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Equideductive logic
I is a very simple predicate calculus with ∀ and =. over a

simply typed λ-calculus
I is the logic of regular monos (equalisers) in

any cartesian closed category with all finite limits
I captures judgements and proof rules for equations
I has arbitrarily nested implication for induction
I is the metalanguage for Dana Scott’s equilogical space

construction
I needs an extra axiom
I has a realisability interpretation in itself that we might use

to show conservativity (but I need help doing this).



Abstract Stone Duality
ASD’s axiomatisation of general topology consists of
I a lattice part: >, ⊥, ∧, ∨ for open sets, = for discrete spaces,
, for Hausdorff, U for compact and ∃ for overt ones
(we’ll see the reason for the new symbol U in place of ∀);
I a categorical part: λ-calculus for Σ(−), and the adjunction
Σ(−)
a Σ(−) is monadic: gives definition by description,

Dedekind completeness and Heine–Borel.

I have already done some elementary real analysis with this.
I would like to do functional analysis, such as Fourier series,
measure theory, distribution theory.
But the categorical part only handles locally compact spaces.
It needs to be generalised.

We will get a CCC, but that’s not important, because
I the exponential YX is tested by incoming maps,
I but its topology by outgoing ones.
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Not the definition of a topos
We certainly need products, Σ(−) and equalisers.

A topos
I has an internal Heyting algebra Ω; and
I is cartesian closed, with equalisers as well as products, and

all powers, in particular of Ω.

Even though this is much weaker than the correct definition,
these two ideas are surprisingly powerful.

First we look at CCCs with equalisers.

Then we see how a special semilattice Σ sits in this.
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CCCs with all finite limits
Working with nested equalisers and exponentials is clumsy.
Want to write E = {x | ∀y. αxy = βxy}.

E

Γ
a

b
..........

..........
..........

.....>

> X
α̃

>

β̃
>

i>

> ΣY

E × Y

∧

Γ × Y

∧

a × idY

b × idY

..........
..........

........>

> X × Y

∧

α̃ × Y
>

β̃ × Y
>

i × idY

>
ΣY
× Y

∧

Σ

α

∨

β

∨

<
ev>

α(a, y) = β(a, y)
>

This can be stated without mentioning ΣY

as a universal property called a partial product.



Equideductive logic
The symbolic rules for ∀ =. are as you would expect:

Γ, x : A, p(x) ` αx = βx
∀I

Γ ` ∀x : A. p(x) =. αx = βx

Γ ` a : A, p(a) Γ ` ∀x : A. p(x) =. αx = βx
∀E

Γ ` αa = βa

Of course, we need substitution (cut) for the free variable x.
It is given by a small change to the partial product diagram.

This logic also has conjunction, with

` > p, q ` p&q p&q ` p p&q ` q,

given by equalisers targeted at products. So, although ∀ =.
fundamentally has an equation on the right, we may define

∀y.
(
p(y) ==. ∀z. (q(z) =. αxyz = βxyz)

)
as ∀yz. (p(y) & q(z) ==. αxyz = βxyz).
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The variable-binding rule
In the expression ∀~y. p(~y) ==. α~x~y = β~x~y,
all of the variables on the left of =. must be bound by ∀.

This is because the target of the equaliser was ΣY,
not a dependent type.



Not all dependent types
Maybe we can add some dependent types later, but
we cannot have all dependent types,
because we’re doing topology, not set theory.

Write $ for the ascending natural number domain,

∞...
•

•

•

•

1
∞

> $

0

∧

>N

∧

ThenN→ $ is epi but not surjective,
since∞ has no inverse image, i.e. its pullback is the initial object.

Therefore, a category of “sober” spaces and Scott-continuous
functions cannot be locally cartesian closed.
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Equideductive translation of rules
An algebraic theory may be presented using judgements

x : X, y : Y, . . . , a = b, c = d, . . . ` e = f

which we re-write in equideductive logic as

∀x : X.∀y : Y. . . . a = b & c = d & . . . ==. e = f ,

in which all of the variables are bound by ∀.

Then a rule

x : X, y : Y, . . . , a = b, c = d, . . . ` e = f

u : U, v : V, . . . , g = h, k = `, . . . ` m = n

is re-written as(
∀x : X.∀y : Y. . . . a = b & c = d & · · · =. e = f

)
==.
(
∀u : U.∀v : V. . . . g = h & k = ` & · · · =. m = n

)
.
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Induction
Let’s play with the logic a bit more.

Since =. can be nested arbitrarily deeply, we can write
induction as

∀n. p(0) &
(
∀m. p(m) =. p(m + 1)

)
==. p(n).



A “double negation” property
If p(a) is >, q(a)&r(a) or ∀y. q(y) =. αay = βay then

p(a) a` ∀φψ. (∀a′. p(a′) =. φa′ = ψa′) ==. φa = ψa

where a : A and φ,ψ : ΣA.



Disjunction and existential quantification
Using p(a) a` ∀φψ. (∀a′. p(a′) =. φa′ = ψa′) ==. φa = ψa
we may also define (p ∨ q)(a) as

∀φψ. (∀a′. p(a′) =. φa′ = ψa′) &
(∀a′′. q(a′′) =. φa′′ = ψa′′) =. φa = ψa

and (ΞIx. p)(a) as

∀φψ. (∀a′x. p(x, a′) =. φa′ = ψa′) =. φa = ψa.

However, this only satisfies the distributive and Frobenius laws

(p ∨ q)(~a)&r(~b) a`
(
(p&r) ∨ (q&r)

)
(~a,~b)

and (ΞIx. p)(~a)&r(~b) a`
(
ΞIx. (p&r)

)
(~a,~b)

when ~a and ~b are disjoint sets of variables.



From the logic back to the category
Given a CCC Swith all finite limits,
its regular monos obey equideductive logic.

Inside S there are non-CCC subcategories L
that still obey equideductive logic,
with ∀ =. defined using partial products.

Other categories Lmight have these properties too.

Conversely, from the logic or another category L
we can define a CCC Swith all finite limits.



Equilogical spaces
Dana Scott introduced equilogical spaces.
They are given by partial equivalence relations
on (the sets of points of) algebraic lattices.

They provide a cartesian closed extension
of the textbook category of topological spaces.

There are many variations, including
Martin Hyland’s filter spaces and Alex Simpson’s QCB.

Giuseppe Rosolini related these categories to presheaves on,
and exact completions of, the textbook category.

However, these categories include many objects
that owe more to set theory than to topology.



Equideductive spaces
In Scott’s construction, the objects that are definable
from algebraic lattices using products, equalisers and Σ(−)

involve partial equivalence relations
that are restrictions of congruences.

So we replace one, two-argument partial equivalence relation
with two one-argument predicates (p and q).

Also, instead of set theory, we use equideductive logic,
possibly with some other interpretation.

What other interpretation?
That’s a question for you — at the end of this lecture!



Equideductive spaces
In Scott’s construction, the objects that are definable
from algebraic lattices using products, equalisers and Σ(−)

involve partial equivalence relations
that are restrictions of congruences.

So we replace one, two-argument partial equivalence relation
with two one-argument predicates (p and q).

Also, instead of set theory, we use equideductive logic,
possibly with some other interpretation.

What other interpretation?
That’s a question for you — at the end of this lecture!



Equideductive spaces
In Scott’s construction, the objects that are definable
from algebraic lattices using products, equalisers and Σ(−)

involve partial equivalence relations
that are restrictions of congruences.

So we replace one, two-argument partial equivalence relation
with two one-argument predicates (p and q).

Also, instead of set theory, we use equideductive logic,
possibly with some other interpretation.

What other interpretation?
That’s a question for you — at the end of this lecture!



Equideductive spaces
Urtypes: generated from 0, 1 andN by +, × and ((−)→ Σ).
Combinators, including

I : (A→ Σ)→ A→ Σ, K : (A→ Σ)→ B→ A→ Σ,

C :
(
(B→ Σ)→ (C→ Σ)

)
→

(
(A→ Σ)→ (B→ Σ)

)
→ (A→ Σ)→ C→ Σ

T : 1, ν0 : A→ (A + B), ν1 : B→ (A + B),

π0 :
(
(A + B)→ Σ)→ A→ Σ, π1 :

(
(A + B)→ Σ)→ B→ Σ,

〈〉 :
(
(C→ Σ)→ A→ Σ

)
→

(
(C→ Σ)→ B→ Σ

)
→ (C→ Σ)→ (A+B)→ Σ.

A :
(
((A→ Σ) + A)→ Σ

)
→ 1→ Σ,

L :
(
((A + B)→ Σ)→ 1→ Σ

)
→ (A→ Σ)→ (B→ Σ)→ Σ.

with appropriate equational axioms, such as
∀MNφc. CNMφc = N(Mφ)c, without =..



Equideductive spaces
An equideductive space X is (A, p, q) where A is an urtype,
p is a predicate on ΣA and q one on A, for which

φ,ψ : ΣA, p(φ), ∀a : A. q(a) =. φa = ψa ` p(ψ).

This rule is important in the construction.
It can be tightened to ensure that all spaces are definable
using exponentials and equalisers.
LHS is a partial equivalence relation.

A morphism M : X ≡ (A, p, q)→ Y ≡ (B, r, s) is an urterm
M : (A→ Σ)→ B→ Σ such that

φ : ΣA, p(φ) ` r(Mφ)

φ,ψ : ΣA, p(φ), ∀a. q(a) =. φa = ψa ` ∀b. s(b) =. Mφb =Mψb,

where M1 =M2 if

φ : ΣA, p(φ) ` ∀b : B. s(b) =. M1φb =M2φb.
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The type structure
1 ≡ (0,>,>), Σ ≡ (1,>,>).

The product is (A, p, q) × (B, r, s) ≡
(
A + B, (p · π0&r · π1), [q, s]

)
.

The equaliser is

E ≡ (A, t, q) >
I

> (A, p, q)
M

>

N
> (B, r, s)

t(φ) ≡ p(φ) & ∀b : B. s(b) =. Mφb = Nφb,

The exponential of X ≡ (A, p, q) is ΣX
≡ (ΣA, qp, p), where

qp(F) ≡ ∀φ,ψ : ΣA. p(φ) & (∀a : A. q(a) =. φa = ψa) =. Fφ = Fψ,

cf. the “double negation” property earlier.
(The modulation p(φ)& · · · is the source of many difficulties.)



An exactness property

Z ≡ {ΣA
| p} ≡ (A, p,>) >

i
> ΣA

≡ (A,>,>) A

X ≡ {Σ{A|q} | p} ≡ (A, p, q)

∨
∨

> > ΣY
≡ Σ{A|q} ≡ (A,>, q)

Σj

∨
∨

Y ≡ {A | q}

j
∧

∧

W ≡ (A, qp,>) > > Σ2A ≡ (ΣA,>,>) ΣA

ΣX
≡ (ΣA, qp, p)

∨
∨

> > ΣZ
≡ (ΣA,>, p)

Σi

∨
∨

Z ≡ {ΣA
| p}

i
∧

∧

This property is a special case of that enjoyed by any topos.
However, it is not strong enough to simplify equideductive
expressions in the way that we would like, because it is
“rooted” at the special object (A,>,>).



This is the only show in town
Let S be a cartesian closed category that has
all finite limits, this exactness property and all objects definable.

Consider the equideductive logic that S obeys,
including any judgements (inclusions between regular monos)
that it happens to obey “accidentally” .

Then S is equivalent to the category of equideductive spaces in
this logic.

(Actually, there’s an extra syntactic condition on (A, p, q)
to ensure that it is definable using equalisers.)

So, the only way to get a CCC with subspaces and (some
stronger version of) this exactness property is to use my
generalisation of Scott’s construction.



The structure on Σ
So far, we have assumed nothing special about the object Σ.

In the context of Abstract Stone Duality,
the old theory of locally compact spaces
was based on an underlying abstract categorical structure,
namely the monadic adjunction.

We have replaced one abstract categorical theory with another.

(It’s not actually a generalisation,
but we leave this problem aside for the moment.)

Now we consider how the topological super-structure
can be rebuilt on the new theory.

We shall need Σ to be, at least, a distributive lattice:
(Σ,>,⊥,∧,∨).



Classifying open subsets
Recall the motivation provided by the definition of a topos.

We want Σ to be a dominance (Giuseppe Rosolini again):

U > 1

X

i

∨

∩

χU
> Σ

>

∨

I If U � V then χU = χV (pace Per Martin-Löf);
I idX is a pullback of > : 1→ Σ (along λx.>);
I If U ↪→ V and V ↪→W are pullbacks of > : 1→ Σ

then so is their composite U ↪→W;
I i is Σ-split: there is ∃i : ΣU

→ ΣX with
Σi
· ∃i = idΣU and ∃i · Σ

i = (−) ∧ χU 6 idΣX , so ∃i a Σ
i.



When is the lattice Σ a dominance?
Recall that the implication =. in equideductive logic depends
on the categorical structure (equalisers and Σ(−)).

If Σ also has lattice structure, we write⇒ for the induced order.

For each i : U ↪→ X classified by σ,
we want a Σ-splitting ∃i : ΣU

→ ΣX with Σi
· ∃i = idΣU

This happens (and is given by the same urterm as idΣX )
iff =. and⇒ are related by the Euclidean principle
in the form

σ = > =. α = β ` σ ∧ α = σ ∧ β.

Then it can be shown that Σ is a dominance.

This is the translation of the Gentzen-style rule

σ = > ` α = β
===============
` σ ∧ α = σ ∧ β
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Interaction of =. with⇒ and & with ∧
Another way of writing the Euclidean principle is

σ = > =. α = > a` σ⇒ α.

Hence it is natural to read

σ : Σ as σ = >

φ : ΣX as ∀x. φx = >

making⇒ a special case of =..

Then we have, as observed by Matija Pretnar,

α = > & β = > a` α ∧ β = >

making ∧ a special case of &.
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The Phoa principle
In topology, all maps preserve⇒ and
Σ classifies both open and closed subspaces.

Monotonicity says that

∀a. φa⇒ ψa ` Fφ⇒ Fψ

for φ,ψ : ΣA and F : ΣA
→ Σ.

The dual Euclidean principle is

σ = ⊥ =. α = ⊥ a` σ⇐ α,

cf. the contrapositive in classical logic.

Then the lattice-theoretic ∨ and ∃
are special cases of those defined earlier using ∀ =. from the
categorical structure (??).
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Interaction with topological structure
Similarly, equality =N in a discrete space N is a special case of
general equality of terms:

n = m a` (n =N m) = >, whilst h = k a` (h ,H k) = ⊥

in a Hausdorff space H.
The universal quantifier U in a compact space is related to ∀:

(∀x. φx = >) a` (Ux. φx) = >

(Existential quantifiers in an overt space too???)



A more complicated example
In constructive analysis, a subspace I ⊂ X is connected if
I it is inhabited and
I any two inhabited open subspaces of X that cover I

must intersect within I.

In ASD, an open subspace of X is classified by φ : ΣX.
We write the property that φ intersects I as ♦φ.
The ♦ operator defines an overt subspace by

I ≡ {x : X | ∀θ.θx =. ♦θ}.

Then I ⊂ X is connected if

♦> ⇔ > and . . . , φ, ψ : ΣX, φ∨ψ = >I ` ♦φ∧♦ψ ⇒ ♦(φ∧ψ).

The second clause of connectedness is

∀φ,ψ.
(
∀x. (∀θ.θx =. ♦θ) =. φx∨ψx

)
==.
(
♦φ∧♦ψ⇒ ♦(φ∧ψ)

)
.
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A new language for topology
Since⇒, ∧, ∨ (in Σ) and =N, U, ∃ (discrete, compact, overt) are
special cases of =., &, ∨, =, ∀, ∃we can just use the traditional
symbols.

But they generate two different logics:
IThe inner one provides the terms of type Σ, which are

observable properties or open subspaces; computably
continuous functions are derived from these.
IThe outer one is the logic of provable properties and

general subspaces.

We may form =, ,, ∀ or ∃within the inner calculus so long as
the relevant space is discrete, Hausdorff, compact or overt, as in
the old calculus.
The other cases, including⇒, take us to the outer calculus.



A new language for topology
Since⇒, ∧, ∨ (in Σ) and =N, U, ∃ (discrete, compact, overt) are
special cases of =., &, ∨, =, ∀, ∃we can just use the traditional
symbols.

But they generate two different logics:
IThe inner one provides the terms of type Σ, which are

observable properties or open subspaces; computably
continuous functions are derived from these.

IThe outer one is the logic of provable properties and
general subspaces.

We may form =, ,, ∀ or ∃within the inner calculus so long as
the relevant space is discrete, Hausdorff, compact or overt, as in
the old calculus.
The other cases, including⇒, take us to the outer calculus.



A new language for topology
Since⇒, ∧, ∨ (in Σ) and =N, U, ∃ (discrete, compact, overt) are
special cases of =., &, ∨, =, ∀, ∃we can just use the traditional
symbols.

But they generate two different logics:
IThe inner one provides the terms of type Σ, which are

observable properties or open subspaces; computably
continuous functions are derived from these.
IThe outer one is the logic of provable properties and

general subspaces.

We may form =, ,, ∀ or ∃within the inner calculus so long as
the relevant space is discrete, Hausdorff, compact or overt, as in
the old calculus.
The other cases, including⇒, take us to the outer calculus.



A new language for topology
Since⇒, ∧, ∨ (in Σ) and =N, U, ∃ (discrete, compact, overt) are
special cases of =., &, ∨, =, ∀, ∃we can just use the traditional
symbols.

But they generate two different logics:
IThe inner one provides the terms of type Σ, which are

observable properties or open subspaces; computably
continuous functions are derived from these.
IThe outer one is the logic of provable properties and

general subspaces.

We may form =, ,, ∀ or ∃within the inner calculus so long as
the relevant space is discrete, Hausdorff, compact or overt, as in
the old calculus.
The other cases, including⇒, take us to the outer calculus.



Two languages in a new theory of topology
IAll maps are automatically continuous and computable.
IThey represent computationally observable properties.
I Subspaces represent provable properties.
IDefine subspaces as mathematicians (not set theorists) use

set theory, e.g. K ≡ {x : X | ∀φ. �φ =. φx}.
IEach object should automatically have the correct topology.

But, as it stands we do not necessarily have the “correct”
topology (whatever that is, which I shall not discuss now)
or all of the exactness properties (of ASD) that we would like.
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We need some extra axioms
Writing

φ
q
∼ ψ ≡ ∀a. q(a) =. φa = ψa,

I would like to simplify the expression

qp(F) ≡ ∀φψ. p(φ) & (φ q
∼ ψ) ==. Fφ = Fψ,

which occurs in Σ2(A, p, q) = (Σ2A, pq, qp
q

), to

ΞIG. F p∼ G & q>(G).

This is valid in the equideductive (i.e. usual) logic of a topos.

It fails in topology (i.e. assuming all maps are Scott continuous)
if ΞI is witnessed (pointwise surjectivity).

Could it be consistent using the weak ΞI that we defined using
equideductive logic?
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A critical example
B ≡NN is not locally compact,
so i : B ≡NN� R (where R ≡ ΣN×N orNN

⊥
) is not Σ-split,

i.e. there is no I : ΣB
→ ΣR with Σi

· I = id.
Hence there is no diagonal fill-in

B × ΣB >
i × id

> R × ΣB

Σ

ev
∨
<.....

.......
.......

.......
.......

.......
.......

so Σi×id is not surjective.
((−) × ΣB is crucial to this counterexample.)
Conjecture: Σi×id could still be regular epi.



How to prove conservativity?
Previous work in ASD (and other topological approaches to
computation) has shown that we have the right terms and
equations for typesN, ΣN, etc.
Any new axiom should therefore not affect these types.

Idea: interpret proofs in the extended (equideductive) logic in
the terms of the basic calculus.

Use realisability to do this.
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Equideductive realisability calculus
We use judgements of the form

~x : ~X, ~ξ  ~p Φ  q.

Realisers for ∀=. are given by λ-terms:

~x : ~X, ~ξ  ~p, ~y : ~Y, ~ζ  ~q Φ  r
∀I

~x : ~X, ~ξ  ~p λ~y~ζ.Φ  ∀~y. ~q =. r

~x : ~X, ~ξ  ~p Θ  ∀~y. ~q =. r
~x : ~X ` ~b : ~Y

~x : ~X, ~ξ  ~p ~Ψ  [~b/~y]∗~q
∀E

~x : ~X, ~ξ  ~p Θ~b~Ψ  [~b/~y]∗r



Compact hypothesis principle
Suppose that (we have a proof that)

x : X, q(x) ≡ ∀y : Y. p(x, y) =. φxy ψx.

Topologically, this means that

if x ∈ X satisfies Zx ⊂ Ux then x ∈ V,

where
Zx ≡ {y : Y | p(x, y)}, Ux ≡ {y : Y | φxy}, V ≡ {x : X | ψx}.

Then there should be an X-indexed family of compact
subspaces Kx ⊂ Y with necessity operator Axθ (or a proper map
W → X) such that

x : X, θ : ΣY, ∀y : Y. p(x, y) =. θy Axθ

and x : X, Ax(λy. φxy) ` ψx.

Topologically, these statements mean that

Kx ⊂ Zx and if Kx ⊂ Ux then x ∈ V.



An adjoint function conjecture
Ideally, we would like

qp(G) a` ΞIF. q>(F) & ∀φ. p(φ) =. (Fφ /=. Gφ),

Such an F would be given by either of the adjoints to the
inclusion j in

{F | q>(F)} >
j

> {G | qp(G)} > > ΣΣ
X
,

which would exist if we were working in a topos, because j
preserves meets and joins.

In equideductive logic, we can simulate their construction by

r(G, φ) ≡ ΞIF. (∀θ. φ q
∼ θ =. Fφ = Fθ) & (∀θ. Fθ =. Gθ) & Fφ

l(G, φ) ≡ ∀F. (∀θ. φ q
∼ θ =. Fφ = Fθ) & (∀θ. Gθ =. Fθ) =. Fφ,

although l(G,−) and r(G,−) are predicates and not terms of type
ΣΣ

X
.

I would then like to use the compact hypothesis principle to
replace the equideductive quantifier ∀with a compact one U.



An adjoint function conjecture
Ideally, we would like

qp(G) a` ΞIF. q>(F) & ∀φ. p(φ) =. (Fφ /=. Gφ),

Such an F would be given by either of the adjoints to the
inclusion j in

{F | q>(F)} >
j

> {G | qp(G)} > > ΣΣ
X
,

which would exist if we were working in a topos, because j
preserves meets and joins.

In equideductive logic, we can simulate their construction by

r(G, φ) ≡ ΞIF. (∀θ. φ q
∼ θ =. Fφ = Fθ) & (∀θ. Fθ =. Gθ) & Fφ

l(G, φ) ≡ ∀F. (∀θ. φ q
∼ θ =. Fφ = Fθ) & (∀θ. Gθ =. Fθ) =. Fφ,

although l(G,−) and r(G,−) are predicates and not terms of type
ΣΣ

X
.

I would then like to use the compact hypothesis principle to
replace the equideductive quantifier ∀with a compact one U.



Where do I stand with this?
I I need help from a proof theorist with the realisability.

(There are some notes available for private circulation.)
IMaybe this would suggest a different, weaker but useful

axiom.
IEquideductive logic as it stands, together with the lattice

structure, Euclidean, Phoa and Scott principles, is valid in
currently studied categories such as Simpson’s QCB.
IUnlike the definition of QCB, it is entirely computable, with

no underlying set theory.
I It is already a pretty good approximation to topology, at

least for familiar spaces.
I In particular, it obeys the Heine–Borel theorem.
I I believe that a new axiom will be needed to eliminate

similar pathologies at higher types.


