& \text { is itself equipped with the Scott topology. }
\end{aligned}
$$

The Dedekind reals

The next task is to formulate the idempotent $\mathcal{E} \equiv I \cdot \Sigma^{i}$ entirely in terms of higher order predicates on \mathbb{Q}. We have

$$
\begin{gathered}
\Phi: \Sigma^{\Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}} \vdash \mathcal{E} \Phi=I(\lambda x . \Phi(i x))=\lambda \delta v \cdot \exists d u \cdot \delta d \wedge v u \wedge[d, u] \Phi: \Sigma^{\Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}} \\
\text { where }[d, u] \Phi \equiv \forall x \in[d, u] . \Phi\left(\delta_{x}, v_{x}\right) \text { is a pun: }
\end{gathered}
$$

it is the common notation for both the closed interval and the necessity modal operator.

$$
[d, u] \Phi \Leftrightarrow \forall x \in[d, u] . \exists \text { et. }(e<x<t) \wedge \Phi\left(\delta_{e}, v_{t}\right)
$$

which means that the closed interval $[d, u]$ is covered by open intervals (e, t) for each of which $\Phi\left(\delta_{e}, v_{t}\right)$ holds.

The Dedekind reals

Finitely many (n) overlapping open intervals suffice to define $[d, u] \Phi$, so we may adopt a more explicit notation for them:

$$
[d, u] \equiv\left[q_{1}, q_{2 n}\right] \subset\left(q_{0}, q_{3}\right) \cup\left(q_{2}, q_{5}\right) \cup\left(q_{4}, q_{7}\right) \cup \cdots \cup\left(q_{2 n-2}, q_{2 n+1}\right)
$$

Using this we have, classically,

$$
\begin{aligned}
& {[d, u] \Phi \Leftrightarrow \exists q_{0}<\cdots<q_{2 n+1} .\left(q_{1}=d\right) \wedge\left(q_{2 n}=u\right) \wedge \bigwedge_{k=0}^{n-1} \Phi\left(\lambda x . x<q_{2 k}, \lambda x \cdot q_{2 k+3}<x\right)} \\
& \mathcal{E} \Phi(\delta, v) \Leftrightarrow \exists q_{0}<\cdots<q_{2 n+1} . \delta q_{1} \wedge v q_{2 n} \wedge \bigwedge_{k=0}^{n-1} \Phi\left(\lambda x . x<q_{2 k}, \lambda x . q_{2 k+3}<x\right) .
\end{aligned}
$$

Admissibility

A point $\Gamma \vdash(\delta, v): \Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}$ of the larger space is called admissible with respect to \mathcal{E} if

$$
\Gamma, \Phi: \Sigma^{\Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}} \vdash \Phi(\delta, v) \Leftrightarrow \mathcal{E} \Phi(\delta, v): \Sigma .
$$

The operator \mathcal{E} "normalises" open subspaces of the larger space by restricting them to the smaller one and then re-expanding them. A point of the larger space therefore belongs to the smaller one iff its membership of any open subspace Φ of the larger space
is unaffected by normalisation.

If (δ, v) is a cut then it is admissible

$$
\begin{aligned}
& \mathcal{E} \Phi(\delta, v) \Leftrightarrow \exists q_{0} \ldots q_{2 n+1} \cdot \delta q_{1} \wedge\left(v q_{1} \vee \bigvee_{j=1}^{2 n-2}\left(\delta q_{j} \wedge v q_{j+2}\right) \vee \delta q_{2 n}\right) \wedge v q_{2 n} \wedge \bigwedge_{k=0}^{n-1} \Phi\left(\delta_{q_{2 k}}, v_{q_{2 k+3}}\right) \\
& \mathcal{E} \Phi(\delta, v) \Rightarrow \exists q_{0} \ldots q_{2 n+1} \cdot \bigvee_{k=0}^{n-1}\left(\delta q_{2 k} \wedge v q_{2 k+3} \wedge \Phi\left(\delta_{q_{2 k}}, v_{q_{2 k+3}}\right)\right) \\
& \Rightarrow \exists d<u \cdot \delta d \wedge v u \wedge \Phi\left(\delta_{d}, v_{u}\right) \Leftrightarrow \Phi(\delta, v) \quad d \equiv q_{2 k}, u \equiv q_{2 k+3} \\
& \Rightarrow \exists q_{0}<\cdots<q_{3} \cdot \delta q_{1} \wedge v q_{2} \wedge \Phi\left(\delta_{q_{0}}, v_{q_{3}}\right) \Rightarrow \mathcal{E} \Phi(\delta, v)
\end{aligned}
$$

so a single interval $\left[q_{1}, q_{2}\right] \subset\left(q_{0}, q_{3}\right)$ would have been enough for the expansion.

If (δ, v) is admissible then it is a cut

We have to deduce each of the parts of the definition of a cut from instances of admissibility,

$$
\mathcal{E} \Phi(\delta, v) \Leftrightarrow \Phi(\delta, v)
$$

with respect to carefully chosen Φ.

If (δ, v) is admissible then it is a cut

For boundedness, consider $\Phi \equiv \lambda \alpha \beta$. Т. Then

$$
\top \equiv \Phi(\delta, v) \Leftrightarrow \mathcal{E} \Phi(\delta, v) \equiv \exists q_{0}<\cdots<q_{2 n+1} \cdot \delta q_{1} \wedge v q_{2 n}
$$

If (δ, v) is admissible then it is a cut

For roundedness, consider $\Phi \equiv \lambda \alpha \beta . \alpha d \wedge \beta u$.

Then $\delta d \wedge v u \equiv \Phi(\delta, v) \Leftrightarrow \mathcal{E} \Phi(\delta, v)$, whose expansion is
$\exists q_{0}<\cdots<q_{3} \cdot \delta q_{1} \wedge v q_{2} \wedge\left(d<q_{0}\right) \wedge\left(q_{3}<u\right) \Leftrightarrow \exists q_{1} q_{2} .\left(d<q_{1}\right) \wedge \delta q_{1} \wedge\left(q_{2}<u\right) \wedge v q_{2}$.

If (δ, v) is admissible then it is a cut

For disjointness, consider $\Phi \equiv \lambda \alpha \beta . \perp$.

Then the big conjunction is either empty ($n=0$) or false ($n \geq 1$), so $\perp \equiv \Phi(\delta, v) \Leftrightarrow \mathcal{E} \Phi(\delta, v) \equiv \exists q_{0}<\cdots<q_{2 n+1} \cdot \delta q_{1} \wedge v q_{2 n} \wedge(n=0) \Leftrightarrow \exists q_{0}<q_{1} \cdot \delta q_{1} \wedge v q_{0}$.

If (δ, v) is admissible then it is a cut

For locatedness, let $d<u$.

Since (δ, v) are rounded and bounded, there is a sequence of rationals

$$
q_{0}<q_{1}<d<q_{2}<q_{3}<u<q_{4}<q_{5} \quad \text { with } \quad \delta q_{1} \quad \text { and } \quad v q_{4}
$$

Then $\Phi(\alpha, \beta) \equiv \alpha d \vee \beta u$ gives
$\delta d \vee v u \equiv \Phi(\delta, v) \Leftrightarrow \mathcal{E} \Phi(\delta, v)$,
whose expansion is implied by

$$
\left(q_{0}<\cdots<q_{5}\right) \wedge \delta q_{1} \wedge v q_{4} \wedge\left(d<q_{0} \vee q_{3}<u\right) \wedge\left(d<q_{2} \vee q_{5}<u\right)
$$

The closed interval is compact

$$
\frac{\Gamma, x:[d, u] \vdash \sigma \Rightarrow \phi x}{\Gamma \vdash \sigma \Rightarrow \forall x:[d, u] . \phi x \equiv I \phi\left(\delta_{d}, v_{u}\right)}
$$

Let $(\delta, v) \equiv\left(\delta_{x}, v_{x}\right) \geq\left(\delta_{d}, v_{u}\right)$ be the cut corresponding to $x: R$. Then

$$
I \phi\left(\delta_{d}, v_{u}\right) \Rightarrow I \phi(\delta, v) \equiv I \phi(i x) \Leftrightarrow \phi x
$$

which establishes the upward direction.

The closed interval is compact

$$
\begin{gathered}
\text { The hypothesis says that } \\
\Gamma, x: R, \sigma \Leftrightarrow \top \vdash \phi x \vee \psi x \Leftrightarrow \top,
\end{gathered}
$$

which captures universal quantification as a judgement.
This is $\Gamma, \sigma \Leftrightarrow T \vdash \Sigma^{i}(\Phi \vee \psi) \Leftrightarrow T: \Sigma^{R}$, where $\Phi \equiv I \phi$.

$$
\Gamma, \sigma \Leftrightarrow \top \vdash \mathcal{E}(\Phi \vee \Psi)\left(\delta_{d}, v_{u}\right) \Leftrightarrow \mathcal{E} \top\left(\delta_{d}, v_{u}\right): \Sigma .
$$

Now, $\mathcal{E} T(\alpha, \beta) \Leftrightarrow \top$ iff (α, β) is bounded, which $\left(\delta_{d}, v_{u}\right)$ is. In the expansion of $\mathcal{E}(\Phi \vee \Psi)\left(\delta_{d}, v_{u}\right)$, on the other hand,
$(\Phi \vee \Psi)\left(\delta_{q_{2 k}}, v_{q_{2 k+3}}\right) \Leftrightarrow \Phi\left(\delta_{q_{2 k}}, v_{q_{2 k+3}}\right) \vee\left(u<q_{2 k} \vee q_{2 k+3}<d\right) \Leftrightarrow \Phi\left(\delta_{q_{2 k}}, v_{q_{2 k+3}}\right) \vee \perp$ since the conjuncts $v_{u} q_{2 k}$ and $\delta_{d} q_{1}$ in \mathcal{E} make $q_{2 k}<q_{2 n}<u$ and $d<q_{1}<q_{2 k+3}$.

$$
\top \Leftrightarrow \mathcal{E} \top\left(\delta_{d}, v_{u}\right) \Leftrightarrow \mathcal{E}(\Phi \vee \Psi)\left(\delta_{d}, v_{u}\right) \Leftrightarrow \mathcal{E} \Phi\left(\delta_{d}, v_{u}\right) \Leftrightarrow I \phi\left(\delta_{d}, v_{u}\right) .
$$

What have we done?

We were working in a λ-calculus with types

$$
\Sigma, \mathbb{N}, X \times Y \text { and } \Sigma^{X} .
$$

But the object R was not one of these types.
It was a "subspace" of $\Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}$ that was defined by an idempotent \mathcal{E} on $\Sigma^{\Sigma^{\mathbb{Q}} \times \Sigma^{\mathbb{Q}}}$.

Restricted λ-calculus

> Just the type-formation rules

$$
1 \text { type } \frac{X_{1} \text { type } \ldots X_{k} \text { type }}{\sum^{X_{1} \times \cdots \times X_{k}} \text { type }} \Sigma^{(-)} F
$$

but with the normal rules for λ-abstraction and application,

$$
\frac{\Gamma, x: X \vdash \sigma: \Sigma^{Y}}{\Gamma \vdash \lambda x: X . \sigma: \Sigma^{X \times Y}} \Sigma^{(-)} I \quad \frac{\Gamma \vdash \phi: \Sigma^{X \times Y}\ulcorner\vdash a: X}{\text { together with the usual } \alpha, \beta \text { and } \eta \text { rules. }} \Sigma^{(-)} E
$$

Sober λ-calculus

$$
\begin{gathered}
\Gamma \vdash P: \Sigma^{\Sigma^{X}} \text { is prime if } \\
\Gamma, \mathcal{F}: \Sigma^{3} X \vdash \mathcal{F} P=P(\lambda x . \mathcal{F}(\lambda \phi . \phi x))
\end{gathered}
$$

In the context of the lattice structure and Scott continuity, P is prime iff it preserves \top, \perp, \wedge and \vee.

The sober λ-calculus has the additional rules

$$
\begin{gathered}
\frac{\Gamma \vdash P: \Sigma^{\Sigma^{X}} \quad P \text { is prime }}{\Gamma \vdash \text { focus } P: X} \\
\frac{\Gamma \vdash P: \Sigma^{\Sigma^{X}} P \text { is prime }}{\Gamma, \phi: \Sigma^{X} \vdash \phi(\text { focus } P)=P \phi: \Sigma} \\
\Gamma \vdash a, b: X \quad \Gamma, \phi: \Sigma^{X} \vdash \phi a=\phi b \\
\Gamma \vdash a=b
\end{gathered}
$$

Monadic λ-calculus

$$
\begin{gathered}
\mathcal{E}: \Sigma^{Y} \rightarrow \Sigma^{Y} \text { is called a nucleus if } \\
\mathcal{F}: \Sigma^{3} Y \quad \vdash E(\lambda y . \mathcal{F}(\lambda \phi . E \phi y))=E(\lambda y . \mathcal{F}(\lambda \phi . \phi y)) .
\end{gathered}
$$

In the context of the lattice structure and Scott continuity, E is a nucleus iff

$$
\phi, \psi: \Sigma^{X} \vdash E(\phi \wedge \psi)=E(E \phi \wedge E \psi) \quad \text { and } \quad E(\phi \vee \psi)=E(E \phi \vee E \psi)
$$

Monadic λ-calculus

The $\}$-rules of the monadic λ-calculus define the subspace itself. X type $\quad x: X, \phi: \Sigma^{X} \vdash E \phi x: \Sigma \quad E$ is a nucleus $\{X \mid \mathcal{E}\}$ type

$$
\begin{gather*}
\frac{\Gamma \vdash a: X \quad\left\ulcorner, \phi: \Sigma^{X} \vdash \phi a=E \phi a\right.}{\Gamma \vdash \operatorname{admit}_{X, E} a:\{X \mid \mathcal{E}\}} \tag{1}\\
x:\{X \mid \mathcal{E}\} \vdash i_{X, E} x: X \\
x:\{X \mid \mathcal{E}\}, \phi: \Sigma^{X} \vdash \phi\left(i_{X, E} x\right)=E \phi\left(i_{X, E} x\right) \\
\frac{\Gamma \vdash a: X \quad \Gamma, \phi: \Sigma^{X} \vdash \phi a=E \phi a}{\Gamma \vdash a=i_{X, E}\left(\operatorname{admit}_{X, E} a\right): X} \\
x:\{X \mid E\} \vdash x=\operatorname{admit}_{X, E}\left(i_{X, E} x\right)
\end{gather*}
$$

Monadic λ-calculus

The $\Sigma^{\{ \}}$-rules say that it has the subspace topology, where $I_{X, E}$ expands open subsets of the subspace to the whole space.

$$
\theta: \Sigma^{\{X \mid \mathcal{E}\}} \vdash I_{X, E} \theta: \Sigma^{X} \quad \Sigma^{\{ \}}{ }_{E}
$$

The β-rule says that the composite $\Sigma^{X} \longrightarrow \Sigma^{\{X \mid \mathcal{E}\}} \longrightarrow \Sigma^{X}$ is E :

$$
\phi: \Sigma^{X} \vdash I_{X, E}\left(\lambda x:\{X \mid \mathcal{E}\} \cdot \phi\left(i_{X, E} x\right)\right)=E \phi \quad \Sigma\{ \}_{\beta}
$$

Notice that this is the only rule that introduces E into the λ-expressions. The η-rule says that the other composite $\left.\Sigma^{\{ } X \mid \mathcal{E}\right\} \longrightarrow \Sigma^{X} \longrightarrow \Sigma^{\{X \mid \mathcal{E}\}}$ is the identity:

$$
\theta: \Sigma^{\{X \mid \mathcal{E}\}}, x:\{X \mid \mathcal{E}\} \vdash \theta x=I_{X, E} \theta\left(i_{X, E} x\right)
$$

Some constructions

$$
\begin{array}{ll}
X & \cong\left\{\Sigma^{2} X \mid \lambda \mathcal{F} F \cdot F(\lambda x \cdot \mathcal{F}(\lambda \phi \cdot \phi x))\right\} \\
\left\{X \mid E_{0}\right\} \times\left\{Y \mid E_{1}\right\} & =\left\{X \times Y \mid E_{1}^{X} \cdot E_{0}^{Y}\right\} \\
\left\{X \mid E_{0}\right\}+\left\{Y \mid E_{1}\right\} & =\left\{\Sigma^{\left.\Sigma^{X} \times \Sigma^{Y} \mid E\right\}}\right. \\
\text { where } E \mathcal{H} H & =H\left\langle\lambda x \cdot \mathcal{H}\left(\lambda \phi \psi \cdot E_{0} \phi x\right), \lambda y \cdot \mathcal{H}\left(\lambda \phi \psi \cdot E_{1} \phi y\right)\right\rangle \\
\Sigma^{\{X \mid E\}} & =\left\{\Sigma^{X} \mid \Sigma^{E}\right\} \\
\left\{\left\{X \mid E_{1}\right\} \mid E_{2}\right\} & =\left\{X \mid E_{2}\right\} \\
\operatorname{pts}(A, \alpha) & =\left\{\Sigma^{A} \mid \lambda F \phi \cdot \phi(\alpha F)\right\} \\
X / R & =\left\{\Sigma^{2} X \mid \lambda \mathcal{F} F \cdot F(\lambda x \cdot \mathcal{F}(\lambda \phi \cdot R \phi x))\right\} \\
U \cap(X \backslash V) & =\{X \mid \lambda \phi \cdot U \wedge \phi \vee V\} \\
X / \delta & =\left\{\Sigma^{2} X \mid \lambda \mathcal{F} F \cdot F(\lambda x \cdot \mathcal{F}(\lambda \phi \cdot \exists y \cdot \delta(x, y) \wedge \phi y))\right\} \\
& \cong\left\{\Sigma^{X} \mid \lambda F \phi \cdot \exists x \cdot F(\lambda y \cdot \delta(x, y)) \wedge \phi x\right\}
\end{array}
$$

The "basic" category.

Category \mathcal{S} with an object Σ for which all powers Σ^{X} exist. \mathcal{S} doesn't have to be cartesian closed.

It does have to have finite products, because $\Gamma \rightarrow \Sigma^{X}$ corresond to $\Gamma \times X \rightarrow \Sigma$.
$\Sigma^{\mathbb{N}}$ must look like $\mathcal{P}(\mathbb{N})$ with the Scott topology.

So Σ is an internal distributive lattice with the Phoa principle and Scott continuity (actually, this implies Phoa).

Some sort of topological structure can be defined with this.
There are lots of examples -
domains, Dcpo, Scott domains, algebraic lattices
topological spaces, locales
PERs, realisability toposes
programming languages modulo observable equivalence recursive analysis.

Improving the "basic" category \mathcal{S} using Stone duality

Some ideas about the "topology" $S X$ on X.
From classical topology, we expect $S X$ to be a distributive lattice, with $\perp, \top, \wedge, \vee$.

The inverse image operator for $f: X \rightarrow Y$ is a lattice homomorphism $S f: S Y \rightarrow S X$.
(Classical topology asks for more than this - "arbitrary" or at least infinitary unions.)

So the category of "frames" is some category of algebras.
As we only the the "basic category" \mathcal{S} and not sets, the carriers of algebras have to belong to \mathcal{S}.

Then we define the category of "locales" (the new category of "spaces") to be the opposite of the category of "frames".

We hope that this will enjoy some of the advantages
that locales have over traditional spaces, such as a Cantor space and a closed real interval that are compact.

The adjunction $\Sigma^{(-)} \dashv \Sigma^{(-)}$

An idea from domain theory: $S X$ is the exponential ΣX where Σ is the Sierpiński space.

In any category with finite products and powers of Σ, we have a contravariant adjunction

whose units are both

$$
\eta: X \longrightarrow \Sigma^{\Sigma^{X}} \quad \text { by } \quad \eta x \equiv \lambda \phi \cdot \phi x
$$

The adjunction defines a monad

Hence there is a strong monad (T, η, μ, σ) with

$$
\begin{gathered}
T X \equiv \Sigma^{\Sigma^{X}} \\
T f: \Sigma^{\Sigma^{X}} \rightarrow \Sigma^{\Sigma^{Y}} \quad \text { by } \quad T f F \equiv \lambda \psi \cdot F(\lambda x \cdot \psi(f x)) \\
\eta: X \longrightarrow \Sigma^{\Sigma^{X}} \quad \text { by } \quad \eta x \equiv \lambda \phi \cdot \phi x . \\
\mu: \Sigma^{\Sigma^{\Sigma^{X}}} \rightarrow \Sigma^{\Sigma^{X}} \quad \text { by } \quad \mu \mathrm{F} \equiv \lambda \phi \cdot \mathrm{~F}(\lambda F \cdot F(\lambda x \cdot \phi x)) \\
\sigma: X \times \Sigma^{\Sigma^{Y}} \rightarrow \Sigma^{\Sigma^{X \times Y}} \quad \text { by } \quad \sigma(x, G) \equiv \lambda \theta \cdot G(\lambda y \cdot \theta x y) .
\end{gathered}
$$

Algebras for the monad

An algebra is a pair (A, α) such that these diagrams commute:

A homomorphism is a map $H: B \rightarrow A$ such that this diagram commutes:

Embedding the original category

The two categories are linked by the functor $i: \mathcal{S} \rightarrow \mathcal{S}^{\prime}$ defined by

This is the topological inverse image map.

It is also the continuation passing interpretation:
given a continuation $\psi: \Sigma^{Y}$ or $k: Y \rightarrow \Sigma$,
the function $f: X \rightarrow Y$ is represented by $\lambda x \psi . \psi(f x)$ or $\lambda x k$. $(f x)$, but it is central - it has no computational (side) effects.

What does the new category give us?

Is it another "basic category" (with $\times, \Sigma(-), \mathbb{N}$ and $\Sigma^{\mathbb{N}}$)? Yes - but \times is difficult.

What happens if we do the construction again? We get the same thing.

Can we characterise the resulting category?
Yes - Beck's theorem.

Can we characterise the resulting category symbolically?
Yes - the monadic λ-calculus.

Are Cantor space and the unit interval compact? Yes, but we've got a long way to go.

Beck's theorem

The forgetful functor $U:(A, \alpha) \mapsto A$ from the category of algebras is characterised by two properties:
(1) It reflects invertibility: if $H:(B, \beta) \rightarrow(A, \alpha)$ is a homomorphism and $H: B \cong A$ is an isomorphism of carriers
then $H:(B, \beta) \cong(A, \alpha)$ is an isomorphism of algebras.
(2) It creates U-split coequalisers.
(1) is about sobriety and (2) is about subspaces.

