Equideductive Logic and CCCs with Subspaces

Paul Taylor

Domains Workshop IX U of Sussex, Tuesday, 23 September 2008

www.PaulTaylor.EU/ASD

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Abstract Stone Duality

- Lattice part: ⊤, ⊥, ∧, ∨ for open sets, = for discrete spaces,
 ≠ for Hausdorff, ∀ for compact and ∃ for overt ones.
- Categorical part: λ -calculus for $\Sigma^{(-)}$, and the adjunction $\Sigma^{(-)} \dashv \Sigma^{(-)}$ is monadic: gives definition by description, Dedekind completeness and Heine–Borel.

The categorical part only handles locally compact spaces. It needs to be generalised.

We will get a CCC, but that's not important, because the exponential Y^X is tested by incoming maps, but its topology by outgoing ones.

- コン・4回シュービン・4回シューレー

We certainly need products, $\Sigma^{(-)}$ and equalisers.

CCCs with all finite limits

Want to write $E = \{x \mid \forall y. \alpha xy = \beta xy\}.$

Equideductive logic

$$\vdash \forall x : \mathbf{0} \vdash p$$

$$p, q \vdash p\&q \quad p\&q \vdash p \quad p\&q \vdash q$$

$$\frac{\Gamma, x : A, p(x) \vdash \alpha x = \beta x}{\Gamma \vdash \forall x : A. p(x) \Rightarrow \alpha x = \beta x} \forall I$$

$$\frac{\Gamma \vdash a : A, p(a) \quad \Gamma \vdash \forall x : A. p(x) \Rightarrow \alpha x = \beta x}{\Gamma \vdash \alpha a = \beta a} \forall E$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

All the variables on the left of \Rightarrow must be bound by \forall . Maybe add some dependent types later. Must have subsitution (cut) for free variable *x*.

Interpretation of equideductive logic

- ► The obvious set-theoretic one the construction to follow will give Dana Scott's equilogical spaces.
- ► In locales but I'm not sure whether this works (Does (-) × X preserve epis? I have both a proof and a counterexample!)
- In Formal Topology, if this works.
- Proof-theoretic, taking the rules just as they are (as we shall do for most of this lecture).
- In another type theory such as Coquand's Calculus of Constructions or Coq.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• With additional axioms of our choosing.

Interaction with the lattice structure

The implication \Rightarrow in equideductive logic depends on the categorical structure (equalisers and $\Sigma^{(-)}$).

If Σ also has lattice structure, with induced order \Rightarrow , then these interact very nicely.

That is, if we assume the Phoa principle. In the Gentzen style, this is

$$\frac{x:X, \ \alpha x = \top + \beta x = \top}{x:X + \alpha x \Rightarrow \beta x} \quad \text{and} \quad \frac{x:X, \ \beta x = \bot + \alpha x = \bot}{x:X + \alpha x \Rightarrow \beta x}$$

which we rewrite as

$$(\forall x.\alpha x = \top \Rightarrow \beta x = \top) \iff (\forall x.\alpha x \Rightarrow \beta x)$$
$$\iff (\forall x.\beta x = \bot \Rightarrow \alpha x = \bot)$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

This is also the definition of $\alpha \leq \beta$.

Interaction with topological structure

Similarly, equality $=_N$ in a discrete space *N* is a special case of general equality of terms:

$$n = m \iff (n =_N m) = \top$$
, whilst $h = k \iff (h \neq_H k) = \bot$

in a Hausdorff space *H*.

The universal quantifier \forall in a compact space is related to \forall :

$$(\forall x. \phi x = \top) \iff (\forall x. \phi x) = \top$$

Similarly

$$(\forall x. \phi x = \bot) \iff (\exists x. \phi x) = \bot$$

in an overt space.

See Foundations for Computable Topology, §12, for more discussion: www.PaulTaylor.EU/ASD/foufct

Equideductive spaces

Urtypes: generated from 0, 1 and \mathbb{N} by +, × and ((–) $\rightarrow \Sigma$). Combinators, including

$$\mathbb{I}: (A \to \Sigma) \to A \to \Sigma, \qquad \mathbb{K}: (A \to \Sigma) \to B \to A \to \Sigma,$$

$$\mathbb{C}: \left((B \to \Sigma) \to (C \to \Sigma) \right) \to \left((A \to \Sigma) \to (B \to \Sigma) \right) \to (A \to \Sigma) \to C \to \Sigma$$

$$\mathbb{T}: \mathbf{1}, \qquad v_0: A \to (A + B), \qquad v_1: B \to (A + B),$$

$$\pi_0: \left((A + B) \to \Sigma \right) \to A \to \Sigma, \qquad \pi_1: \left((A + B) \to \Sigma \right) \to B \to \Sigma,$$

$$\langle \rangle: \left((C \to \Sigma) \to A \to \Sigma \right) \to \left((C \to \Sigma) \to B \to \Sigma \right) \to (C \to \Sigma) \to (A + B) \to \Sigma.$$

$$\mathbb{A}: \left(((A \to \Sigma) + A) \to \Sigma \right) \to (A \to \Sigma) \to (B \to \Sigma) \to \Sigma.$$

with appropriate equational axioms, such as $\forall MN\phi c. \mathbb{C}NM\phi c = N(M\phi)c$, without \Rightarrow .

Equideductive spaces

An equideductive space *X* is (*A*, \mathfrak{p} , \mathfrak{q}) where *A* is an urtype, \mathfrak{p} is an urstatement on Σ^A and \mathfrak{q} one on *A*, for which

 $\phi, \psi: \Sigma^A, \quad \mathfrak{p}(\phi), \quad \forall a: A. \ \mathfrak{q}(a) \Rightarrow \phi a = \psi a \quad \vdash \quad \mathfrak{p}(\psi).$

This rule is important in the construction.

Later, we tighten it to ensure that all spaces are definable using exponentials and equalisers.

LHS is a partial equivalence relation.

A morphism $M : X \equiv (A, \mathfrak{p}, \mathfrak{q}) \to Y \equiv (B, \mathfrak{r}, \mathfrak{s})$ is an realiser $M : (A \to \Sigma) \to B \to \Sigma$ such that

 $\phi: \Sigma^{A}, \quad \mathfrak{p}(\phi) \quad \vdash \quad \mathfrak{r}(M\phi)$ $\phi, \psi: \Sigma^{A}, \quad \mathfrak{p}(\phi), \quad \forall a. \mathfrak{q}(a) \Rightarrow \phi a = \psi a \quad \vdash \quad \forall b. \mathfrak{s}(b) \Rightarrow M\phi b = M\psi b,$ where $M_{1} = M_{2}$ if

 $\phi: \Sigma^A, \quad \mathfrak{p}(\phi) \quad \vdash \quad \forall b: B. \ \mathfrak{s}(b) \Rightarrow M_1 \phi b = M_2 \phi b.$

Categorical structure

$$\mathbf{1} \equiv (\mathbf{0}, \top, \top), \Sigma \equiv (\mathbf{1}, \top, \top).$$

The product is $(A, \mathfrak{p}, \mathfrak{q}) \times (B, \mathfrak{r}, \mathfrak{s}) \equiv (A + B, (\mathfrak{p} \cdot \pi_0 \& \mathfrak{r} \cdot \pi_1), [\mathfrak{q}, \mathfrak{s}])$. The equaliser is

$$E \equiv (A, \mathfrak{t}, \mathfrak{q}) > \xrightarrow{I} (A, \mathfrak{p}, \mathfrak{q}) \xrightarrow{M} (B, \mathfrak{r}, \mathfrak{s})$$

$$\mathfrak{t}(\phi) \equiv \mathfrak{p}(\phi) \& \forall b \colon B. \mathfrak{s}(b) \Rightarrow M\phi b = N\phi b,$$

The exponential of $X \equiv (A, \mathfrak{p}, \mathfrak{q})$ is $\Sigma^X \equiv (\Sigma^A, \mathfrak{q}^{\mathfrak{p}}, \mathfrak{p})$, where

 $\mathfrak{q}^{\mathfrak{p}}(F) \equiv \forall \phi, \psi \colon \Sigma^{A}. \ \mathfrak{p}(\phi) \And (\forall a \colon A. \ \mathfrak{q}(a) \Rightarrow \phi a = \psi a) \Rightarrow F\phi = F\psi.$

(The modulation $p(\phi)\&\cdots$ is the source of many difficulties.)

All objects are definable

If q is defined using \top , equations, & and $\forall \Rightarrow$ then $q(a) \dashv q^{\top}(\lambda \phi, \phi a)$. $(A, p, \top) \cong (\Sigma^{\Sigma^{A}}, p^{\top} \& \text{ prime}, \top)$ $(A, \top, q) \cong (\Sigma^{\Sigma^{A}}, \top, q^{\top} \& \text{ prime}) \cong \Sigma^{(\Sigma^{A}, q^{\top} \& \text{ prime}, \top)}$.

$$(\Sigma^{A}, \mathsf{prime}, \top) \longrightarrow (\Sigma^{A}, \top, \top) \xrightarrow{F \mapsto \lambda \mathcal{F}. \mathcal{F}F} (\Sigma^{3}A, \top, \top)$$
$$F \mapsto \lambda \mathcal{F}. F(\lambda a. \mathcal{F}(\lambda \phi. \phi a))$$

$$(\Sigma^{A}, \mathfrak{p}^{\mathsf{T}} \& \mathsf{prime}, \mathsf{T}) >> (\Sigma^{A}, \mathsf{prime}, \mathsf{T}) \xrightarrow{\Sigma^{2}M} (B, \mathsf{T}, \mathfrak{r}) \cong \Sigma^{(\Sigma^{B}, \mathfrak{r}^{\mathsf{T}} \& \mathsf{prime}, \mathsf{T})}$$

$$\{A \mid p\} \longrightarrow \{A \mid \mathsf{T}\} \xrightarrow{\Sigma^2 M}_{\Sigma^2 N} \cong \Sigma^{\{B \mid \mathsf{r}\}}$$

An exactness property

$$Z \equiv \{\Sigma^{A} \mid \mathfrak{p}\} \equiv (A, \mathfrak{p}, \top) \xrightarrow{i} \Sigma^{A} \equiv (A, \top, \top) \qquad A$$

$$\downarrow \Box^{j} \qquad \qquad \downarrow \Sigma^{j} \qquad \qquad \uparrow^{j}$$

$$X \equiv \{\Sigma^{\{A\mid \mathfrak{q}\}} \mid \mathfrak{p}\} \equiv (A, \mathfrak{p}, \mathfrak{q}) \xrightarrow{\Sigma^{Y}} \Sigma^{\{A\mid \mathfrak{q}\}} \equiv (A, \top, \mathfrak{q}) \qquad Y \equiv \{A \mid \mathfrak{q}\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Exactness property

Let \mathcal{L} be the full subcategory of objects (A, \mathfrak{p} , \top).

(In the case of equilogical spaces, \mathcal{L} consists of sober Bourbaki (= textbook) spaces.)

- \mathcal{L} is closed under \times , regular monos and $\Sigma^{\Sigma^{(-)}}$.
- Σ is injective wrt regular monos in \mathcal{L} .
- Given regular mono $(A, \mathfrak{p}, \top) \rightarrow (A, \top, \top)$,
- $\Sigma^{(-)}$ takes it to a regular epi,
- the pullback of this along any regular mono is still regular epi.

Set obeys similar (but stronger) properties.

A Chu-like construction

We can represent any equideductive space $(A, \mathfrak{p}, \mathfrak{q})$ by two \mathcal{L} -objects (A, \mathfrak{p}, \top) and $(\Sigma^A, \mathfrak{q}^\mathfrak{p}, \top)$.

Similarly any morphism $(A, \mathfrak{p}, \mathfrak{q}) \to (B, \mathfrak{r}, \mathfrak{s})$ is given by $(A, \mathfrak{p}, \top) \to (B, \mathfrak{r}, \top)$ and $(\Sigma^A, \mathfrak{q}^\mathfrak{p}, \top) \leftarrow (\Sigma^B, \mathfrak{s}^\mathfrak{r}, \top)$.

 $(\Sigma^A, \mathfrak{q}^\mathfrak{p}, \top) \leftarrow (\Sigma^B, \mathfrak{s}^\mathfrak{r}, \top)$ is a homomorphism of Σ^2 -algebras.

Like the real and imaginary parts of a complex number.

So equideductive spaces have a topological part and an algebraic one, *cf.* Stone duality.

However, (A, \mathfrak{p}, \top) is not the reflection of $(A, \mathfrak{p}, \mathfrak{q})$ in \mathcal{L} , and indeed does not depend functorially on it.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What kind of theory

Should generalised topology be

- bipartite, with a topological ("real") part and an algebraic ("imaginary" one), or
- unitary, where the same (exactness) properties apply to all objects?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(In "free" equideductive logic, the exactness property only holds when the basic object is (A, \top, \top) , essentially a locally compact space.)

What kind of theory

Should generalised topology be

- bipartite, with a topological ("real") part and an algebraic ("imaginary" one), or
- unitary, where the same (exactness) properties apply to all objects?

(In "free" equideductive logic, the exactness property only holds when the basic object is (A, \top, \top) , essentially a locally compact space.)

An analogy from the history of Science:

- Aristotle had a bipartite theory, with rectilinear motion on Earth and circular motion for the planets.
- Galileo and Newton unified them.

Similarly, whilst \mathbb{C} adds $\sqrt{-1}$ to \mathbb{R} , it otherwise obeys the same laws of algebra.

A critical example

 $B \equiv \mathbb{N}^{\mathbb{N}}$ is not locally compact, so $i: B \equiv \mathbb{N}^{\mathbb{N}} \rightarrow R$ (where $R \equiv \Sigma^{\mathbb{N} \times \mathbb{N}}$ or $\mathbb{N}^{\mathbb{N}}_{\perp}$) is not Σ -split, *i.e.* there is no $I: \Sigma^{B} \rightarrow \Sigma^{R}$ with $\Sigma^{i} \cdot I = id$. Hence there is no diagonal fill in

Hence there is no diagonal fill-in

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

so $\Sigma^{i \times id}$ is not surjective. ((-) × Σ^{B} is crucial to this counterexample.)

A critical example

 $B \equiv \mathbb{N}^{\mathbb{N}}$ is not locally compact, so $i: B \equiv \mathbb{N}^{\mathbb{N}} \rightarrow R$ (where $R \equiv \Sigma^{\mathbb{N} \times \mathbb{N}}$ or $\mathbb{N}^{\mathbb{N}}_{\perp}$) is not Σ -split, *i.e.* there is no $I: \Sigma^{B} \rightarrow \Sigma^{R}$ with $\Sigma^{i} \cdot I = id$.

Hence there is no diagonal fill-in

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

so $\Sigma^{i \times id}$ is not surjective. ((-) $\times \Sigma^{B}$ is crucial to this counterexample.) Conjecture: $\Sigma^{i \times id}$ could still be regular epi.

Question in recursion theory

Let $X \equiv \Sigma^R$ be the topology on the space *R* of binary relations (or partial functions if you prefer).

 $B \equiv \mathbb{N}^{\mathbb{N}} \subset R$ induces an equivalence relation ~ on *X* (this is definable in equideductive logic).

From this, define the notations

$$\begin{array}{rcl} (f \sim g) &\equiv & \forall x. \, fx \sim gx \\ (\sim f=) &\equiv & \forall xy. \, x \sim y \Rightarrow fx = fy \\ (\sim g\sim) &\equiv & \forall xy. \, x \sim y \Rightarrow gx \sim gy. \end{array}$$

Is the following extra rule consistent?

$$\frac{\forall fg. (\sim f \sim) \& (f \sim g) \& (\sim g \sim) \Rightarrow \Phi f = \Phi g \qquad \forall f. (\sim f =) \Rightarrow \Phi f = \Psi f}{\forall g. (\sim g \sim) \Rightarrow \Phi g = \Psi g}$$

Need to analyse the proof of $\forall f. (\sim f=) \Rightarrow \Phi f = \Psi f.$

・ロト・4日・4日・4日・4日・900

The goal for a new theory of topology

- All maps are automatically continuous and computable.
- ► They represent computationally observable properties.
- Subspaces represent provable properties.
- ► Define subspaces as mathematicians (not set theorists) use set theory, *e.g.* $K \equiv \{x : X \mid \forall \phi. \Box \phi \Rightarrow \phi x\}$.
- Generalised spaces have as many of the exactness properties of sets that they can have when all maps are continuous.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The goal for a new theory of topology

- All maps are automatically continuous and computable.
- ► They represent computationally observable properties.
- Subspaces represent provable properties.
- ► Define subspaces as mathematicians (not set theorists) use set theory, *e.g.* $K \equiv \{x : X \mid \forall \phi. \Box \phi \Rightarrow \phi x\}$.
- Generalised spaces have as many of the exactness properties of sets that they can have when all maps are continuous.

- コン・4回シュービン・4回シューレー

The new category of spaces would be highly non-pointed.

Potential applications? Measure, distribution or probability theory.