Midlands Graduate School 2005

Abstract Stone Duality

Paul Taylor

University of Manchester
Funded by UK EPSRC GR/S58522
www.cs.man.ac.uk/~pt/ASD
pt@cs.man.ac.uk
07760462587

The Classical Intermediate Value Theorem

Any continuous $f:[0,1] \rightarrow \mathbb{R}$ with $f(0) \leq 0 \leq f(1)$ has a zero.

Indeed, $f\left(x_{0}\right)=0$ where $x_{0} \equiv \sup \{x \mid f(x) \leq 0\}$.

A so-called "closed formula".

A program: interval halving

$$
\text { Let } a_{0} \equiv 0 \text { and } e_{0} \equiv 1
$$

By recursion, consider $c_{n} \equiv \frac{1}{2}\left(a_{n}+e_{n}\right)$ and

$$
a_{n+1}, e_{n+1} \equiv \begin{cases}a_{n}, c_{n} & \text { if } f\left(c_{n}\right)>0 \\ c_{n}, e_{n} & \text { if } f\left(c_{n}\right) \leq 0\end{cases}
$$

so by induction $f\left(a_{n}\right) \leq 0 \leq f\left(e_{n}\right)$.

But a_{n} and e_{n} are respectively (non-strictly) increasing and decreasing sequences, whose differences tend to 0.

So they converge to a common value c.

By continuity, $f(c)=0$.

Where is the zero?

$$
\begin{aligned}
& \text { For }-1 \leq p \leq+1 \text { and } 0 \leq x \leq 3 \text { consider } \\
& \qquad f_{p} x \equiv \min (x-1, \max (p, x-2))
\end{aligned}
$$

Here is the graph of $f_{p}(x)$ against x for $p \approx 0$.

Where is the zero?

The behaviour of $f_{p}(x)$ depends qualitatively on p and x like this:

$$
\begin{aligned}
& f(1)=0 \Longleftrightarrow p \geq 0 \\
& f(2)=0 \Longleftrightarrow p \leq 0 \\
& f\left(\frac{3}{2}\right)=0 \Longleftrightarrow p=0
\end{aligned}
$$

If there is some way of finding a zero of f_{p}, as a side-effect it will decide how p stands in relation to 0 .

Let's bar the monster

```
Definition \(f: \mathbb{R} \rightarrow \mathbb{R}\) doesn't hover if, for any \(e<t, \quad \exists x .(e<x<t) \wedge(f x \neq 0)\).
```

Exercise Any nonzero polynomial doesn't hover.

Interval halving again

Suppose that f doesn't hover.
Let $a_{0} \equiv 0$ and $e_{0} \equiv 1$.
By recursion, consider

$$
b_{n} \equiv \frac{1}{3}\left(2 a_{n}+e_{n}\right) \quad \text { and } \quad d_{n} \equiv \frac{1}{3}\left(a_{n}+2 e_{n}\right)
$$

Then $f\left(c_{n}\right) \neq 0$ for some $b_{n}<c_{n}<d_{n}$, so put

$$
a_{n+1}, e_{n+1} \equiv \begin{cases}a_{n}, c_{n} & \text { if } f\left(c_{n}\right)>0 \\ c_{n}, e_{n} & \text { if } f\left(c_{n}\right)<0\end{cases}
$$

so by induction $f\left(a_{n}\right)<0<f\left(e_{n}\right)$.
But a_{n} and e_{n} are respectively (non-strictly) increasing and decreasing sequences, whose differences tend to 0.

So they converge to a common value c.
By continuity, $f(c)=0$.

Stable zeroes

The revised interval halving algorithm finds zeroes with this property:

Definition $a \in \mathbb{R}$ is a stable zero of f
if, for all $e<a<t$,

$$
\exists y z .(e<y<a<z<t) \wedge(f y<0<f z \vee f y>0>f z)
$$

Exercise Check that a stable zero of a continuous function really is a zero.

Classically, a zero is stable iff
every nearby function (in the sup or ℓ_{∞} norm) has a nearby zero.

Straddling intervals

Proposition An open subspace $U \subset \mathbb{R}$ touches S, i.e. contains a stable zero, $a \in U \cap S$, iff U contains a straddling interval,

$$
[e, t] \subset U \quad \text { with } \quad f e<0<f t \quad \text { or } \quad f e>0>f t
$$

Proof $\quad[\Leftarrow]$ The straddling interval is an intermediate value problem in miniature.

If an interval $[e, t]$ straddles with respect to f then it also does so with respect to any nearby function.

The possibility operator

Notation Write $\diamond U$ if U contains a straddling interval.

By hypothesis, $\diamond I \Leftrightarrow \top$ (where I is some open interval containing \mathbb{I}).

$$
\text { Trivially, } \diamond \emptyset \Leftrightarrow \perp \text {. }
$$

$$
\begin{gathered}
\text { Theorem } \diamond \cup_{i \in I} U_{i} \Longleftrightarrow \exists i . \diamond U_{i} . \\
\text { Consider } \\
V^{ \pm} \equiv\left\{x \mid \exists y: \mathbb{R} . \exists i: I .(f y<0) \wedge[x, y] \subset U_{i}\right\} \\
\text { so } \mathbb{I} \subset V^{+} \cup V^{-} .
\end{gathered}
$$

Then $x \in(a, c) \subset V^{+} \cap V^{-}$by connectedness, with $f x \neq 0$ and $[x, y] \subset U_{i}$.

The Possibility Operator as a Program

Let \diamond be a property of open subspaces of \mathbb{R} that preserves unions and satisfies $\diamond U_{0}$ for some open interval U_{0}.

Then \diamond has an "accumulation point" $c \in U_{0}$,
i.e. one of which every open neighbourhood $c \in U \subset \mathbb{R}$ satisfies $\diamond U$.

In the example of the intermediate value theorem, any such c is a stable zero.
Interval halving again: let $a_{0} \equiv 0, e_{0} \equiv 1$
and, by recursion, $b_{n} \equiv \frac{1}{3}\left(2 a_{n}+e_{n}\right)$ and $d_{n} \equiv \frac{1}{3}\left(a_{n}+2 e_{n}\right)$, so

$$
\diamond\left(a_{n}, e_{n}\right) \equiv \diamond\left(\left(a_{n}, d_{n}\right) \cup\left(b_{n}, e_{n}\right)\right) \Leftrightarrow \diamond\left(a_{n}, d_{n}\right) \vee \diamond\left(b_{n}, e_{n}\right) .
$$

Then at least one of the disjuncts is true, so let $\left(a_{n+1}, e_{n+1}\right)$ be either $\left(a_{n}, d_{n}\right)$ or $\left(b_{n}, e_{n}\right)$.

Hence a_{n} and e_{n} converge from above and below respectively to c.

$$
\begin{gathered}
\text { If } c \in U \text { then } c \in\left(a_{n}, e_{n}\right) \subset(c \pm \epsilon) \subset U \text { for some } \epsilon>0 \text { and } n, \\
\text { but } \diamond\left(a_{n}, e_{n}\right) \text { is true by construction, } \\
\text { so } \diamond U \text { also holds, since } \diamond \text { takes } \subset \text { to } \Rightarrow .
\end{gathered}
$$

Enclosing cells of higher dimensions

Straddling intervals can be generalised.

$$
\begin{aligned}
& \text { Let } f: \mathbb{R}^{\mathbf{n}} \rightarrow \mathbb{R}^{\mathbf{m}} \text { with } n \geq m \text {. } \\
& \text { Let } C \subset \mathbb{R}^{\mathbf{n}} \text { be a sphere, cube, etc. }
\end{aligned}
$$

Definition C is an enclosing cell if
$0 \in \mathbb{R}^{\mathrm{m}}$ lies in the interior of the image $f(C) \subset \mathbb{R}^{\mathrm{m}}$.
(There is a definition for locally compact spaces too.)

Notation Write $\diamond U$ if $U \subset \mathbb{R}^{\mathbf{n}}$ contains an enclosing cell.

Theorem If $\diamond\left(\cup_{i \in I} U_{i}\right) \Leftrightarrow \exists i . \diamond U_{i}$ then
cell halving finds stable zeroes of f.

Modal operators, separately

$$
\begin{gathered}
Z \equiv\{x \in \mathbb{I} \mid f x=0\} \text { is closed and compact. } \\
W \equiv\{x \mid f x \neq 0\} \text { is open. }
\end{gathered}
$$

S is the subspace of stable zeroes.

Notation For $U \subset \mathbb{R}$ open, write $\square U$ if $Z \subset U($ or $U \cup W=\mathbb{R})$.X is true and$U \wedge \square V \Rightarrow \square(U \cap V)$
$\diamond \emptyset$ is false and $\diamond(U \cup V) \Rightarrow \diamond U \vee \diamond V$.

$$
\begin{array}{lll}
(Z \neq \emptyset) & \text { iff } & \square \emptyset \text { is false } \\
(S \neq \emptyset) & \text { iff } & \diamond \mathbb{R} \text { is true }
\end{array}
$$

Both operators are Scott continuous.

Modal operators, together

The modal operators \diamond and \square for the subspaces $S \subset Z$ are related in general by:$\square \wedge \diamond V \Rightarrow \diamond(U \cap V)$

$$
U \Longleftrightarrow(U \cup W=X)
$$

$$
\diamond V \Rightarrow(V \not \subset W)
$$

S is dense in Z iff
$\square(U \cup V) \Rightarrow \square U \vee \diamond V$

$$
\diamond V \Leftarrow(V \not \subset W)
$$

In the intermediate value theorem for functions that don't hover (e.g. polynomials):
$S=Z$ in the non-singular case
$S \subset Z$ in the singular case (e.g. double zeroes).

Open maps

> For continuous $f: X \rightarrow Y$, if $V \subset Y$ is open, so is $f^{-1}(V) \subset X$ if $V \subset Y$ is closed, so is $f^{-1}(V) \subset X$ if $U \subset X$ is compact, so is $f(U) \subset Y$ (if $U \subset X$ is overt, so is $f(U) \subset Y$)
> Definition $f: X \rightarrow Y$ is open if, whenever $U \subset X$ is open, so is $f(U) \subset Y$.

Proposition If $f: X \rightarrow Y$ is open then
if $V \subset Y$ is overt, so is $f^{-1}(V) \subset X$.

Corollary If $f: X \rightarrow Y$ is open then all zeroes are stable.

Examples of open maps

$$
\text { If } f: \mathbb{R}^{\mathbf{n}} \rightarrow \mathbb{R}^{\mathbf{n}} \text { is continuously differentiable, and } \operatorname{det}\left(\frac{\partial f_{j}}{\partial x_{i}}\right) \neq 0 \text {. }
$$

If $f: \mathbb{C} \rightarrow \mathbb{C}$ is analytic and not constant - even if it has coincident zeroes.

Cauchy's integral formula:
a disc $C \subset \mathbb{C}$ is enclosing iff $\oint_{\partial C} \frac{d z}{f(z)} \neq 0$.
Stokes's theorem!

Possibility operators classically

> Define $\diamond U$ as $U \cap S \neq \emptyset$, for any subset $S \subset \mathbb{R}$ whatever.

Then $\diamond\left(\bigcup_{i \in I} U_{i}\right)$ iff $\exists i . \diamond U_{i}$.

Conversely, if \diamond has this property, let

$$
\begin{gathered}
S \equiv\{a \in \mathbb{R} \mid \text { for all open } U \subset \mathbb{R}, \quad a \in U \Rightarrow \diamond U\} \\
W \equiv \mathbb{R} \backslash S=\bigcup\{U \text { open } \mid \neg \diamond U\} \\
\text { Then } W \text { is open and } S \text { is closed. } \\
\neg \diamond W \text { by preservation of unions. } \\
\text { Hence } \diamond U \text { holds iff } U \not \subset W \text {, i.e. } U \cap S \neq \emptyset .
\end{gathered}
$$

If \diamond had been derived from some S^{\prime} then $S=\overline{S^{\prime}}$, its closure.

Possibility operators: summary

\diamond is defined, like compactness, in terms of unions of open subspaces, so it is a concept of general topology

The proof that \diamond preserves joins uses ideas from geometric topology, like connectedness and sub-division of cells.
\diamond is like a bounded existential quantifier, so it's logic.

A very general algorithm uses \diamond to find solutions of problems.

But classical point-set topology is too clumsy to take advantage of this.

Overt and compact subspaces

Overt subspace
$\diamond U$ means U touches \diamond
for any $U, \quad(a \in U) \Rightarrow \diamond U$
a is an accumulation point of \diamond
a is in the closure of \diamond

Compact subspaceU means U covers
for any $U, \square U \Rightarrow(a \in U)$
a is in the saturation of \square

Compact subspace of Hausdorff space is closed

Closed subspace of compact space
is Hausdorff

Overt and compact subspaces

Overt subspace of discrete space
$\diamond \phi$ means ϕ touches \diamond

$$
\begin{gathered}
\phi_{x} y \equiv(y \in\{x\}) \equiv(x=y) \\
\alpha x \equiv \diamond(\lambda y \cdot x=y)
\end{gathered}
$$

Compact subspace of Hausdorff space
$\square \phi$ means ϕ covers

$$
\begin{gathered}
\phi_{x} y \equiv(y \in \overline{\{x\}}) \equiv(x \neq y) \\
\omega x \equiv \square(\lambda y \cdot x \neq y)
\end{gathered}
$$

Open subspace of overt space

$$
\diamond \phi \equiv \exists_{N}(\alpha \wedge \phi)
$$

$\square \phi \equiv \forall_{K}(\omega \vee \phi)$

Overt and compact subspaces

Overt subspace
$\diamond U$ means U touches \diamond

$$
\frac{U \subset W}{\neg \diamond U}
$$

$$
\frac{A \cap U=\emptyset}{\neg \diamond U}
$$

Closed subspace $X \backslash W$
Compact subspaceU means U covers

$$
\frac{U \cup W=X}{\square U}
$$

$\frac{A \subset U}{\square U}$

Overt and compact subspaces

> Overt subspace
> defined by $\diamond: \Sigma^{X}$
> $a \in \diamond$ if $\phi a \Rightarrow \diamond \phi$

$$
\frac{\phi \leq \omega}{\stackrel{\phi}{\diamond \phi \Leftrightarrow \perp}}
$$

Closed subspace co-classified by $\omega: \Sigma^{X}$
$a \in \omega$ if $\omega a \Leftrightarrow \perp$
Open subspace

$$
\frac{\alpha \wedge \phi \Leftrightarrow \perp}{\widehat{\diamond \phi \Leftrightarrow \perp}}
$$

classified by
$\alpha: \Sigma^{X}$.
$a \in \alpha$ if $\alpha a \Leftrightarrow \top$
general
case

Compact subspace defined by $\square: \Sigma^{\Sigma^{X}}$
$a \in \square$if $\square \phi \Rightarrow \phi a$

$$
\frac{\phi \vee \omega \Leftrightarrow \top}{\square \phi \Leftrightarrow \top}
$$

$$
\frac{\alpha \leq \phi}{\square \phi \Leftrightarrow \top}
$$

$\square(\lambda x . \theta(x, \square)) \Rightarrow$
$\square(\lambda x . \theta(x, \lambda \phi . \square \phi \wedge \phi x))$,

Modal Iaws

Overt subspace

$$
\begin{array}{cc}
\diamond \perp \Leftrightarrow \perp & \square \top \Leftrightarrow \top \\
\diamond(\phi \vee \psi) \Leftrightarrow \diamond \phi \vee \diamond \psi & \square(\phi \wedge \psi) \Leftrightarrow \square \phi \wedge \square \psi \\
\sigma \wedge \diamond \phi \Leftrightarrow \diamond(\sigma \wedge \phi) & \sigma \vee \square \phi \Leftrightarrow \square(\lambda x . \sigma \vee \phi x) \\
\diamond(\lambda x \cdot \diamond(\lambda y \cdot \phi x y)) \Leftrightarrow \diamond(\lambda y . \diamond(\lambda x . \phi x y)) \quad \square(\lambda x . \square(\lambda y \cdot \phi x y)) \Leftrightarrow \square(\lambda y . \square(\lambda x . \phi x y)) \\
\square \text { Mixed modal laws } \\
\square \phi \vee \diamond \psi \Leftarrow \square(\phi \vee \psi) \quad \text { and } \quad \square \phi \wedge \diamond \psi \Rightarrow \diamond(\phi \wedge \psi)
\end{array}
$$

Empty/inhabited is decidable

Overt subspace

$$
\begin{array}{ccc}
\diamond \top \Leftrightarrow \perp & \text { empty } & \square \perp \Leftrightarrow \top \\
\diamond \top \Leftrightarrow \top & \text { inhabited } & \square \perp \Leftrightarrow \perp \\
\square \perp \vee \diamond \top \Leftarrow & \text { complementary } & \square \perp \wedge \diamond \top \Rightarrow \\
\square(\perp \vee \top) \Leftrightarrow \square \top \Leftrightarrow \top & \text { (mixed modal laws) } & \diamond(\perp \wedge \perp) \Leftrightarrow \diamond \perp \Leftrightarrow \perp
\end{array}
$$

The dichotomy means that the parameter space Γ is a disjoint union.

So, if it is connected, like $\mathbb{R}^{\mathbf{n}}$, something must break at singularities. It is the modal law $\square(\phi \vee \psi) \Rightarrow \square \phi \vee \diamond \psi$.

Compact overt subspace of \mathbb{R} defines a Dedekind cut

Overt subspace \diamond
$\begin{array}{ccc}\perp, \vee, \vee \text { and so } \exists_{\mathbb{R}} & \text { commutes with } & \top, \wedge \text { and } V \\ \delta d \equiv \diamond(\lambda k . d<k) & \text { Dedekind cut } & v u \equiv \square(\lambda k . k<u) \\ (d<e) \wedge \delta e \equiv & \text { Iower/upper } & v t \wedge(t<u) \equiv \\ (d<e) \wedge \diamond(\lambda k . e<k) & & \square(\lambda k . k<t) \wedge(t<u) \\ \Leftrightarrow \diamond(\lambda k . d<e<k) & \text { (Frobenius/ } \square \top) & \Leftrightarrow \square(\lambda k . k<t<u) \\ \Rightarrow \diamond(\lambda k . d<k) \equiv \delta d & \text { (transitivity) } & \Rightarrow \\ \Leftarrow & \square(\lambda k . k<u) \equiv v u \\ & \text { rounded (interpolation) } & \Leftarrow\end{array}$

$\exists d . \delta d \equiv \exists d . \diamond(\lambda k . d<k)$	inhabited	$\exists u . v u \equiv \exists u . \square(\lambda k . k<u)$
$\Leftrightarrow \diamond(\lambda k . \exists d . d<k)$	(directed joins)	$\Leftrightarrow \square(\lambda k . \exists u . k<u)$
$\Leftrightarrow \diamond \top \Leftrightarrow \top$ (inhabited)	(extrapolation)	$\Leftrightarrow \square \top \Leftrightarrow \top$

Compact overt subspace of \mathbb{R} defines a Dedekind cut

$$
\begin{gathered}
\delta \text { and } v \text { are disjoint, by transitivity of }< \\
(\delta d \wedge v u) \equiv \diamond(\lambda k . d<k) \wedge \square(\lambda k . k<u) \Rightarrow \diamond(\lambda k . d<k \wedge k<u) \Rightarrow(d<u) \\
\delta \text { and } v \text { are located (touch), by locatedness of }< \\
(\delta d \vee v u) \equiv \diamond(\lambda k . d<k) \vee \square(\lambda k . k<u) \Leftarrow \square(\lambda k . d<k \vee k<u) \Leftarrow(d<u) .
\end{gathered}
$$

The proofs are dual, each using one of the mixed modal laws, and $\diamond \sigma \Rightarrow \sigma \Rightarrow \square \sigma$.

Compact overt subspace of \mathbb{R} defines a Dedekind cut

Hence there is some $a: \mathbb{R}$ with

$$
\delta d \Leftrightarrow(d<a) \Leftrightarrow \diamond(\lambda k . d<k) \quad \text { and } \quad v u \Leftrightarrow(a<u) \Leftrightarrow \square(\lambda k . k<u)
$$

$$
\text { Moreover, } a \in K
$$

Recall that K is the closed subspace co-classified by $\omega x \equiv \square(\lambda k . x \neq k)$, so we must show that $\omega a \Leftrightarrow \perp$.

$$
\begin{aligned}
\omega a \equiv \square(\lambda k . a \neq k) & \Leftrightarrow \square(\lambda k . a<k) \vee(k<a) \\
& \Rightarrow \diamond(\lambda k \cdot a<k) \vee \square(\lambda k . k<a) \\
& \equiv \delta a \vee v a \\
& \Leftrightarrow(a<a) \vee(a<a) \Leftrightarrow \perp .
\end{aligned}
$$

Compact overt subspace of \mathbb{R} has a maximum

Any overt compact subspace $K \subset \mathbb{R}$ is
either empty
or has a greatest element $\max K \equiv a \in K$.

This satisfies, for $\Gamma \vdash x: \mathbb{R}$,

$$
\left.\begin{array}{c}
(x<\max K)
\end{array} \begin{array}{c}
(\exists k: K . x<k) \\
(\max K<x)
\end{array} \Leftrightarrow(\forall k: K \cdot k<x)\right)
$$

The Bishop-style proof

K is totally bounded if,
for each $\epsilon>0$, there's a finite subset $S_{\epsilon} \subset K$ such that $\forall x: K . \exists y \in S_{\epsilon} .|x-y|<\epsilon$.

If K is closed and totally bounded,
either the set S_{1} is empty, in which case K is empty too, or $x_{n} \equiv \max S_{2^{-n}}$ defines a Cauchy sequence that converges to max K.

$$
\begin{aligned}
& \text { But } K \text { is also overt, with } \\
& \diamond \phi \equiv \exists \epsilon>0 . \exists y \in S_{\epsilon} . \phi y \text {. }
\end{aligned}
$$

K is located if, for each $x \in X$, $\inf \{|x-k| \mid k \in K\}$ is defined.
(A different usage of the word "located".)
closed and totally bounded \Rightarrow compact and overt \Rightarrow located

Total boundedness and locatedness are metrical concepts.
Compactness and overtness are topological.

The real interval is connected

Any closed subspace of a compact space is compact. Any open subspace of an overt space is overt.

Any clopen subspace of an overt compact space is overt compact, so it's either empty or has a maximum.

Since the clopen subspace is open, its elements are interior, so maximum can only be the right endpoint of the interval.

Any clopen subspace has a clopen complement.
They can't both be empty, but
in the interval they can't both have maxima (the right endpoint).

Hence one is empty and the other is the whole interval.

Connectedness in modal notation

$$
\begin{array}{cl}
\text { Using } \square \theta \equiv \forall x:[0,1] . \theta x \text { and } \diamond \theta \equiv \exists x:[0,1] . \theta x \\
\diamond(\phi \wedge \psi)=\perp \vdash \square(\phi \vee \psi) \Rightarrow \square \phi \vee \square \psi & \square(\phi \vee \psi) \Rightarrow \square \phi \vee \square \psi \vee \diamond(\phi \vee \psi) \\
\diamond(\phi \wedge \psi)=\perp \vdash \square(\phi \vee \psi) \wedge \diamond \phi \wedge \diamond \psi \Rightarrow \perp & \square(\phi \vee \psi) \wedge \diamond \phi \wedge \diamond \psi \Rightarrow \diamond(\phi \wedge \psi) \\
(\diamond \phi \wedge \square \psi \Rightarrow \diamond(\phi \wedge \psi)) & \\
\text { (Gentzen-style rule for } \diamond(\phi \wedge \psi))
\end{array}
$$

Weak intermediate value theorems

Let $f:[0,1] \rightarrow \mathbb{R}$, and use two of these forms of connectedness.

$$
\begin{array}{cc}
\diamond(\phi \wedge \psi)=\perp \vdash \square(\phi \vee \psi) \wedge \diamond \phi \wedge \diamond \psi \Rightarrow \perp & \square(\phi \vee \psi) \wedge \diamond \phi \wedge \diamond \psi \Rightarrow \diamond(\phi \wedge \psi) \\
\phi x \equiv(0<f x) \text { and } \psi x \equiv(f x<0) & \phi x \equiv(e<f x) \text { and } \psi x \equiv(f x<t) \\
\diamond(\phi \wedge \psi) \Leftrightarrow \perp \text { by disjointness. } & \square(\phi \vee \psi) \text { by locatedness. } \\
(f 0<0<f 1) \wedge(\forall x:[0,1] . f x \neq 0) \Leftrightarrow \perp & (f 0<e<t<f 1) \Rightarrow(\exists x:[0,1] . e<f x<t) \\
\text { or } \epsilon>0 \vdash \exists x \cdot|f x|<\epsilon
\end{array}
$$

so the closed, compact subspace

$$
\begin{gathered}
Z \equiv\{x: \mathbb{I} \mid f x=0\} \\
\text { is not empty. }
\end{gathered}
$$

so the open, overt subspace

$$
\begin{gathered}
\{x \mid e<f x<t\} \\
\text { is inhabited. }
\end{gathered}
$$

Straddling intervals in ASD

Recall that

$f: \mathbb{R} \rightarrow \mathbb{R}$ doesn't hover if $(e<t) \Rightarrow \exists x .(e<x<t) \wedge(f x \neq 0)$.
$a: \mathbb{R}$ is a stable zero if $(e<a<t) \Rightarrow \exists y z .(e<y<a<z<t) \wedge(f y<0<f z \vee f y>0>f y)$.

$$
\diamond \phi \equiv \exists e t:[d, u] .(e<t) \wedge(\forall x:[e, t] . \phi x) \wedge(f e<0<f t \vee f e>0>f t)
$$

Then a is a stable zero iff it is an accumulation point of $\diamond(\phi a \Rightarrow \diamond \phi)$.

If f doesn't hover then \diamond preserves joins, $\diamond\left(\exists n . \theta_{n}\right) \Leftrightarrow \exists n . \diamond \theta_{n}$.

Consider $\phi^{ \pm} x \equiv \exists n . \exists y .(x<y<u) \wedge(f y<0) \wedge \forall z:[x, y] . \theta_{n} z$. Then $\exists x . \phi^{+} x \wedge \phi^{-} x$ by connectness and continue as before.

