Equideductive Logic and CCCs with Subspaces

Paul Taylor

Domains Workshop IX
U of Sussex, Tuesday, 23 September 2008

www.PaulTaylor.EU/ASD

Abstract Stone Duality

- Lattice part: T, \perp, \wedge, \vee for open sets, $=$ for discrete spaces, \neq for Hausdorff, \forall for compact and \exists for overt ones.
- Categorical part: λ-calculus for $\Sigma^{(-)}$, and the adjunction $\Sigma^{(-)} \dashv \Sigma^{(-)}$is monadic: gives definition by description, Dedekind completeness and Heine-Borel.

The categorical part only handles locally compact spaces.
It needs to be generalised.
We will get a CCC, but that's not important, because the exponential Y^{X} is tested by incoming maps, but its topology by outgoing ones.
We certainly need products, $\Sigma^{(-)}$and equalisers.

CCCs with all finite limits

Want to write $E=\{x \mid \forall y . \alpha x y=\beta x y\}$.

Equideductive logic

$$
\begin{gathered}
\vdash \mathrm{T} x: 0 \quad \mathfrak{p} \\
\mathfrak{p}, \mathfrak{q} \vdash \mathfrak{p} \& \mathfrak{q} \quad \mathfrak{p} \& \mathfrak{q} \vdash \mathfrak{p} \quad \mathfrak{p} \& \mathfrak{q} \vdash \mathfrak{q} \\
\frac{\Gamma, x: A, \mathfrak{p}(x) \vdash \alpha x=\beta x}{\Gamma \vdash \forall x: A \cdot \mathfrak{p}(x) \Rightarrow \alpha x=\beta x} \forall I \\
\frac{\Gamma \vdash a: A, \mathfrak{p}(a) \quad \Gamma \vdash \forall x: A \cdot \mathfrak{p}(x) \Rightarrow \alpha x=\beta x}{\Gamma \vdash \alpha a=\beta a} \forall E
\end{gathered}
$$

All the variables on the left of \Rightarrow must be bound by \forall.
Maybe add some dependent types later.
Must have subsitution (cut) for free variable x.

Interpretation of equideductive logic

- The obvious set-theoretic one - the construction to follow will give Dana Scott's equilogical spaces.
- In locales - but I'm not sure whether this works (Does $(-) \times X$ preserve epis? I have both a proof and a counterexample!)
- In Formal Topology, if this works.
- Proof-theoretic, taking the rules just as they are (as we shall do for most of this lecture).
- In another type theory such as Coquand's Calculus of Constructions or Coq.
- With additional axioms of our choosing.

Interaction with the lattice structure

The implication \Rightarrow in equideductive logic depends on the categorical structure (equalisers and $\Sigma^{(-)}$).
If Σ also has lattice structure, with induced order \Rightarrow, then these interact very nicely.
That is, if we assume the Phoa principle. In the Gentzen style, this is

which we rewrite as

$$
\begin{aligned}
(\forall x \cdot \alpha x= & \top \Rightarrow \beta x=\mathrm{T}) \quad \Longleftrightarrow \quad(\forall x \cdot \alpha x \Rightarrow \beta x) \\
& \Longleftrightarrow \quad(\forall x \cdot \beta x=\perp \Rightarrow \alpha x=\perp)
\end{aligned}
$$

This is also the definition of $\alpha \leqslant \beta$.

Interaction with topological structure

Similarly, equality $=_{N}$ in a discrete space N is a special case of general equality of terms:

$$
n=m \Longleftrightarrow\left(n==_{N} m\right)=\mathrm{T}, \quad \text { whilst } \quad h=k \Longleftrightarrow\left(h \neq{ }_{H} k\right)=\perp
$$

in a Hausdorff space H.
The universal quantifier \forall in a compact space is related to \forall :

$$
(\forall x \cdot \phi x=\mathrm{T}) \Longleftrightarrow(\forall x \cdot \phi x)=\mathrm{T}
$$

Similarly

$$
(\forall x \cdot \phi x=\perp) \Longleftrightarrow(\exists x \cdot \phi x)=\perp
$$

in an overt space.
See Foundations for Computable Topology, §12, for more discussion: www. Paul Taylor.EU/ASD/foufct

Equideductive spaces

Urtypes: generated from $\mathbf{0 , 1}$ and \mathbb{N} by,$+ \times$ and $((-) \rightarrow \Sigma)$. Combinators, including

$$
\begin{gathered}
\mathbb{I}:(A \rightarrow \Sigma) \rightarrow A \rightarrow \Sigma, \quad \mathbb{K}:(A \rightarrow \Sigma) \rightarrow B \rightarrow A \rightarrow \Sigma, \\
\mathbb{C}:((B \rightarrow \Sigma) \rightarrow(C \rightarrow \Sigma)) \rightarrow((A \rightarrow \Sigma) \rightarrow(B \rightarrow \Sigma)) \rightarrow(A \rightarrow \Sigma) \rightarrow C \rightarrow \Sigma \\
\mathbb{T}: \mathbf{1}, \quad v_{0}: A \rightarrow(A+B), \quad v_{1}: B \rightarrow(A+B), \\
\pi_{0}:((A+B) \rightarrow \Sigma) \rightarrow A \rightarrow \Sigma, \quad \pi_{1}:((A+B) \rightarrow \Sigma) \rightarrow B \rightarrow \Sigma, \\
\rangle:((C \rightarrow \Sigma) \rightarrow A \rightarrow \Sigma) \rightarrow((C \rightarrow \Sigma) \rightarrow B \rightarrow \Sigma) \rightarrow(C \rightarrow \Sigma) \rightarrow(A+B) \rightarrow \Sigma . \\
\mathbb{A}:(((A \rightarrow \Sigma)+A) \rightarrow \Sigma) \rightarrow \mathbf{1} \rightarrow \Sigma, \\
\mathbb{L}:(((A+B) \rightarrow \Sigma) \rightarrow \mathbf{1} \rightarrow \Sigma) \rightarrow(A \rightarrow \Sigma) \rightarrow(B \rightarrow \Sigma) \rightarrow \Sigma .
\end{gathered}
$$

with appropriate equational axioms, such as $\forall M N \phi c . \operatorname{CNM\phi c}=N(M \phi) c$, without \Rightarrow.

Equideductive spaces

An equideductive space X is (A, p, q) where A is an urtype, \mathfrak{p} is an urstatement on Σ^{A} and \mathfrak{q} one on A, for which

$$
\phi, \psi: \Sigma^{A}, \quad \mathfrak{p}(\phi), \quad \forall a: A . \mathfrak{q}(a) \Rightarrow \phi a=\psi a \quad \vdash \quad \mathfrak{p}(\psi) .
$$

This rule is important in the construction.
Later, we tighten it to ensure that all spaces are definable using exponentials and equalisers.
LHS is a partial equivalence relation.
A morphism $M: X \equiv(A, \mathfrak{p}, \mathfrak{q}) \rightarrow Y \equiv(B, \mathfrak{r}, \mathfrak{s})$ is an realiser $M:(A \rightarrow \Sigma) \rightarrow B \rightarrow \Sigma$ such that

$$
\phi: \Sigma^{A}, \quad \mathfrak{p}(\phi) \quad \vdash \quad \mathfrak{r}(M \phi)
$$

$\phi, \psi: \Sigma^{A}, \quad \mathfrak{p}(\phi), \quad \forall a . \mathfrak{q}(a) \Rightarrow \phi a=\psi a \quad \vdash \quad \forall b . \mathfrak{s}(b) \Rightarrow M \phi b=M \psi b$, where $M_{1}=M_{2}$ if

$$
\phi: \Sigma^{A}, \quad \mathfrak{p}(\phi) \quad \vdash \quad \forall b: B . \mathfrak{s}(b) \Rightarrow M_{1} \phi b=M_{2} \phi b .
$$

Categorical structure

$$
\mathbf{1} \equiv(0, T, T), \Sigma \equiv(1, T, T) .
$$

The product is $(A, \mathfrak{p}, \mathfrak{q}) \times(B, \mathfrak{r}, \mathfrak{s}) \equiv\left(A+B,\left(\mathfrak{p} \cdot \pi_{0} \& \mathfrak{r} \cdot \pi_{1}\right),[\mathfrak{q}, \mathfrak{s}]\right)$.
The equaliser is

$$
\begin{aligned}
& E \equiv(A, \mathrm{t}, \mathrm{q})> \\
& \mathrm{t}(\phi) \equiv \mathrm{p}(\phi) \&(A, \mathfrak{p}, \mathfrak{q}) \xrightarrow{M}(B, \mathfrak{r}, \mathfrak{s}) \\
& N \quad \forall b: B . \mathfrak{s}(b) \Rightarrow M \phi b=N \phi b,
\end{aligned}
$$

The exponential of $X \equiv(A, \mathfrak{p}, \mathfrak{q})$ is $\Sigma^{X} \equiv\left(\Sigma^{A}, \mathfrak{q}^{\mathfrak{p}}, \mathfrak{p}\right)$, where $\mathfrak{q}^{\mathfrak{p}}(F) \equiv \forall \phi, \psi: \Sigma^{A} \cdot \mathfrak{p}(\phi) \&(\forall a: A \cdot \mathfrak{q}(a) \Rightarrow \phi a=\psi a) \Rightarrow F \phi=F \psi$.
(The modulation $\mathfrak{p}(\phi) \& \cdots$ is the source of many difficulties.)

All objects are definable

If \mathfrak{q} is defined using T, equations, \& and $\forall \Rightarrow$ then
$\mathfrak{q}(a) \dashv \vdash \mathfrak{q}^{\top}(\lambda \phi . \phi a)$.
$(A, \mathfrak{p}, \mathrm{~T}) \cong\left(\Sigma^{\Sigma^{A}}, \mathfrak{p}^{\top} \&\right.$ prime, T$)$
$(A, T, \mathfrak{q}) \cong\left(\Sigma^{\Sigma^{A}}, \mathrm{~T}, \mathfrak{q}^{\top} \&\right.$ prime $) \cong \Sigma^{\left(\Sigma^{A}, \mathfrak{q}^{\top} \& \text { prime, } T\right) .}$
$\left(\Sigma^{A}\right.$, prime, T$) \gg\left(\Sigma^{A}, \mathrm{~T}, \mathrm{~T}\right) \underset{F \mapsto \lambda \mathcal{F} \cdot F(\lambda a \cdot \mathcal{F}(\lambda \phi \cdot \phi a))}{\stackrel{F \mapsto \lambda \mathcal{F} \cdot \mathcal{F} F}{\longrightarrow}}\left(\Sigma^{3} A, \mathrm{~T}, \mathrm{~T}\right)$
$\left(\Sigma^{A}, \mathfrak{p}^{\top} \&\right.$ prime,$\left.T\right) \gg\left(\Sigma^{A}\right.$, prime,$\left.T\right) \xrightarrow[\Sigma^{2} N]{\xrightarrow{\Sigma^{2} M}}(B, T, r) \cong \Sigma^{\left(\Sigma^{B}, r^{\top} \& \text { prime, } T\right)}$

$$
\{A \mid p\}>\longrightarrow\{A \mid \mathrm{T}\} \underset{\Sigma^{2} N}{\stackrel{\Sigma^{2} M}{\longrightarrow}} \cong \Sigma^{\{B \mid r\}}
$$

An exactness property

$$
\begin{aligned}
& \mathrm{Z} \equiv\left\{\Sigma^{A} \mid \mathfrak{p}\right\} \equiv(A, \mathfrak{p}, \mathrm{~T})>{ }^{i} \Sigma^{A} \equiv(A, \mathrm{~T}, \mathrm{~T}) \\
& \begin{array}{lll}
- & & \\
\Downarrow & & \Sigma^{j}
\end{array} \\
& X \equiv\left\{\Sigma^{\{A \mid q\}} \mid \mathfrak{p}\right\} \equiv(A, p, \mathfrak{q})>\longrightarrow \Sigma^{Y} \equiv \Sigma^{\{A \mid \mathfrak{q}\}} \equiv(A, \top, \mathfrak{q}) \quad Y \equiv\{A \mid \mathfrak{q}\} \\
& \begin{array}{rlr}
W \equiv & \left(A, \mathfrak{q}^{\mathfrak{p}}, \mathrm{T}\right)> & \Sigma^{2} A \equiv\left(\Sigma^{A}, \mathrm{~T}, \mathrm{~T}\right)
\end{array} \Sigma^{\Sigma^{A}} \\
& \Sigma^{X} \equiv\left(\Sigma^{A}, \mathfrak{q}^{\mathfrak{p}}, \mathfrak{p}\right)>\Sigma^{Z} \equiv\left(\Sigma^{A}, \top, \mathfrak{p}\right) \quad Z \equiv\left\{\Sigma^{A} \mid \mathfrak{p}\right\}
\end{aligned}
$$

Exactness property

Let \mathcal{L} be the full subcategory of objects (A, \mathfrak{p}, \top).
(In the case of equilogical spaces, \mathcal{L} consists of sober Bourbaki (= textbook) spaces.)
\mathcal{L} is closed under \times, regular monos and $\Sigma^{\Sigma^{(-)}}$.
Σ is injective wrt regular monos in \mathcal{L}.
Given regular mono $(A, p, T) \mapsto(A, T, T)$,
$\Sigma^{(-)}$takes it to a regular epi,
the pullback of this along any regular mono is still regular epi.
Set obeys similar (but stronger) properties.

A Chu-like construction

We can represent any equideductive space $(A, \mathfrak{p}, \mathfrak{q})$ by two \mathcal{L}-objects (A, \mathfrak{p}, \top) and $\left(\Sigma^{A}, \mathfrak{q}^{\mathfrak{p}}, \mathrm{T}\right)$.

Similarly any morphism $(A, \mathfrak{p}, \mathfrak{q}) \rightarrow(B, \mathfrak{r}, \mathfrak{s})$ is given by $(A, \mathfrak{p}, \mathrm{~T}) \rightarrow(B, \mathfrak{r}, \mathrm{~T})$ and $\left(\Sigma^{A}, \mathfrak{q}^{\mathfrak{p}}, \mathrm{T}\right) \leftarrow\left(\Sigma^{B}, \mathfrak{s}^{\mathfrak{r}}, \mathrm{T}\right)$.
$\left(\Sigma^{A}, \mathfrak{q}^{\mathfrak{p}}, T\right) \leftarrow\left(\Sigma^{B}, \mathfrak{s}^{\mathfrak{r}}, T\right)$ is a homomorphism of Σ^{2}-algebras.
Like the real and imaginary parts of a complex number.
So equideductive spaces have a topological part and an algebraic one, $c f$. Stone duality.

However, $(A, \mathfrak{p}, \mathrm{~T})$ is not the reflection of (A, p, q) in \mathcal{L}, and indeed does not depend functorially on it.

What kind of theory

Should generalised topology be

- bipartite, with a topological ("real") part and an algebraic ("imaginary" one), or
- unitary, where the same (exactness) properties apply to all objects?
(In "free" equideductive logic, the exactness property only holds when the basic object is (A, T, T), essentially a locally compact space.)

What kind of theory

Should generalised topology be

- bipartite, with a topological ("real") part and an algebraic ("imaginary" one), or
- unitary, where the same (exactness) properties apply to all objects?
(In "free" equideductive logic, the exactness property only holds when the basic object is ($A, \mathrm{~T}, \mathrm{~T}$), essentially a locally compact space.)

An analogy from the history of Science:

- Aristotle had a bipartite theory, with rectilinear motion on Earth and circular motion for the planets.
- Galileo and Newton unified them.

Similarly, whilst \mathbb{C} adds $\sqrt{-1}$ to \mathbb{R}, it otherwise obeys the same laws of algebra.

A critical example

$B \equiv \mathbb{N}^{\mathbb{N}}$ is not locally compact,
so $i: B \equiv \mathbb{N}^{\mathbb{N}} \mapsto R$ (where $R \equiv \Sigma^{\mathbb{N} \times \mathbb{N}}$ or $\mathbb{N}_{\perp}^{\mathbb{N}}$) is not Σ-split, i.e. there is no $I: \Sigma^{B} \rightarrow \Sigma^{R}$ with $\Sigma^{i} \cdot I=\mathrm{id}$.

Hence there is no diagonal fill-in

so $\Sigma^{i \times i d}$ is not surjective.
$\left((-) \times \Sigma^{B}\right.$ is crucial to this counterexample.)

A critical example

$B \equiv \mathbb{N}^{\mathbb{N}}$ is not locally compact,
so $i: B \equiv \mathbb{N}^{\mathbb{N}} \mapsto R$ (where $R \equiv \Sigma^{\mathbb{N} \times \mathbb{N}}$ or $\mathbb{N}_{\perp}^{\mathbb{N}}$) is not Σ-split, i.e. there is no $I: \Sigma^{B} \rightarrow \Sigma^{R}$ with $\Sigma^{i} \cdot I=\mathrm{id}$.

Hence there is no diagonal fill-in

so $\sum^{i x i d}$ is not surjective.
$\left((-) \times \Sigma^{B}\right.$ is crucial to this counterexample.)
Conjecture: $\Sigma^{i \times i d}$ could still be regular epi.

Question in recursion theory

Let $X \equiv \Sigma^{R}$ be the topology on the space R of binary relations (or partial functions if you prefer).
$B \equiv \mathbb{N}^{\mathbb{N}} \subset R$ induces an equivalence relation \sim on X (this is definable in equideductive logic).
From this, define the notations

$$
\begin{aligned}
& (f \sim g) \equiv \forall x \cdot f x \sim g x \\
& (\sim f=) \equiv \forall x y \cdot x \sim y \Rightarrow f x=f y \\
& (\sim g \sim) \equiv \forall x y \cdot x \sim y \Rightarrow g x \sim g y .
\end{aligned}
$$

Is the following extra rule consistent?

$$
\frac{\forall f g \cdot(\sim f \sim) \&(f \sim g) \&(\sim g \sim) \Rightarrow \Phi f=\Phi g \quad \forall f \cdot(\sim f=) \Rightarrow \Phi f=\Psi f}{\forall g \cdot(\sim g \sim) \Rightarrow \Phi g=\Psi g}
$$

Need to analyse the proof of $\forall f .(\sim f=) \Rightarrow \Phi f=\Psi f$.

The goal for a new theory of topology

- All maps are automatically continuous and computable.
- They represent computationally observable properties.
- Subspaces represent provable properties.
- Define subspaces as mathematicians (not set theorists) use set theory, e.g. $K \equiv\{x: X \mid \forall \phi . \square \phi \Rightarrow \phi x\}$.
- Generalised spaces have as many of the exactness properties of sets that they can have when all maps are continuous.

The goal for a new theory of topology

- All maps are automatically continuous and computable.
- They represent computationally observable properties.
- Subspaces represent provable properties.
- Define subspaces as mathematicians (not set theorists) use set theory, e.g. $K \equiv\{x: X \mid \forall \phi . \square \phi \Rightarrow \phi x\}$.
- Generalised spaces have as many of the exactness properties of sets that they can have when all maps are continuous.

The new category of spaces would be highly non-pointed.
Potential applications? Measure, distribution or probability theory.

