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The take-home message from this lecture

(The abstract is much too ambitious for half an hour.)

Sober topological spaces form an equideductive category.
Equideductive logic is a logic for them.
This generalises ASD for locally compact spaces.

It is a logic of deductions about equations.
Its predicates have ∀, =. and =.

An “existential quantifier” � is definable.
This corresponds to the epis in the category.

A generalisation of Scott’s equilogical spaces
can be also defined using it, but we shall not have time for this.

Not the definition of a topos

The wider aim: generalise Abstract Stone Duality from locally
compact spaces to axioms for a CCC with equalisers and an
object Σ (Sierpiński space).

Take inspiration from the category of sets:

A topos
I has an internal Heyting algebra Ω; and
I is cartesian closed, with equalisers as well as products, and

all powers, in particular of Ω.

Even though this is much weaker than the correct definition,
these two ideas are surprisingly powerful.

First we study the interaction between equalisers and
exponentials as a generalisation of the categorical part of ASD.

The lattice structure on Σ will fit in later (not today).

Equalisers of exponentials
Working with nested equalisers and exponentials is clumsy.

We want to write

E ≡ {x | ∀y. αxy = βxy} > > X
α

>

β
> ΣY

This can be justified both categorically and symbolically.

Warning: this quantifier ∀ belongs to the purely categorical
structure. It can range over any object, but it yields a new kind
of predicate or general subspace.

It is not the same as U in the lattice structure, which can only
range over a compact space K, but is a term of type ΣΣK

.

The idea (later) is that K will be compact iff

∀x : K. (φx = ?) a` (Ux : K. φx) = ?.



Partial products
(The formal category theory starts here.)
The universal property of an equaliser targeted at an
exponential can be stated without mentioning ΣY as a universal
property called a partial product.
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(NB: this is not quite the same as the usual notion, but partial
equaliser would be an even worse name.)

Working in a smaller category

Slogan: an equideductive category sits nicely within its
cartesian closed extensions such as the Yoneda embedding.

If X lies in the subcategory of the CCC then the equaliser

E > > X >
> ΣY

also has E within the subcategory.

The CCC will be “not much more complicated” than the
subcategory.

Loose analogy: R within C.

This lecture is about the subcategory, not the CCC.

Which categories have partial products like this?

IAny topos, as equalisers of powersets.
IRichard Wood’s CCDop, for the same reason.
ITopological spaces in the traditional sense.
IThe same, but sober and/or countably based.
I Probably not locales.
IAffine varieties over a field.
I Probably not affine varieties over a general ring.

(Even in the extremely unlikely event that locales have partial
products, they will still fail the additional requirements for an
equideductive category.)

Constructing partial products in these categoriesof
spaces

Let Q be any category with finite limits such that
each object Y ∈ Q has some object SY ∈ Q and
a natural 1–1 function between hom-sets

Q(− × Y,Σ) > > Q(−,SY).

Then Q has partial products.

This function is a bijection iff SY � ΣY in Q,
but this is not needed.
For topological spaces, SY is the topology of Y,
equipped with the Scott topology.



Constructing partial products of varieties
Let Q be any category with finite limits such that
each object Y ∈ Q has some object SY ∈ Q and
a natural 1–1 function between hom-sets

Q(− × Y,Σ) > > Q(−,SY).

Then Q has partial products.

For vector spaces (modules over a field), there is 1–1 function

U ⊗ V −→ hom(V⊥,U), where V⊥ ≡ hom(V,K),

that is linear and natural in U.

Hence for an affine variety Y corresponding to a ring V,

SY ≡ T(V⊥)

has the require property, where
T(V⊥) is the tensor algebra on V⊥ quâ vector space.

The equideductive universal quantifier

Here is the first part of the symbolic calculus.
The symbolic rules for ∀ =. are as you would expect:

Γ, x : A, p(x) ` αx = βx
∀I

Γ ` ∀x : A. p(x) =. αx = βx

Γ ` a : A, p(a) Γ ` ∀x : A. p(x) =. αx = βx
∀E

Γ ` αa = βa

Although ∀ =. fundamentally has an equation on the right, we
may define

∀y.
(
p(y) ==. ∀z. (q(z) =. αxyz = βxyz)

)
as ∀yz.

(
p(y) & q(z) ==. αxyz = βxyz

)
.

More categorical properties of sober spaces
The category Q ≡ Sob of sober topological spaces
has finite limits and partial products.

Partial product inclusions (M) are exactly subspace inclusions.

There is a full subcategoryA ≡ LKSp ⊂ Q for which
I for each object A ∈ A, the exponential ΣA exists;
I such exponentials ΣA are injective with respect toM-maps;
I every object X ∈ Q has anM-map X� ΣA to an injective.

Amay consist of either all locally compact spaces
or just algebraic lattices with the Scott topology.

The functor Σ(−) : Aop
→A reflects isomorphisms.

IfA consists of all locally compact spaces then
this adjunction Σ(−)

a Σ(−) is monadic.

Abstractly, we call the objects ofA urtypes.

All objects of Q respect these universal properties.

The Definition

Putting these ideas together,
an equideductive category consists of
I a category Qwith all finite limits;
I a pointed object ? : 1→ Σ in Q; and
I a full subcategoryA ⊂ Q of urspaces; such that
IA ⊂ Q is closed under products;
IΣ and all powers ΣA for A ∈ A exist in Q and belong toA;
IQ has partial products based on the object Σ;
IΣ is injective with respect to all of the maps in the classM;
I there are enough injectives, i.e. every Q-object X is the

source of someM-map X� ΣA with A ∈ A; where
IM is the class of monos defined by the partial products and

intersections;
I all objects Γ ∈ Q respect the universal properties mentioned.



Sobriety in equideductive categories
Following a theme in synthetic domain theory
(Phoa, Hyland, me),
let A ∈ A and consider the equaliser

A

Ā

ε
∨
∨

>
j

> Σ2A ≡ ΣΣA
ηΣ2A

>

Σ2ηA
>

ηA

>
Σ4A ≡ ΣΣΣΣA

Then
I j : Ā� Σ2A is a partial product inclusion (M) and
I ε × Y : A × Y→ Ā × Y is epi for any object Y (E).

For the second, we need to be careful because
the exponentials ΣnA are assumed to exist, but
those of Ā and Y are not.

Sobriety in equideductive categories

The classes
IE of epis that are stable under − × Y and
IM of partial product inclusions

are orthogonal in the sense of a factorisation system.

Since every object X has anM-map X� ΣB, we have:

Theorem: Every exponentiable object A is sober:
ε : A � Ā and A� Σ2A⇒ Σ4A is an equaliser.

In fact, ifA consists of all objects A for which ΣA exists then the
adjunction Σ(−)

a Σ(−) betweenAop andA is monadic.

Sobriety in equideductive logic

We add (the restricted λ-calculus and) sobriety to the symbolic
calculus.

We write prime(P) for the predicate

∀Φ : Σ3A. ΦP = P
(
λx. F (λφ. φx)

)
To capture sobriety in an equideductive category
we add this rule to equideductive logic:

Γ ` P : ΣΣX
, prime(P)

Γ ` focus P : X, ∀φ. φ(focus P) = Pφ

In equideductive logic, primality can be conditional on other
hypotheses and combined with other predicates.

Equideductive logic
Like predicate calculus, a two-level theory.

The object language has
I urtypes with × and Σ(−)

I terms from the restricted λ-calculus
Iwith focus, possibly formed conditionally on predicates as

hypotheses.

The predicates are built from
I equality of terms;
I conjunction (intersection of subobjects); and
I quantified implication.

We combine ∀ and =. because of the variable-binding rule:
in the expression ∀~y. p(~y) ==. α~x~y = β~x~y,
all of the variables on the left of =. must be bound by ∀.
This is because the target of the equaliser was ΣY,
not a dependent type.



Predicates are not terms

In a topos, all of the logic (for sets) is within Ω:

∀X : ΩX → Ω ∃X : ΩX → Ω.

In equideductive logic (for topology) we distinguish
I terms of type ΣA, which classify open subspaces, from
I predicates, which describe general subspaces.

Equideductive translation of rules
An algebraic theory may be presented using judgements

x : X, y : Y, . . . , a = b, c = d, . . . ` e = f

which we re-write in equideductive logic as

∀x : X.∀y : Y. . . . a = b & c = d & . . . ==. e = f ,

in which all of the variables are bound by ∀.

Then a rule

x : X, y : Y, . . . , a = b, c = d, . . . ` e = f

u : U, v : V, . . . , g = h, k = `, . . . ` m = n

is re-written as(
∀x : X.∀y : Y. . . . a = b & c = d & · · · =. e = f

)
==.
(
∀u : U.∀v : V. . . . g = h & k = ` & · · · =. m = n

)
.

Apply this translation to the rule for ∃
Recall that the �-elimination rule is

y : Y, x : X, p(x, y) ` (φy = ψy)

y : Y, �x : X. p(x, y) ` (φy = ψy)

where it will be necessary to be more explicit about the context
(parameters) Γ ≡ [y : Y].

In the case q(y) ≡ (φx = ψy) this translates to

`

(
∀y′. ∀x′. p(x′, y′) =. (φy′ = ψy′)

)
==.
(
∀y.
(
�x : X. p(x, y)

)
=. (φy = ψy)

)
.

We may re-arrange this into We turn this into the definition of �

y : Y, ` �x : X. p(x, y) ` ≡(
∀y′. ∀x′. p(x′, y′) =. (φy′ = ψy′)

)
==. (φy = ψy).

Does � satisfy the rules?
The introduction rule is easily satisfied:

x : A, y : B, p(x, y) ` �y. p(x, y).

The elimination rule

x : A, y : B, p(x, y) ` r(x)

x : A, �y : B. p(x, y) ` r(x)

is provable, so long as
I the parameters x belong to urtypes A with no other

predicates and
I r(x) obeys the variable-binding rule.

We have the weak Frobenius law

q(z) & �y. p(x, y) a` �y. q(z) & p(x, y),

so long as x and z are distinct variables (or disjoint sets of them).



Making a category from the logic

Objects: {φ : ΣA
| p(φ)}

(exponentials are injective, which makes the definition of
morphisms simpler)

Morphisms {φ : ΣA
| p(φ)} → {ψ : ΣB

| q(ψ)}
are F : ΣA

→ ΣB

such that φ : ΣA, p(φ) ` ψ(Fφ)
subject to an equivalence relation that F ∼ G if
φ : ΣA, p(φ) ` Fφ = Gφ.

The definitions of the objects and morphisms of the CCC
are similar to this but complicated by another predicate on A
itself that is used to define a quotient of ΣA.

Epis and monos in topology
In suitable categories, any map f factorises as both
I f = m · e′ with m mono and e′ regular epi, and
I f = m′ · e with m′ regular mono and e epi.

Both factorisations are important.

For sober topological spaces,
I a mono is 1–1 on points;
I a regular mono has the subspace topology;
I an epi need not be surjective on points (N� $);
I a regular epi has the quotient topology.

There are irreversible implications

regular epi =====⇒ surjective ====⇒ epi ==⇒ dense image

R→ S1 2→ Σ N→ $ Q→ R

Universal property

A factorisation system is a pair (E,M) of classes of maps with
I closure under composition and isomorphisms;
I factorisation of any map as m · e;
I orthogonality: in any commutative square

A
e

>> B

C
∨

>
m

>
<....
.....

.....
.....

.....
.....

.....

D
∨

there is a unique fill-in that makes both squares commute.
Then there is the question of whether E (or the factorisation)
is preserved by pullbacks or products.

Existential quantification and factorisation

For intuitionistic set theory, we have an agreement amongst

idiom types categories
hide a known witness introduce the epi
pretend have witness eliminate orthogonality

substitute commute CUT pullback-stable

Martin Hyland and Andrew Pitts, The Theory of Constructions:
Categorical Semantics and Topos-Theoretic Models, 1989.

Also PT, Practical Foundations of Mathematics, Section 9.3.



What might happen in topology?

Since epis are not stable under pullback, we have bad news:

idiom types categories
hide known witness introduce the epi

pretend have witness eliminate orthogonality
substitute commute CUT pullback-stable

For sober topological spaces, epis are stable under product, but
not pullback.

Even that fails for locales.
The epi Q� QE between the rationals with the discrete and
Euclidean topologies is not preserved by the product (−) ×QE.

What about epi–mono factorisation?

CanWhen we factorise the morphism

{y : Y | �x : X. p(x) & y = f (x)}

{x : X | p(x)} ...............................>
..........

..........
..........

..........
..>>

{y : Y | q(x)}
∨

∨.....

X
∨

∨

f
> Y
∨

∨

by injectivity, inclusions compose,
so the intermediate object (the image)
must be another subspace of Y.
What is the predicate on Y? We guess the quantifier.
This works, with orthogonality too!

The quantifier and coproducts
Suppose that the diagram of sets and functions

X
f

> Z <
g

Y

is a coproduct. Then it is the union (∨) of the images (∃),

z : Z ` (∃x. z = fx) ∨ (∃y. z = gy),

and there are lots of uses of this property in category theory,
combinatorics, programming, etc.
Coproducts may also be constructed in equideductive logic
using the same idea,

{A | p}
f

> {ΣΣA
×ΣB
| · · ·} <

g
{A | q}

where the predicate · · · is

(�x. p(x) & z = fx) g (∃y. q(y) & z = gy).

Then the category is extensive:
it has coproducts that are stable and disjoint.

Idiomatic use of the existential quantifier

In the middle of a mathematical argument (in any discipline),
we might invoke some axiom or theorem that says ∃x. p(x).

After this, we argue as if we have an x with p(x).

What does this mean?

Hilbert wrote εx. p(x) and Bourbaki wrote �x. p(x) for x.
They thought that some choice of x
needed to be (and could be) derived from p.

In fact, there is no need for this.
The proof-theoretic rules agree with the idiom.
See Practical Foundations of Mathematics, Section 1.6.



Extending the idiom to �
Recall that the weak Frobenius law

r(z) & �x. p(x, y) a` �x. r(z) & p(x, y),

holds so long as y and z are distinct variables (or disjoint sets of
them).

This means that we can only use �E
(the “there exists” idiom)
when there are no other constraints on the parameters.

This restriction is in the same spirit as
I only λ-abstract (logical) terms of type Σ;
I the variable-binding rule;

etc.

We accept restrictions such as these on the use of ordinary logic
in return for obtaining topological results instead of
set-theoretic ones.

Pretending that we have a witness in analysis

Given two maps f , g : R→ R,

Q >> R
f

>

g
> R

to show that f = g, it is enough to check on the rationals.

This is because Q→ R has dense image and R is T1.

In order to prove f (x) = g(x) for arbitrary real x,
we may pretend that x is rational.

Pretending that we have a witness in domain theory

Consider the epi List(N)� ΣN,
where List(N) is the discrete space of finite lists
and ΣN is full powerset with the Scott topology.
We may pretend that any subset is a finite list,
when we want to deduce equations between Scott-continuous
functions.
So this is a way of formulating the Scott principle.

Similarly, the Phoa principle can be stated as

x : Σ ` x = ⊥ g x = >.

Further axioms, intended for example to control the topology
onNN

N
, could be perhaps be stated like this.

Conclusion

Equideductive logic provides (the first part) of
a “predicate calculus” with =, &, g, ∀, �
for sober topological spaces.
In many ways it is similar to the one for sets.

The existential quantifier � may be suggestive of some
interesting conjectures.

An equideductive category is not a CCC,
but a CCC like equilogical spaces can be built around it.


