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Foundations of Physics — a Disclaimer
When I was 18, I wanted to study General Relativity.
I was taught Quantum Mechanics by John Polkinghorne.
He was not very impressed with my efforts.
I haven’t thought about physics since I graduated.

So, I don’t come here “as a mathematician criticising
physicists”.

I just want to share some ideas about the foundations of
mathematics with you because
I I think we might agree on some of the methodology, and
I there may be some common ground that we could develop.



Using Categories and Logic in Foundations
Methodology:
I identify the structure that we believe physics, topology, etc.

to have, as Axioms,
I reconstruct the mathematics,
I as a bonus, it’s computable.

This can be done using category theory and symbolic logic.

theorems in the old system ................... theorems in the new system

universal properties
∨

> introduction/elimination rules

∧

physics

....
computation

∨



What do we believe about R and C?
There is a longstanding belief that R is for measurement.
Addition, multiplication, subtraction, division?, square roots?
...
Testing real numbers for strict order, equality? ...
Completion to solve equations.
All of this seems to be computable...



Computable real numbers
There are lots of constructions of the real line,
especially in the theoretical computer science literature.

Let’s just agree this extremely weak property:

For x : R to be a recursive real number,
there must be a program that,
given d,u : Q as input,
halts if d < x < u, but continues forever otherwise.

This is plainly not sufficient for practical purposes, because no
numbers are ever output, but it’s necessary.

If the program encodes a single genuine real number,
the sets D and U of ds and us that cause the program to halt
must satisfy certain consistency conditions.

In fact, they must define a Dedekind cut. Also, since they arise
from programs, they are recursively enumerable.



One-way computability
Equality of real numbers is not computable.

Physicists, numerical analysts and constructive mathematicians
know this.

Classical mathematicians deny it. God tells them the answer.

But, as Errett Bishop said, if God has mathematics that needs to
be done, let Him do it Himself.

But, inequality of real numbers is computable.
You just have to wait for enough digits to be computed.
(That’s not so obvious in Physics, but it’s not for me to say.)

So the answer to a computational question is not Boolean.
It may be yes, or. . . . . . (maybe wait forever).
Alan Turing: there is no negation that swaps these.



Some types and algebraic operations
0, 1, 2, . . . ,N, R, C, I ≡ [0, 1] ⊂ R.
0, 1, +, × onN, 0, 1, +, −, × (÷?) on R.

We can define (+) : R ×R→ R etc.

=, ,, <, >, ≤, 6 onN are decidable.
We can define (=) :N ×N→ 2 etc.

But (<), (>), (,) : R ×R→ Σ,
where Σ is the type of answers to computable questions,
> ≡ yes, ⊥ ≡ wait.

Analogy between open and recursively enumerable subsets.



More logic on Σ
By considering sequential processes, we also have
(∧) : Σ × Σ→ Σ.

By considering parallel processes, we have (∨) : Σ × Σ→ Σ.
Also (∃N) : ΣN → Σ.

However, we not have ¬,⇒ or ∀N.



’Tis a maxim tremendous but trite
Σ is the type with values
I > (a signal, “yes”), and
I ⊥ (“wait”).

Therefore a program F : Σ→ Σ can only do one of three things:
I Fx ≡ ⊥: never terminate;
I Fx ≡ x: wait for the incoming signal, do some internal

processing and then output a signal; or
I Fx ≡ >: (maybe do some internal processing and then)

output a signal, without waiting for the input.
(As we have said, it cannot interchange > and ⊥).
Since Σ is a lattice, this means that, for all x ∈ Σ,

Fx = F⊥ ∨ x ∧ F>

So any F : Σ→ Σ is a polynomial.
This is called the Phoa Principle. It turns out to be as important
in topology as the distributive law is in arithmetic.
We’ll come back to the polynomials later.



More operations on R
Classically, any non-empty subset of R that is bounded above
has a supremum.
(This is one way of stating Dedekind completeness.)

Now choose your favourite unsolved or unsolvable problem:
I let gn ≡ 0 if there are prime numbers p and q such that

2n + 4 = p + q, but gn ≡ 1 if there aren’t; or
I let gn ≡ 1 if there is a proof that 0 = 1 with at most n

symbols in whatever logic you’re using,
but gn ≡ 0 if there isn’t.

So, we believe that gn = 0 for all n, but cannot prove it.



More operations on R
The sequence gn only takes values 0 or 1,
so it is non-empty and bounded above,
We believe that gn = 0 for all n.
What is its supremum, a ≡ sup gn?
Is it 0, 1 or something else?

Recall that, for a : R to be a recursive real number,
there must be a program that given d,u : Q as input,
halts if d < a < u, but continues forever if not.

So it must halt in exactly one of these two cases:
I d ≡ −1

3 , u ≡ +1
3 , if a = 0, or

I d ≡ 2
3 , u ≡ +4

3 , if a = 1.

But if it does this, it has answered our unsolved problem
(the Goldbach conjecture or consistency of our ambient logic).

Hence a does not exist as a computable real number.



One-sided reals
We have shown that the value a ≡ sup gn does not belong to R.

In fact, there is no problem here.

This value can be given the type R
of ascending or lower reals.
Also, −a ∈ R is a descending or upper real.
R and R have sup, inf and +.

However, they don’t have −.
They are to R as Σ is to 2 — much simpler.

In fact, many of the results that say
“such-and-such a real number is not computable”
just show that this number is an ascending or descending real.



Russian Recursive Analysis
Can we do analysis with the set R of recursive real numbers?

Yes, but it has some rather unpleasant features.

There is a singular cover of I ≡ [0, 1] ⊂ R.
This is a recursively enumerable sequence of intervals
(pn, qn) ⊂ R with pn < qn : Q such that
I each recursive real number a ∈ I lies in some interval

(pn, qn),
I but

∑
n qn − pn < 1.

There is no finite subcover of I ≡ [0, 1].
Measure theory also goes badly wrong.



One solution: Bishop’s Constructive Analysis
Live without the Heine–Borel theorem.

Errett Bishop, Foundations of Constructive Analysis, 1967
He developed remarkably much of analysis in a “can do” way,
without dwelling on counterexamples that arise from wrong
classical definitions.

This theory has been developed by Douglas Bridges, Hajime
Ishihara, Mark Mandelkern, Ray Mines, Fred Richman, Peter
Schuster, ...

It is consistent with both Russian Recursive Analysis and
Classical Analysis.

It uses Intuitionistic Logic (Brouwer, Heyting).



One solution: Bishop’s Constructive Analysis
Compact = closed and totally bounded.
(X is totally bounded if, for any ε > 0, there’s a finite set Sε ⊂ X
such that for any x ∈ X there’s s ∈ Sε with d(x, s) < ε.)

Continuity on a compact interval (in this sense)
is defined as uniform continuity.

Unfortunately, this makes it very difficult to say that x 7→ 1
x is

continuous on (0,∞).



Singular covers in physics
Consider a differential equation on a simply connected open
domain D, such as [0, 1] ⊂ D ⊂ R.

Suppose that, given an initial condition at any point x ∈ D,
we expect to be able to extend this to a unique local solution of
the equation on some open Ux ⊂ D, with x ∈ Ux.
(For simplicity, we ignore the fact that Ux depends on the
choice of the initial condition.)

Write x ∼ y if there is some patch Ux with y ∈ Ux.

By definition, x ∼ x.
Also, by repeating (continuing) the solution of the equation,

x ∼ y⇒ y ∼ x and x ∼ y ∼ z⇒ x ∼ z,

so ∼ is an equivalence relation.

Surely then 0 ∼ 1, the initial condition defines a global solution?

Using the Heine–Borel theorem, yes, but not in recursive
analysis or Bishop’s theory.



Another solution: Weihrauch’s Type Two Effectivity
Consider all real numbers, not just recursive ones.
Represent them (for example) by signed binary expansions

a =
+∞∑

k=−∞

dk · 2−k with dk ∈ {+1, 0,−1}.

Think of {. . . , 0, 0, 0, . . . , d−2, d−1, , d0, d1, d2, . . .} as a Turing tape
with finitely many nonzero digits to the left,
but possibly infinitely many to the right.

Do real analysis in the usual way.

Do computation with the sequences of digits.

Klaus Weihrauch, Computable Analysis, Springer, 2000.
Developed by Vasco Brattka, Peter Hertling, Martin Ziegler, ...



Disadvantages of these methods
Point-set topology and recursion theory separately are
complicated subjects that lack conceptual structure.

Together, they give pathological results.

Intuitionism makes things even worse —
the natural relationship between open and closed subspaces
is replaced by double negation.

We’re still relying on Set Theory — the continuum as dust.

We said that we would only assume what we believe.

Category theory can do better than this!



Compactness and Scott continuity
A subsetU ⊂ L of a complete lattice is Scott open if
any subset S ⊂ L for which

∨
S ∈ U

already has some finite F ⊂ Swith
∨
F ∈ U.

The Scott open subsetsU ⊂ L form a topology.

Let L be the lattice of open subspaces of a space X.
Then a subset K ⊂ X is compact iff the family

UK ≡ {U ∈ L | K ⊂ U}

of open neighbourhoods of K is a Scott open subset of L.

This is just the usual “finite open sub-cover” definition of
compactness.



Higher-type operations in topology
We have already introduced the type Σ.

Continuous (computable) maps φ : X→ Σ
correspond bijectively to
open (recursively enumerable) subsets U ⊂ X.

Hence ΣX is the topology on X.

We give ΣX the Scott topology.

If K is compact, K ⊂ (−) is a Scott continuous map ΣX
→ Σ.

We write ∀Kφ or ∀x : K. φx for K ⊂ U.

We can the use λ-calculus on types like ΣR to write topological
arguments.



The axioms so far
Some base types, includingN and R, with arithmetic
operations.
The space Σ, with lattice operations.
Relations such as (<) : R ×R→ Σ.
Quantifiers such as ∃N : ΣN → Σ and ∃[0,1] : ΣN → Σ.
In fact ∃x : R. φx ⇐⇒ ∃x : Q. φx.
λ-calculus to work with open subsets and higher types.



Computation with Dedekind reals
Any real-valued computation defines a pair of formulae
δ, υ : ΣQ.

Implicitly, we have a proof that it is a Dedekind cut.

Computation to precision ε involves finding
d,u ∈ Qwith δd ∧ υu and u − d < ε.

This is a logic programming problem.

Methods such as constraint logic programming
and interval-Newton can be used to solve it.

Efficient computation with Dedekind reals (Andrej Bauer).



The Dedekind reals
Recall that any computable real number corresponds to
a recursively enumerable Dedekind cut (D,U).

In our λ-calculus we represent D,U ⊂ Q as

δ, υ : ΣQ where δd ⇐⇒ (d < a) and υu ⇐⇒ (a < u).

The condiditions for (δ, υ) ∈ ΣQ × ΣQ to form a Dedekind cut
are equations,
so the Dedekind reals can be expressed as an equaliser,

R > > ΣQ × ΣQ >
> (a power of Σ)

The universal property of the equaliser says that
every recursively enumerable Dedekind cut
defines a real number.

But there’s more to it than this.



The topology of the Dedekind reals
When we apply Σ(−) to the diagram

R >
i

> ΣQ × ΣQ >
> · · ·

ΣR <<
Σi

>
I

> Σ
ΣQ×ΣQ

<
<

>
· · ·

we find that the Heine–Borel theorem
is equivalent to the existence of a map I with Σi

· I = id.

In traditional notation, the map I takes
an open subspace O ⊂ R to the open subspace

{(D,U) ∈ ΣQ × ΣQ | ∃d,u : Q. d ∈ D ∧ u ∈ U ∧ [d,u] ⊂ O}.

In our λ-calculus,

Iφ = λδυ. ∃d < u. δd ∧ υu ∧ ∀x : [d,u]. φx.

The idempotent E ≡ I · Σi on ΣΣ
Q
×ΣQ can be defined just using

rationals.



A type theory
Generate types from 1 andN using ×, Σ(−)

and Σ-split subspaces

{X | E} >
i

> X >
> · · ·

Σ{X|E} <<
Σi

>
I

> Σ
X
<
<

>
· · ·

where E : ΣX
× ΣX satisfies a suitable equation.

The object {X | E} is defined
using an abstract type theory, not as a subset!

R can be constructed in this way, and
it satisfies the Heine–Borel theorem!
Andrej Bauer and Paul Taylor, The Dedekind Reals in ASD,
in Mathematical Structures in Computer Science (this month).

Any computably based locally compact space can be defined in
this way.



Some bits of analysis
The quantifier ∀x : [0, 1] is derived from E.
In fact, the ideas are equivalent to those in Interval Analysis.

Every function f : R→ R is continuous in the ε–δ-sense:

ε > 0 ⇒ ∃δ > 0. ∀y : [x ± δ].
(∣∣∣fy − fx

∣∣∣ < ε).
Connectedness and the intermediate value theorem, in
A lambda calculus for real analysis (PT)

Every open subspace of R is uniquely expressible
as a countable disjoint union of open intervals.
(“Countable” and “interval” have to be understood
appropriately.)
The uniqueness fails in Bishop’s theory.



Summary of the axioms on R
I R is an overt space (it has ∃),
I it is Hausdorff, with an inequality or apartness relation, ,,
I the closed interval [0, 1] is compact, with ∀[0,1],
I R has a total order: (x , y)⇔ (x < y) ∨ (y < x),
I it is Dedekind-complete,
I it is a field, where x−1 is defined iff x , 0 in the above sense,
I and Archimedean: for x, y : R,

y > 0 ⇒ ∃n : Z. y(n − 1) < x < y(n + 1).

These properties characterise R uniquely up to unique
isomorphism.



Overtness
An English pun: “overt” means both “open” and “explicit”.

I wish I could explain this you. Here are some related ideas:

Bishop’s constructive analysis solves many of the problems
of Russian Recursive Analysis by using
total boundedness (finite nets of arbitrarily small mesh) and
locatedness (another metrical property).

Recursive enumerability.

The lattice dual of compactness.

Surely it must be relevant in physics, but I don’t know how.



Where did the Σ-split subspaces come from?
Whenever the exponential Σ(−) exists,
this contravariant functor is self-adjoint:

Stone duality, abstractly:

The category of topologies is Sop,
the dual of the category S of “spaces”.

It’s also a category of algebras for a
monad on S.

S
op

S

Σ(−)

∧

a Σ(−)

∨

This was my idea in 1993,
inspired by Robert Paré, Colimits in topoi, 1974:
the category of sets, or any topos, has this property.



Some generalised abstract nonsense
Jon Beck (1966) characterised monadic adjunctions:

I Σ(−) : Sop
→ S reflects invertibility,

i.e. if Σf : ΣY � ΣX then f : X � Y, and
I Σ(−) : Sop

→ S creates Σ(−)-split coequalisers.

Category theory is a strong drug —
it must be taken in small doses.

Beck’s theorem says exactly that we may define Σ-split
subspaces such as R ⊂ ΣQ × ΣQ.



The structure of the theory
Abstract Stone Duality was developed by
unwinding some abstract categorical ideas.

Abstractly, its axioms come in two parts:

There is the underlying structure of the category.
This is a way of defining types (spaces), terms (functions) and
subtypes.
It ensures that
I the types and subtypes have the correct topology, and
I all functions are continuous.

It is based on an object Σ
but says nothing about its structure.

Then there are some simple lattice-theoretic axioms
that are specific to topology.



The structure of the theory
The axioms specific to topology were:
I Σ is a lattice (>, ⊥, ∧, ∨, ∃N),
I the Phoa principle: every F : Σ→ Σ is a polynmial,

Fx = F⊥ ∨ x ∧ F>,
I Scott continuity (actually implies Phoa).

The underlying abstract category theory does most of the work!



Could we use the underlying structure elsewhere?
LetH be the category of Hilbert spaces
and continuous linear maps.

H is a model of linear logic with ⊕, ⊗, †.

There is an of course comonad.

By a ring (for short) I mean a commutative monoid in (H ,⊗)
with a unit. Let R be the category of rings and their
homomorphisms.

There is a forgetful functor U : R → H .
It has a left adjoint T : H → R called tensor algebra.



Σ and its powers
My model will be S ≡ Rop

(the category of cocommutative coalgebras):

H
op

†
>

'
<
†

H

S ≡ R
op

U

∨

a T

∧

>
< R

T

∨

a U

∧

Let Ξ,Γ ∈ S be X,G ∈ R.
Then there are correspondences amongst
Γ × Ξ→ Σ in S
TI→ G ⊗ X in R
I→ UG ⊗UX inH
†UX→ UG inH
T(†UX)→ G in R
Γ→ ΣX in S,
where ΣX in S is T(†UX) in R.



Equalisers and coequalisers

H
op

†
>

'
<
†

H

S ≡ R
op

U

∨

a T

∧

>
< R

T

∨

a U

∧

I think (but need someone else to check) that
U preserves reflexive coequalisers, and
T preserves coreflexive equalisers
whilst both functors reflect invertibility.

This makesHop a category of algebras over S,
whilst we already knew that R is a category of algebras overH .

S is cartesian closed (and a lot more).



Computable reaxiomatisation of Hilbert spaces
On the analogy of ASD in computable topology, we would
expect:

S to have a simple axiomatisation consisting of
the underlying type theory with Σ(−) and equalisers
Σ to be an internal ring like C,
all functions Σ→ Σ are polynomials.

Over this,Hop is a category of finitary algebras.

However, I need someone else to help me work this out.


