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Abstract

Day [75] showed that the category of continuous lattices and maps which preserve
directed joins and arbitrary meets is the category of algebras for a monad over Set, Sp or
Pos, the free functor being the set of filters of open sets. Separately, Berry [78] constructed
a cartesian closed category whose morphisms preserve directed joins and connected meets,
whilst Diers [79] considered similar functors independently in a study of categories of models
of disjunctive theories. Girard [85] built on Berry’s work to build a new and very lean
model of polymorphism.

In this paper we bring these strands together, defining a monad based on filters of con-
nected open sets and showing that its category of algebras has Berry’s (stable) morphisms
and is cartesian closed. The objects have multijoins as in Diers’ work, and the slices are
continuous lattices. The monad can only be defined for locally connected spaces, so via
[Barr-Paré 80] there is a further (unexplained) connection with cartesian closure. Jung [87]
has shown that the same objects (L-domains) also form a cartesian closed category with
maps preserving only directed joins.

Berry’s proof of cartesian closure (using the trace factorisation, which also occurs in
Diers’ work and is discussed in [Taylor 88]) and more direct proofs by Coquand [88] and
Lamarche [88] use two additional hypotheses, strong finiteness and distributivity (of
finite meets over finite joins). Our proof is the first to use neither of these, but it does
use distributivity of codirected meets over directed joins, which [Taylor 88] shows not to be
needed either. Lamarche has shown that evaluation does not preserve equalisers, so in the
categorical context connected limits must be replaced by wide pullbacks. He has also found
a generalised notion of neighbourhood system which unifies stable and continuous functions
and generalises our ad hoc notion of Berry order between continuous functions.
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1 Preliminaries

1.1 Continuous Lattices and Posets

We shall need a number of standard results about continuous lattices (for which see [Gierz et al. 80]
or [Johnstone 83] chapter VII). By a domain we shall simply mean a poset with directed joins
(
∨
�): since we are not interested in fixed point properties, we have no need for ⊥.

Definition 1.1 Recall that x � y (read: way below) in a domain if, whenever y ≤
∨
� zi, we

already have x ≤ zi for some i. A domain is continuous if every element is �-approximated,
i.e.

∀x ∈ X.x =
∨
� ↓↓x where ↓↓x ≡ {x′ ∈ X : x′ � x}

This says that amongst all the ideals with join x (of which ↓x is the greatest), there is a least ,
namely ↓↓x. Notice that it suffices that every principal lower set ↓x be continuous.

Proposition 1.2 A complete lattice X is continuous iff it has the following directed distributiv-
ity property. Let {xjk : j ∈ J, k ∈ K(j)} be a family of elements of X such that {xjk : k ∈ K(j)}
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is directed for each j ∈ J . Let M =
∏
j K(j), i.e. the set of functions m : J →

⋃
j∈J K(j) with

∀j.m(j) ∈ K(j); this is directed in the componentwise order. Then∨
�

m∈M

∧
j∈J

xj,m(j) =
∧
j∈J

∨
�

k∈K(j)

xjk

Proof Apply the adjoint functor theorem to the functor
∨
� : IdlX → X: this preserves meets iff

distributivity holds, and the left adjoint (if it exists) is ↑↑. �

Definition 1.3 We shall usually consider domains to carry the Scott topology: U ⊂ X is open
if
∨
� xi ∈ U ⇒ ∃i.xi ∈ U .
The following results (like directed distributivity above) are standard: we include them here

because they comprise most of what we need to know about continuous posets.

Exercise 1.4 In a continuous poset

(a) x� y ⇒ x ≤ y and x′ ≤ x� y ≤ y′ ⇒ x′ � y′, and

(b) the sets ↑↑x ≡ {y : x� y} are open in the Scott topology and form a base for it. �

Lemma 1.5 The � relation on a continuous poset has the interpolation property: if x � z
then x� y � z for some y. �

Exercise 1.6 A function between domains is Scott-continuous iff it preserves directed joins. �

Lemma 1.7 A Scott-continuous retract of a continuous poset is continuous. �

Definition 1.8 A homomorphism is a continuous function h : X → Y with a left adjoint c
(with respect to the pointwise order); c itself is called a comparison. If c ; h = id then the mono
c is called an embedding and the epi h a projection.

Lemma 1.9

(a) h preserves all meets which exist.

(b) c preserves joins and the � relation.

(c) Embeddings reflect �.

(d) The pullback of a projection against any continuous map is a projection.
Proof

[a] Adjoint functor theorem.

[b] Let x0 � x1 and cx1 ≤ y =
∨
� yi. Then x1 ≤ h(

∨
� yi) =

∨
� hyi by adjointness and continuity

of h. But then x0 ≤ pyi for some i and so cx0 ≤ yi as required.

[c] Let x0 ≤ x1 ≤ x′ =
∨
� x′i with cx0 � cx1. Then for some i, cx0 ≤ cx′i and so x0 = h(cx0) ≤

h(cx′i) = x′i.

[d] The pullback of the projection p (with e a p) against the continuous map f is constructed
in the same way in Set, Pos and Dom. We just have to check that the obvious thing,
〈id, f ; e〉, gives the left adjoint. �
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1.2 L-Domains

We shall now introduce Jung’s [87] new category of L-domains.

Definition 1.10 A connected meet in a poset P is the meet of over a diagram which is connected
in the order-theoretic sense; thus pullbacks (meets of pairs with an upper bound) and codirected
meets are connected but top and binary meets are not. In the categorical case, equalisers are also
connected, although they are not simply connected as in [Taylor 87].

Definition 1.11 J ⊂ P is the multijoin of I ⊂ P if

(i) I ≤ J , i.e. ∀i ∈ I.∀j ∈ J.i ≤ j, and

(ii) J is multiversal: if I ≤ p ∈ P , i.e. ∀i ∈ I.i ≤ p, then ∃!j ∈ J.j ≤ p.

Note that j must be unique, so this is stronger than a set of minimal upper bounds as in
Plotkin’s SFP-domains. For I = ∅, J is the set of least elements of the components of P ; by
binary multijoins we mean |I| = 2: J may have zero, one, finitely or infinitely many elements.

Lemma 1.12 The following are equivalent for a poset P :

(α) P has connected meets;

(β) P has pullbacks and codirected meets;

(γ) for all p ∈ P , ↓ p = {q ∈ P : q ≤ p} has arbitrary meets;

(δ) for all p ∈ P , ↓ p is a complete lattice.

(ε) P has multijoins.
Proof

[α⇔ β] Since any (connected) diagram is the filtered union of its finite (connected) subdiagrams,
any meet may be calculated as a codirected meet of finite meets. In posets finite connected
diagrams reduce essentially to zig-zags, whose meets may be calculated using pullbacks. In
categories we need to use equalisers too.

[β ⇔ γ] Pullbacks are binary meets below a fixed point, and codirected meets are eventually (and
w.l.o.g. always) so also.

[γ ⇔ δ] Standard: the adjoint functor theorem for posets.

[δ ⇔ ε] Likewise a poset is a complete lattice iff it has arbitrary joins, and having multijoins is the
same as having joins below any element. �

We are interested in connected meets, and wish to state directed distributivity for them. How-
ever it is difficult to see how this might be defined, other than that arbitrary meets distribute
over directed joins below any element . In particular, directed distributivity says that meet, con-
sidered as a function of several (possibly infinitely many) arguments, is continuous in each of them
separately (and hence jointly), but pullback is contravariant in one of its three arguments.

Proposition 1.13 The following are equivalent for a domain X:

(α) X has connected meets which distribute over directed joins.

(β) for all x ∈ X, ↓x is a continuous lattice;

(γ) X has �-approximation, binary multijoins and ⊥ in each component;

(δ) X is continuous and for all x ∈ X, ↓x is a lattice.
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Proof Observe that binary multijoins, ⊥ in each component and directed joins suffice to give
all multijoins. �

Definition 1.14 Such a domain we call an L-domain, because it is obtained by patching together
Lattices. Write LDom for the (2-)category consisting of L-domains, continuous maps (and the
pointwise order). They already look like algebras for connected meets distributing over directed
joins, so Scott-continuous maps are not their “natural” morphisms; we shall see this formally later.

Lemma 1.15 A (Scott-continuous) retract of an L-domain is an L-domain.
Proof A retract of a continuous domain is continuous (1.1.7). For x ∈ X /Y, ↓X x / ↓Y i(x) and
a retract of a lattice is a lattice. �

Note 1.16 Later we shall use the term stable domain to mean the same kind of object . However
since we shall change the morphisms (and thereby obtain an exceedingly rich theory) we regard
stable and L-domains as different things.

2 Connected Open Sets

2.1 Local Connectedness

Day’s [75] characterisation of continuous lattices (with arbitrary meets) uses filters of arbitrary
open sets. We shall show that a similar result holds with connected instead. This requires us to
have a good supply of connected open sets, and so we have to restrict to locally connected spaces.
For a point of a space we have its filter of open neighbourhoods (open sets containing it); for a
general space, there need be no connected open neighbourhood of a given point (and hence no
filter): again we need local connectedness. Consequently this paper is not applicable to Stone
spaces, which have hitherto been the heroes of categorical logic [Johnstone 83]. In particular we
cannot replace the Scott topology on Fdom with the Lawson topology because in the important
special case of algebraic lattices (or even coherent algebraic domains) it is a Stone space.

Definition 2.1 An open set is connected if it has no nontrivial expression as a disjoint union of
open sets. This condition is also intended for an empty indexing set, so in particular a connected
set is nonempty. We may write the condition on U as a scheme of axioms, one for each (“discrete”)
set I, as follows:∧

i 6=j

[
Ui ∩ Uj = ∅

]
∧
[
U =

⋃
i

Ui
]

`
∨
i

[
U = Ui

]
For I = 2 and I = ∅ we have the particular cases

U0 ∩ U1 = ∅ ∧ U = U0 ∪ U1 ` U = U0 ∨ U = U1

U = ∅ ` ⊥

Notice that it is provable from this that the disjunction on the right is disjoint (exactly one
possibility holds), so connected open sets are an example of a disjunctive theory. We can make
the corresponding definition for elements of a frame (locale), simply replacing

⋃
, ∩ and ∅ by

∨
,

∧ and 0. Classically, the case for infinite I is redundant, but for an arbitrary base topos, even
though “i 6= j” requires I to be decidable, this is no longer true.

We shall generally (but not always) use U, V, etc. for connected open sets. The notation
∐

is
used for a disjoint union.

Exercise 2.2 An open set which is connected in the order or (undirected) graph theoretic sense
with respect to the specialisation order is connected in the topological sense. �

Definition 2.3 A topological space is locally connected if every open set is the union of the
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connected open sets which it contains.

Lemma 2.4 A space is locally connected iff every open set is uniquely expressible as a disjoint
union of connected open sets (called its components).
Proof [⇐] is obvious, so for [⇒] let X be locally connected and U ⊂ X open. Let C =
{V connected open : V ⊂ U}, so by hypothesis

⋃
C = U . Let ∼ be the equivalence relation on C

generated by the relation V1 ∩ V2 6= ∅. Since V1 ∩ V2 is by hypothesis a union of connected open
sets, the latter is equivalent to ∃V ∈ C.V ⊂ V1 ∩ V2.

For V ∈ C, let [V ] =
⋃
{V ′ ∈ C : V ∼ V ′}. This is open and contains V, so by local

connectedness the union over V of these sets is U . If [V1] ∩ [V2] 6= ∅ then V1 ∼ V ′1 ∼ V ′2 ∼ V2 for
some V1 and V2, so V1 ∼ V2 and [V1] = [V2]. Hence U is the disjoint union of the {[V ] : V ∈ C}.

Let [V ] =
∐
iWi with Wi disjoint; then V =

∐
i(V ∩Wi) so V ⊂Wi0 for some i0. By induction

on the definition of ∼ we show that V ∼ V ′ ⇒ V ′ ⊂ Wi0 . It suffices to do this for one step, so
suppose V ∩ V ′ 6= ∅. By connectedness of V ′ =

∐
i(V
′ ∩Wi), V ′ = V ′ ∩Wi1 for some (unique) i1.

But ∅ 6= V ′ ∩ V ⊂ V ′ ∩Wi0 , so i1 = i0 and V ′ ⊂Wi0 . Hence [V ] = Wi0 and is connected .
We have now expressed U as a disjoint union of connected open sets and it remains to show

that this is unique. If U =
∐
i Vi =

∐
jWj are two such decompositions, let Tij = Vi ∩Wj ; then

Vi =
∐
j Tij so ∀i.∃!j.Vi = Tij , say Vi = Ti,j(i), and similarly Wj = Ti(j),j ; hence i : J → I and

j : I → J are mutually inverse bijections with Vi = Wj(i). �
For an open set U of a locally connected space, KU denotes its set of components. As before

we can define locally connected locales, and the lemma translates immediately.
Finally, a topological space is T0 if any two distinct points have some open set containing one

but not the other. There is no need for such a definition with locales. In the case of domains the
topological and order-theoretic or (undirected) graph-theoretic senses of connectedness coincide,
so every domain is automatically T0 and locally connected.

Warning 2.5 For a continuous domain the basic open set ↑↑x need not be connected. [For example
take N∪{∞} with the usual order: ↑↑∞ is empty; alternatively, in N∪{∞, a, b} where a ≥ ∞ ≤ b
it is disconnected.]

Definition 2.6 Write LCSp, LCLoc and Dom for the 2-categories of locally connected T0-
spaces, locally connected locales and (locally connected) domains. The morphisms in each case
are (Scott) continuous maps (the opposite of frame homomorphisms). The 2-cells arise pointwise
respectively from the specialisation order, inclusion of open sets and the given order relation. Pos
denotes the 2-category of posets, monotone maps and the pointwise order.

2.2 Connected Open Filters

For X a domain or a locally connected T0-space, write Ω(X) for its lattice of (Scott) open sets,
which we consider to be a locale. For P a poset, write Υ(P ) for the lattice of upper sets, which
is also a locale (the Alexandroff topology). For A a locale, write C(A) for its subposet of
connected elements. So C Ω(X) is the poset of connected open sets of a space or domain X and
C Υ(P ) is the poset of upper sets of P which are connected in the sense of (undirected) graphs.
In both cases these are ordered by inclusion, but since they consist of upper sets, bigger sets have
smaller elements.

For C any poset, let Filt(C) be the poset of filters (nonempty subsets φ ⊂ C with ∀c1, c2 ∈
φ.∃c ∈ φ.c ≤ c1, c2), ordered by inclusion. Observe Filt(C) = Idl(Cop), so this is an algebraic
domain and may be given the Scott topology, and continuous maps Filt(C) → X correspond
bijectively to monotone maps Cop → |X|, where the latter denotes the poset of points of X with
the specialisation order. Bigger filters contain smaller open sets (in the case where C = C(A)),
which in turn contain bigger elements, so X and Filt C Ω(X) are now “the same way up”.

Definition 2.7 For a space X, let Fsp(X) = Filt C Ω(X) with the Scott topology; likewise for a
domain D, let Fdom(D) = Filt C Ω(D). For a poset P , let Fpos(P ) = (C Υ(P ))op. Finally, for a
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locale A, let Floc(A) = ΣC(A)op
.

Lemma 2.8 The following diagram commutes:

Pos
Idl- Dom

Scott- Sp
Ω - Loc

Pos

Fpos

? Idl- Dom

Fdom

? Scott- Sp

Fsp

? Ω - Loc

Floc

?

where additionally the composites along the top and bottom are Υ.
Proof This is simply because F is defined as the composites of C : Loc→ Pos with functors such
as Ω, Idl and Scott. To check that the above formulae are correct, open sets of FiltC correspond
(bijectively and preserving and reflecting order) to lower sets of C and hence to monotone functions
Cop → Σ. �

In other words, the four Fs are essentially the same, and we shall use the subscripts to indicate
whether we are thinking of Fsp(X) as a space, or Floc(X) as a locale, or Fpos(X) as a poset or
Fdom(X) as a poset with directed joins.

Lemma 2.9 The sets �U = {φ : U ∈ φ} ⊂ Fsp(X), for U ∈ C Ω(X), form a base for the topology
on F(X), and �U ⊂ U iff ↑U ∈ U , where ↑U = {V ∈ C Ω(X) : U ⊂ V } ∈ Fsp(X).
Proof The Scott topology on a space of filters is based by upper sets of compact filters, and a
filter is compact iff it is the upper set of an element. �

In the localic case, we may recognise � : C(A)→ Floc(A) = ΣC(A)op
as the Yoneda embed-

ding.

Exercise 2.10 Let X be locally connected and φ ∈ Filt C Ω(X). Then φ is a semilattice, i.e. it
has binary meets and a greatest element. �

Proposition 2.11

(a) Fdom(X) is an algebraic L-domain.

(b) Fpos(X) has ⊥ in each component and binary multijoins.
Proof

[a] We already know that Fdom(X) is algebraic, so it remains to construct connected meets. Let
φ(−) : I → Fdom(X) be a connected diagram and φ =

⋂
i φi; we aim to show that φ ⊂ C Ω(X)

is a filter. Each φi has some component of X as top element, and by connectedness of the
diagram they must share the same component, which is therefore in the intersection and
this is nonempty. Applying the same argument with X replaced by U ∩ V, where U, V ∈ φ,
there is some connected open W ⊂ U, V in φ.

[b] The ⊥s correspond to the components of X and the multijoins to the component decompo-
sitions of intersections. �

2.3 The Functor

The idea of F(f) is simply the image:

Fpos(f)(U) = f [U ] = {f(u) : u ∈ U} 2.11

recall that the image of a connected set is connected (we shall use the notation f [U ] again). This
does not extend immediately to spaces because the image of an open set need not be open. Let
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f : X → Y be continuous (in LCSp, LCLoc or Dom). In order to define a Scott-continuous
function F(f) : Fdom(X) → Fdom(Y ), it is necessary and sufficient to define a monotone function
C Ω(X)op → Filt C Ω(Y ). Thus for U ∈ C Ω(X), let

Fsp(f)(↑U) = {V ∈ C Ω(Y ) : U ⊂ f−1(V )} 2.11

This is obviously an upper set and anti-monotone in U , and defines

Fsp(f)(φ) = {V ∈ C Ω(Y ) : ∃U ∈ φ.U ⊂ f−1(V )} 2.11

Lemma 2.12 F(f)(↑U) is a filter in C Ω(Y ).
Proof Again we need to use local connectedness. The component decomposition

Y =
∐

a∈K(Y )

Y a

yields a disjoint decomposition of X via f−1, although the parts need not be connected (they
are disjoint by the definition of a function). Hence U ⊂ f−1Y a0 for some (unique) a0, and
V = Y a0 ∈ F(f)(↑U) since it is connected. Similarly, if V is the component of V1 ∩ V2 which
contains f [U ], where V1, V2 ∈ F(f)(↑U), then V ∈ F(f)(↑U). �

The localic form of F is given by

Floc(f)∗(�V ) =
∐{

�U : U ∈ K(f−1(V ))
}

2.12

Floc(f)∗(V) =
⋃{

�U : ∃V. ↑V ∈ V ∧ U ⊂ f−1(V )
}

2.12

Floc(f)∗(U) =
⋃{

�V : ∀U ∈ K(f−1(V )).�U ⊂ U
}

2.12

Lemma 2.13 F preserves identities and composition.
Proof Clearly F(id)(↑U) = ↑U . Let f : X → Y and g : Y → Z be continuous and U ∈ C Ω(X).
Then

F(g)
(
F(f)(↑U)

(
=
{
W ∈ C Ω(Z) : ∃V ∈ C Ω(Y ).U ⊂ f−1(V ) ∧ V ⊂ g−1(W )

}
We use the decomposition of g−1(W ) to reduce this to

{W ∈ C Ω(Z) : U ⊂ f−1
(
g−1(W )

)
} = F(f ; g)(↑U) �

Lemma 2.14 F is faithful.
Proof Let f, g : X ⇒ Y with F(f) = F(g). Then

∀U ∈ C Ω(X), V ∈ C Ω(Y ).U ⊂ f−1(V ) ⇐⇒ U ⊂ g−1(V )

Using the decomposition of f−1(V ) and g−1(V ) (by local connectedness of X) we deduce that
f−1(V ) = g−1(V ) for V connected. Using local connectedness of Y we extend this to all open V,
and so the inverse image functions are equal. By T0, f = g. �

In the same way we can prove

Exercise 2.15 F preserves and reflects natural transformations. �
F is not continuous on hom-sets with respect to this order. However we shall see in §4.1.2 that

there is another order, the Berry order, which is also preserved and reflected by F(f). The functor
is continuous on hom-sets with respect to this order.
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2.4 Connected Open Neighbourhoods

The unit of Day’s monad defining continuous lattices was the filter of open neighbourhoods of a
point. For x ∈ X ∈ LCSp or Dom, let

ηX(x) = {U ∈ C Ω(X) : x ∈ U} 2.15

The poset form is simply the up-closure:

ηpos
X (x) = ↑x 2.15

Recall that the typical basic open set of Fsp(X) is

�U = {φ ∈ Fsp(X) : U ∈ φ} 2.15

for U ∈ C Ω(X).

Lemma 2.16 ηX(x) is a filter and ηX : X → Fsp(X) is continuous.
Proof The component of X containing x is the greatest element of ηX(x), and likewise U ∩ V
has a component containing x. For continuity, ηX(x) ∈ �U ⇐⇒ U ∈ ηX(x) ⇐⇒ x ∈ U ,
so η−1

X (�U) = U . �

Lemma 2.17 Let A be a locally connected locale. Then

η∗ : U 7→
⋃
{u ∈ C(A) : �u ⊂ U}

η∗ : a 7→
∐
{�u : u ∈ K(a)}

are the direct and inverse image parts of a continuous map ηA : A→ Floc(A) which coincides with
ηX in the case A = Ω(X).
Proof Observe that �U ∩�V = {φ : U ∈ φ∧ V ∈ φ}, which is the disjoint union of �W over
the components W of U ∩ V . It follows that η∗ preserves disjoint unions (keeping them disjoint)
and binary meets; since it is onto it also preserves > and ⊥. A general connected open set in
Floc(A) is a connected join of �u, and may be canonically so expressed by taking all possible u;
it follows by monotonicity that η∗ is well-defined. Clearly η∗ has been defined to coincide with
the spatial version. η∗ preserves disjoint unions, so η∗ ; η∗ = idA. Conversely,

∐
�Ui ≤ �

∐
Ui,

so η∗ ; η∗ ≤ idFloc(A) and η∗ a η∗. �

Corollary 2.18 η∗ preserves connectedness and η∗ preserves disjoint unions; such a map we call
locally dense. �

Exercise 2.19 ηX is an isomorphism iff X is an algebraic domain and every connected subset of
Xfp has a least element.

Lemma 2.20 η : id→ F is natural.
Proof We have to show that the following diagram commutes for f : X → Y continuous:

F(X)
F(f)- F(Y )

X

ηX

6

f - Y

ηY

6
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In terms of elements (i.e. for LCSp), for x ∈ X,

Fsp(f)(ηX(x)) = {V ∈ C Ω(Y ) : ∃U ∈ C Ω(X).x ∈ U ∧ U ⊂ f−1(V )}

which reduces by local connectedness to ηY (f(x)). For the localic version, we only have to show
that

Floc(f)−1(�V ) =
∐{

�U : U ∈ K(f−1(V ))
}

but φ ∈ F(X) is in either side iff f−1(V ) ∈ φ. �

2.5 Neighbourhoods of Sets

We can define the filter of connected open neighbourhoods of any connected set, not just of a
singleton. (An arbitrary subset of a space is connected iff it is connected in the subspace topology.)
For C ⊂ X connected, let

ηX〈C〉 = {U ∈ C Ω(X) : C ⊂ U} 2.20

this is nonempty because C lies in a component of X, and it is easy to show that it is a filter. In
particular if U ∈ C Ω(X),

ηX〈U〉 = ↑U 2.20

The poset form is equally simple,
ηpos
X 〈C〉 = ↑[C] 2.20

A nucleus j on a locale A is connected if j(
∐
Ui) = 1 ` ∃!i.j(Ui) = 1; then

ηA〈j〉 = {U : j(U) = 1} ∈ Fdom(A) 2.20

(this defines a point, not an open set, of F(A)).
The relevance of this is that we defined

Fsp(f)(↑U) = ηY 〈f [U ]〉 2.20

where f [C] = {f(x) : x ∈ C} is connected. This extends to arbitrary connected sets C:

Fsp(f)(ηX〈C〉) = ηY 〈f [C]〉 2.20

We also have
ηX〈C〉 =

⋂
{ηX(x) : x ∈ C} =

⋂
ηX [C] 2.20

Notice our careful use of special brackets: f [C] denotes the set of f(x) for x ∈ C, and ηX〈C〉 is
an “overloading” of η where the argument is a connected set rather than an element.

2.6 Locally Connected Toposes

In this paper we shall work with component decompositions, but there is a slicker way of expressing
local connectedness. Let U be any open set of a locally connected space X; we have written K(U)
for its set of components. Because each component of a smaller set must lie in a unique component
of a larger, this extends to a functor K : Ω(X) → Set. For any set Y, we write ∆(Y ) for the
discrete space with points Y . There is a continuous map U → ∆ K(U) (which sends the whole of
any component to its “name”), and this is universal in the sense that and map U → ∆(Y ) to a
discrete space factors as U → ∆ K(U)→ ∆(Y ).

More generally, if U is a sheaf on X, it also splits into components, but now we can regard the
discrete space as a constant sheaf on X. Then the universal property above becomes

K a ∆ a Γ

where Γ(U) is the set of global sections of a sheaf, i.e. continuous maps from X splitting the
local homeomorphism which displays U over X. K and Γ are functors E = Shv(X) → S = Set
and ∆ : S → E
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In general, ∆ : S → E is the inverse image functor of a geometric morphism, and pre-
serves finite limits and arbitrary colimits. This means that we can do type-theoretic constructions
in S involving finitary operators, equations, finite conjunctions, existential quantification and arbi-
trary disjunctions, i.e. geometric logic, and these will be preserved by ∆. In the case where E is
(sheaves on) a locally connected space, ∆ has a left adjoint (namely K), and consequently preserves
infinitary limits, operations and conjunctions (and in fact also function-spaces and implications).

Actually, this is not quite right. Simply having a left adjoint K makes ∆ preserve limits indexed
by sets: if S is some (“more complex”) topos, its logic involves indexing over its own objects, which
are not just discrete sets. What we need is that K be an S-indexed left adjoint. In this case we
say that E is a locally connected topos over S, or that (∆,Γ) : E → S is a locally connected
geometric morphism.

Barr and Paré [80] have demonstrated in detail this link between local connectedness and
preserving infinitary first-order predicate logic (including indexed products, as needed for infinitary
operations). They call a topos E with this property molecular because its objects (“sheaves”)
are disjoint unions (relative to S) of indecomposable components. These components are called
molecules because they may be very complicated, unlike the atoms to which they reduce in the
case where ∆ is logical (preserves the subobject classifier, Ω): atoms have no nontrivial subobject.
This phenomenon is discussed in Barr and Diaconescu [80], and is related to the versions of stable
domain theory studied by Girard and Lamarche.

In another paper we shall show that the category of stable domains and stable functions is
cartesian closed; it is very interesting to note that the precondition we need for constructing this
category (viz. local connectedness) is itself closely linked with the same kind of structure. There
must surely be a reason for this!

It would be nice to be able to extend the constructions of this paper to locally connected
toposes. Unfortunately this is not possible in the obvious way, because C(E) ∼= K−1(1) is a
large category. The analogue of Floc(E) would be the functor category [K−1(1),Set], which is
illegitimate and so not a (Grothendieck) topos. Even starting with (the topos of sheaves on) the
Sierpiński space, we find ourselves freely adding pullbacks to the category • → •, whereas in the
localic version we were merely filling in missing intersections. This irritating size problem could be
solved either by requiring stable category-domains to have all maps mono and hence considering
intersections (rather than wide pullbacks) and filtered colimits, or by asking for filtered colimits
and cofiltered limits only of specified cardinalities.

3 The Algebraic Theory

3.1 Algebras for the Pointed Endofunctor

It turns out that we can define the algebras without the need for the multiplication part (µ) of
the monad.

Definition 3.1 Given an (endo)functor F : C → C and a natural transformation (point) η : id→ F,
an algebra for (F, η) is an object X ∈ C together with a structure map ξ : F(X) → X such
that the triangle

X
ηX- F(X)

X

ξ

?

id
-

commutes. We can think of F(X) as “all polynomials in variables {x : x ∈ X} for the operations
of the algebra”, ηX(x) as “the polynomial x” and ξ(p) for p ∈ F(X) as “p multiplied out in the
structure (X, ξ)”.
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We shall express the connected meet structure on a stable domain D in terms of a map
εD : F(D)→ D. To define such a continuous map, it is necessary and sufficient to give a monotone
function C Ω(D)op → D. This takes a connected open set to its (connected) meet. For general
φ ∈ Fdom(D),

εD(φ) =
∨
�
{∧

U : U ∈ φ
}

3.1

Lemma 3.2 ηD a εD
Proof For x ∈ D, φ ∈ F(D), we prove that

x ≤ εDφ ⇐⇒ ∀y : x ∈ ↑↑ y.∃U ∈ φ.U ⊂ ↑↑ y ⇐⇒ ηD(x) ⊂ φ

[a] Recall that x is �-approximated. Then for z � x,

z � εDφ =⇒ ∃U ∈ φ.z ≤
∧
U

⇐⇒ ∃U ∈ φ.∀u ∈ U.z ≤ u

By �-interpolation (1.1.5) we can improve this to

y � εDφ =⇒ ∃U ∈ φ.∀u ∈ U.y � u

⇐⇒ ∃U ∈ φ.U ⊂ ↑↑ y
=⇒ y ≤ εDφ

[b] Let B be any basis for the topology on D; then the validity of

∀W ∈ B : x ∈W.∃U ∈ φ.U ⊂W

is independent of B. With B = {↑↑ y : y ∈ D} we recover the left hand side and with
B = C Ω(D) the right. �

Lemma 3.3 ηD ; εD = 1D.
Proof For x ∈ D, clearly εD(ηD(x)) =

∨
�{
∧
U : x ∈ U} ≤ x. Let x′ � x, so x ∈ U ⊂ ↑↑x′ for

some U ∈ C Ω(X); it suffices to show that x′ ≤ εD(ηD(x)). But x′ ≤
∧
U , which occurs in the

join. �

Corollary 3.4 ηD is an embedding and εD a projection. �

Lemma 3.5 More generally, εD(ηD〈C〉) =
∧
C for a connected set.

Proof εD is a right adjoint and so preserves meets, and so

εD
(
ηD〈C〉

)
= εD

(∧
ηD[C]

)
by (2.5.7)

=
∧
εD[ηD[C]] by (3.1.3)

=
∧
C by (3.1.4)

�

Lemma 3.6 (X, ξ) is an algebra for (F, η) iff X is an L-domain and ξ = εX .
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Proof Firstly, X must be an L-domain, because ηX ; ξ = idX makes X / F(X), and L-domains
are closed under Scott-continuous retracts (1.2.6). Hence εX exists and, since ηX ; εX = id, it is a
structure map. On the other hand εX ≤ ξ since ηX a εX , so it only remains to prove ξ ≤ εX . It
suffices to test this for compact filters, i.e. those of the form ↑U = ηX〈U〉. But

ξ(ηX〈U〉) = ξ
(∧

ηX [U ]
)

by (2.5.7)

≤
∧
ξ[ηX [U ]] monotonicity

=
∧
U by (3.1.3)

= εX(ηX〈U〉) by (3.1.6)

�

Exercise 3.7 Show that the algebras for the monad on Pos are posets with connected meets
(1.2.3). The inclusion (by Idl) in the category of algebras for the other versions of the monad gives
neither all algebraic stable domains nor all stable functions between them: characterise the ones
it does give.

3.2 Homomorphisms for the Algebras

Definition 3.8 A homomorphism of (F, η)-algebras from (X, ξ) to (Y, υ) is a map f : X → Y
in C which “preserves the structure” in the sense that

F(X)
F(f)- F(Y )

X

ξ

? f - Y

υ

?

commutes; then we may “substitute and calculate” (clockwise) or “calculate and substitute” (an-
ticlockwise). What are the homomorphisms of our algebras? Equivalently, since only ε is allowed
as a structure map, with respect to what morphisms is ε natural? We must find out when this
square commutes for ξ = εD and υ = εE .

Definition 3.9 Given a function f : X → Y in LDom, a left multiadjoint is a function
k : Y → P(X) with the property that

y ≤ f(x) ⇐⇒ ∃!x′ ∈ k(y).x′ ≤ x

Observe that f has a left adjoint iff (k exists and) each k(y) is a singleton.

Proposition 3.10 The following are equivalent for f : X → Y in LDom:

(α) f is an ε-homomorphism;

(β) f preserves all connected meets;

(γ) f preserves meets of connected open sets;

(δ) for all x ∈ X, the restriction of f to ↓x→ ↓ f(x) has a left adjoint;

(ε) f has a left multiadjoint;
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(ζ) for all y ∈ Y , f−1(↑ y) is a disjoint union of principal upper sets;
Proof

[α⇒ β] Consider commutativity of the square at φ = ηX〈C〉. By (3.1.6), εX(ηX〈C〉) =
∧
C, and by

(2.5.7), F(f)(ηX〈C〉) = ηY 〈f [C]〉. Substituting these, the clockwise route gives
∧
f [C] and

the anticlockwise route f
(∧

C).

[β ⇒ γ] Trivial.

[γ ⇒ α] What we have is precisely commutativity of the square at compact filters. Since the functions
are continuous and F(X) is algebraic, it holds everywhere.

[β ⇔ δ] Adjoint Functor Theorem.

[δ ⇔ ε] x′ ∈ k(y) is the value of this adjoint at y ∈ ↓ f(x).

[ε⇔ ζ] f−1(↑ y) =
∐
{↑x′ : x′ ∈ k(y)}. �

Definition 3.11 Such a map, which preserves directed joins and connected meets, is called stable.
(Occasionally we use this word to refer specifically to the meet structure.) A stable domain is
just an L-domain, but we use the different term to indicate its different morphisms. Write SDom
for the category of stable domains and maps. There is an obvious forgetful functor U : SDom→
LDom (we just forget that a function preserves connected meets), and we shall use this also for
the composites with the other forgetful functors to LCSp, LCLoc and Dom.

Proposition 3.12 For any continuous f : X → Y, F(f) is a stable map.
Proof The slick proof is to construct the multiadjoint. Essentially this takes V to the set of
components of f−1(V ). More precisely, the compact filter ↑V is mapped to the set k(↑V ) = {↑U :
U ∈ K(f−1(V ))}. Checking the multiadjunction for this,

↑V ⊂ F(f)(φ) ⇐⇒ V ∈ F(f)(φ) F(f)(φ) is an upper set
⇐⇒ ∃U ∈ φ.U ⊂ f−1(V ) by (2.3.3)
⇐⇒ ∃!U ∈ K(f−1(V )).U ∈ φ take U largest
⇐⇒ ∃!φ′ ∈ k(↑V ).φ′ ⊂ φ namely φ′ = ↑U

The multiadjoint extends to arbitrary filters as follows:

k(ψ) = {φ′ : ∀U ′ ∈ φ′.∃V ∈ ψ,U ∈ K(f−1(V )).U ⊂ U ′} 3.12

then ψ ⊂ F(f) ⇐⇒ ∃!φ′ ∈ k(ψ).φ′ ⊂ φ, where

φ′ = {U ′ ∈ φ : ∃V ∈ ψ,U ∈ K(f−1(V )).U ⊂ U ′} 3.12

�

Corollary 3.13 F = F ; U for a functor F : LCSp→ SDom. �
Again we shall abuse notation and allow the argument of F to be a domain or locally connected

space or locale.
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3.3 Adjunction, Monad and Algebras

Proposition 3.14 F a U, with unit η and counit ε.
Proof We showed one of the triangular identities in (3.1.4); for the other:

F(X)
F(ηX)- F2(X)

F(X)

εF(X)

?

id
-

By continuity we need only show this for φ = ↑U = ηX〈U〉 with U ∈ C Ω(X). Then

εF(X)

(
F(ηX)(ηX〈U〉)

)
= εF(X)

(
ηF(X)〈ηX [U ]〉

)
by (2.5.6)

=
∧
ηX [U ] by (3.1.6)

= ηX〈U〉 by (2.5.7)

Where we have avoided discussing sets of sets of sets of sets by using the overloaded η and special
brackets. �

It is instructive to see the adjoint correspondence.

f : X → U(D)
F(X) → U(D)
F(f) ; εD : F(X) → D

by
↑U 7→

∨
�{
∧
V : U ⊂ f−1(V )} 3.14

φ 7→
∨
�{
∧
V : ∃U ∈ φ.U ⊂ f−1(V )} 3.14

and
s : F(X) → D

F(X) → U(D)
ηX ; s : X → U(D)

by
x 7→ s(ηX(x)) 3.14⋃
{U ∈ C Ω(X) : �U ⊂ s−1(V )} ←7 V 3.14

Corollary 3.15 Any Scott-continuous map between L-domains factors as locally dense map (η
— see 2.4.6) followed by a stable map. �

Definition 3.16 The connected open filter monad is that derived from the adjunction. The
multiplication part of a monad says “remove the brackets” from polynomials of polynomials. We
must have unit and associativity laws:

F
F(η)- F2 F 3 F(µ)- F2

F2

ηF

?
µ - F

µ

?

id

-

F2

µF

?
µ - F

µ

?
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which follow automatically if we put µX = εF(X). In our case, we’ve just had a lucky escape
from considering (sets of)5 sets! If we have an algebra for a monad, removing brackets from a
polynomial of polynomials and calculating must be the same as calculating twice, so the diagram

F2(X)
F(ξ)- F(X)

F(X)

µX

? ξ - X

ξ

?

must commute.

Theorem 3.17 SDom is the category of algebras for the monad; in other words the adjunction
is monadic.
Proof It only remains to check that (X, εX) satisfies the additional equation for an (F, η, µ)-
algebra, i.e. that the above square commutes when we put ξ = εX and µX = εF(X). This follows
from the fact that εX : F(X) → X (horizontally) is a projection (3.1.5) and hence a stable map
and ε : F → id (vertically) a natural transformation with respect to stable maps (3.2.3). �

3.4 Limits in SDom

Being able to express a category as a category of algebras gives us a good grasp on its structure,
and in particular makes it easy to construct limits.

Theorem 3.18 Let U : A → C be the forgetful functor for a monad (it is called monadic or, ugh!,
triplable). Then U creates limits, i.e. if d : I → A is any diagram such that d ; U has a limit
L in C (the limit of the “underlying objects”) then there is a unique structure map ξ : F(L)→ L
making (L, ξ) the limit in A with limiting cone that for C. U also creates regular monos (subalgebra
inclusions).
Proof See [Mac Lane 71], chapter III, [Manes 75] or [Barr and Wells 85], §3.4. �

Unfortunately our monad is not over Set, so it is not completely trivial. However we can do
it indirectly. (The following results are exercises.)

Lemma 3.19 The underlying set functor Pos → Set is not monadic, but nevertheless creates
limits. �

Proposition 3.20 Dom is the category of algebras for the monad (Idl, ↓,
⋃
6) on Pos. �

Corollary 3.21 SDom→ Dom→ Pos→ Set creates limits. �

Exercise 3.22 Show that the forgetful functor SDom → Pos is also monadic. What is the
relationship with the monad Fpos?

3.5 Injectivity

One of the earliest known properties of continuous lattices (with the Scott topology) was that they
are exactly the injective T0-spaces (or locales) with respect to subspace inclusions. Similarly one
can show that boundedly-complete continuous posets are injective with respect to dense inclusions.
What is the corresponding property for L-domains?

In terms of locales, i : X ′ → X is a subspace inclusion iff i∗ ; i∗ = id, and then j = i∗ ; i∗ is a
nucleus: it is inflationary, idempotent and preserves binary meets. Spatially,

i∗(U) = int
(
U ∪ (X \X ′)

)
15



for U ⊂ X ′ open. So i is dense iff i∗ (or j) preserves ⊥. We are looking for a stronger condition
than density, and it turns out to be that i∗ (or j) preserves disjoint unions.

Definition 3.23 A continuous function f is locally dense if f∗ preserves disjoint unions.

Examples 3.24

(a) ηX : X → F(X) is locally dense and continuous (but not stable): 2.4.6;

(b) any stable map is locally dense iff it is a homomorphism. �

Lemma 3.25 The following are equivalent for a continuous map f : X → Y in LCLoc:

[α] f∗ preserves connectedness;

[β] f∗ preserves disjoint unions;

[γ] F(f) is a homomorphism.
Proof

[α⇔ β] Let V ∈ C Ω(Y ) and Ui ∈ Ω(X) be disjoint. Then

∃!i.V ⊂ f∗(Ui) ⇐⇒ V ⊂
∐
i

f∗(Ui) V connected

V ⊂
∐
i

f∗(Ui) ⇐⇒ V ⊂ f∗
(∐

i

Ui
)

[β]

V ⊂ f∗
(∐

i

Ui
)
⇐⇒ f∗(V ) ⊂

∐
i

Ui f∗ a f∗

f∗(V ) ⊂
∐
i

Ui ⇐⇒ ∃!i.f∗(V ) ⊂ Ui [α]

∃!i.f∗(V ) ⊂ Ui ⇐⇒ ∃!i.V ⊂ f∗(Ui) f∗ a f∗

[α⇔ γ] Comparing with the proof of Proposition 3.2.5, k(↑V ) is a singleton iff f∗ preserves con-
nectedness. �

Proposition 3.26 I ∈ LCSp is injective with respect to locally dense subspace inclusions iff
I ∈ LDom.
Proof

[⇒] ηI : I → F(I) is such an inclusion, so idI must extend to a postinverse and hence make
I / F(I).

[⇐] Let i : X ↪→ Y be locally dense, so F(i) : F(X)→ F(Y ) has a left adjoint; but it is mono, so
the adjoint is a postinverse c. For any f : X → I, let g = ηY ; c ; F(f) ; εI . Then

i ; g = i ; ηY ; c ; F(f) ; εI
= ηX ; F(i) ; c ; F(f) ; εI by naturality of η
= ηX ; F(f) ; εI construction
= f ; ηI ; εI by naturality of η
= f by (3.1.4)

so g is the required extension of f . �
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Lemma 3.27 In fact it is the greatest extension. For suppose f = i ; h; then

h = h ; ηI ; εI = ηY ; F(h) ; εI naturality of η
≤ ηY ; c ; F(i) ; F(h) ; εI c a F(i)
= ηY ; c ; F(f) ; εI = g �

Johnstone [83] uses the fact that exponentiation (by an exponentiable space) preserves injec-
tivity to characterise the exponentiables spaces as those whose open set lattices are continuous
(and in [81] the exponentiable toposes as those which are continuous categories; Hyland [81] gives
the corresponding result for locales). Unfortunately I can’t see any similarly slick argument for
Jung’s “exponentiability” result, since we now want XX to be itself exponentiable.

Exercise 3.28 Show that the injectives for subalgebra inclusions in SDom are the continuous
lattices. Hint: the four-point lattice has a two-point discrete subalgebra.

4 Cartesian Closure

4.1 The Berry Order

In this final section we shall exploit the characterisation we have given for stable domains in terms
of operations and equations to prove that the category is cartesian closed. As usual, the main
problem is to identify the exponential [A → B], whose points must correspond to stable maps
from A to B since 1 generates in the category.

What must the order relation be? Suppose f ≤ g are two points of [A→ B] enjoying the order
relation between them, and a′ ≤ a two points of A. Then in the product [A→ B]×A

〈f, a′〉 ≤ 〈f, a〉

Z Z

〈g, a′〉 ≤ 〈g, a〉

is a pullback, which must be preserved by the evaluation map ev : [A→ B]×A→ B since this is
to be stable. Hence we make the following

Definition 4.1 Two stable functions f, g : A→ B are said to be comparable in the Berry order,
written f v B, if, for all a′ ≤ a ∈ A, f(a′) = f(a) ∧ g(a′).

This order relation is sparser than the pointwise order which we obtained from the monad
(lemma 2.3.10), so what’s wrong with the monad? Simply that we took the wrong order relation
between continuous functions in LCSp. Indeed,

Proposition 4.2 Let f, g : X ⇒ Y in LCSp with f ≤ g pointwise. Then the following are
equivalent:

(α) F(f) v F(g)

(β) For all compact φ′ ≤ φ ∈ F(X) and ψ ∈ F(Y ), if ψ ≤ F(f)(φ),F(g)(φ′) then ψ ≤ F(f)(φ′).

(γ) For all V ∈ C Ω(Y ), K g−1(V ) ⊂ K f−1(V ).
Proof [α⇒ β] is trivial.

[β ⇒ α] Since F(Y ) is algebraic, it suffices that ψ be compact; then ψ ≤ F(f)(φ0),F(g)(φ′0) for some
compact φ0 ≤ φ and φ′0 ≤ φ′, and by directedness we may assume φ′0 ≤ φ0.
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[β ⇔ γ] (γ) means that if U ′ ⊂ g−1(V ) and U ⊂ U ′ ∩ f−1(V ) for some U,U ′ ∈ C Ω(X) then
U ′ ⊂ f−1(V ). Put φ = ↑U , φ′ = ↑U ′ and ψ = ↑V ; any compact φ′ ≤ φ ∈ F(X) and
ψ ∈ F(Y ) arise in this way. �

So we may take (γ) as the definition of the Berry order on continuous functions between locally
connected spaces, and with this order the monad gives the Berry order on stable functions.

Returning to cartesian closure, in order that ev(f, a) be stable in f it is necessary (and sufficient)
that directed joins and connected meets be constructed pointwise, and we devote the following
two subsections to showing this. However it is essential that the systems of functions be directed
(respectively connected) in the Berry order , because otherwise the result is a classic failure:

Example 4.3 Let A = N∪{∞} with the usual order and B = Σ. Consider the (stable) functions
fi : A→ B where fi(n) = > if n ≥ i and ⊥ otherwise. Then (fi : i ∈ N) is a codirected system in
the pointwise order, but ∧

i∈N

fi

( ∨
�

n∈N

n
)

= > 6= ⊥ =
∨
�

n∈N

∧
i∈N

fi(n)

so
∧
fi is not continuous. By reversing the order we have a pointwise directed system of stable

functions whose join is not stable. �

4.2 Directed Joins of Sections

Let fi : A→ B be a directed system (in the Berry order) of stable functions.

Lemma 4.4 f = λa.
∨
�i fi(a) is a stable, continuous function.

Proof It is trivial to show that it is a continuous function. For stability of f , let (aj : j ∈ J) be
a connected system in A. By the stability of each fi we have

l =
∧
j

f(aj) =
∧
j

∨
�

i

fi(aj) ≥
∨
�

i

∧
j

fi(aj) =
∨
�

i

fi
(∧
j

aj
)

= f
(∧
j

aj
)

= r

and we must show the reverse inequality. Since B is a continuous poset, it suffices to show that
if x � l (which gives ∀j.∃i.x ≤ fi(aj)) then x ≤ r. Choose j0 ∈ J arbitrarily, and suppose
x ≤ fi0(aj0). By induction on the length of a zig-zag j0 ≤ j1 ≥ j2 ≤ ... ≥ jn = j (using
connectedness) to an arbitrary j ∈ J , we shall show that ∀j.x ≤ fi0(aj). If j0 ≤ j1, trivially
x ≤ fi0(aj0) ≤ fi0(aj1). Suppose j0 ≥ j1; we have x ≤ fi1(aj1) (with w.l.o.g. i0 ≤ i1). So using
fi0 v fi1 we have that

fi0(aj1) - fi0(aj0)

fi1(aj1)
?

- fi1(aj0)
?

is a pullback, whence x ≤ fi0(aj1). Now we have x ≤
∧
j fi0(aj) ≤ r. �

Exercise 4.5 Explain how this proof avoids the counterexample (4.1.3).

Lemma 4.6 For each i, fi v f .
Proof For a ≤ b the rectangle

fi(a) - fj(a) -
∨
� fj(a)

fi(b)
?

- fj(b)
?

-
∨
� fj(b)

?
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must be a pullback. As before, suppose y � fi(b),
∨
� fj(a), so for some j (w.l.o.g. i ≤ j), y ≤

fi(b), fj(a). But fi v fj , so y ≤ fi(a). �

Lemma 4.7 If ∀i.fi v g, then f v g.
Proof Again for a ≤ b the right-hand square

fi(a) -
∨
� fi(a) - g(a)

fi(b)
?

-
∨
� fi(b)

?

- g(b)
?

must be a pullback. Let y � g(a),
∨
� fi(b), so y ≤ g(a), fi(b) for some i. But fi v g, so y ≤ fi(a) ≤∨

� fi(a). �

Proposition 4.8 The poset of functions with the Berry order has directed joins, and these are
constructed pointwise. �

4.3 Connected Meets of Sections

Let fj : A→ B be a connected system (in the Berry order) of stable functions.

Lemma 4.9 f = λa.
∧
fj(a) is a stable, continuous function.

Proof It is stable because connected meets commute with each other. The proof of continuity
is essentially the same as that of stability of a directed join, but it is so remarkable that this
argument works that it seems well worth repeating. Let (ai : i ∈ I) be a directed system in A
with a =

∨
� ai; by continuity of each fj and the definition of f we have

l = f
(∨
�

i

ai
)

=
∧
j

fj
(∨
�

i

ai
)

=
∧
j

∨
�

i

fj(ai) ≥
∨
�

i

∧
j

fj(ai) =
∨
�

i

f(ai) = r

and we must show the reverse inequality. By continuity of B, it suffices to show that if x � l
(which gives ∀j∃i.x ≤ fj(ai)) then x ≤ r. Choose j0 ∈ J arbitrarily, and suppose x ≤ fj0(ai0);
by induction on the length of a zig-zag j0 ≤ j1 ≥ j2 ≤ ... ≥ jn = j (using connectedness) to an
arbitrary j ∈ J we shall show that ∀j.x ≤ fj(ai0). If j0 ≤ j1, trivially x ≤ fj0(ai0) ≤ fj1(ai0).
Suppose j0 ≥ j1; we have x ≤ fj1(ai1) (with w.l.o.g. i0 ≤ i1). So using fj0 w fj1 we have

fj1(ai0) - fj0(ai0)

fj1(ai1)
?

- fj0(ai1)
?

is a pullback, whence x ≤ fj1(ai0). Now we have x ≤
∧
j fj(ai0) ≤ r. �

Lemma 4.10 For each j, f v fj .
Proof We must show that the square∧

fj(a) - fi(a)

∧
fj(b)
?

- fi(b)
?
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is a pullback for a ≤ b and some fixed i. Let y ≤ fi(a),
∧
fj(b), so ∀j.y ≤ fj(b). We have to show

that y ≤ fj(a) by induction on the length of a zig-zag from i to j. For a one-step path there are the
two cases i ≤ j and i ≥ j; the first of these follows by fi v fj , whilst the second follows trivially
since y ≤ fj(a) ≤ fi(a) in the pointwise order. For a longer path, j = i0 ≤ i1 ≥ i2 ≤ i3... ≥ in = i,
in the context of ∀i.y ≤ fi(b) we use this to show that y ≤ fik(a)⇒ y ≤ fik+1(a). �

Lemma 4.11 If ∀j.g v fj , then also g v f .
Proof Again for a ≤ b the left-hand square

g(a) -
∧
fi(a) - fi(a)

g(b)
?

-
∧
fi(b)
?

- fi(b)
?

must be a pullback. For any i, since g v fi, the rectangle is a pullback, and by the right-hand
square is too. �

Proposition 4.12 The poset of functions with the Berry order has connected meets, and these
are constructed pointwise. �

4.4 Cartesian Closure

Proposition 4.13 The poset of stable functions with the Berry order is a stable domain, and
evaluation at a chosen point is a stable function.
Proof It only remains to show that arbitrary meets distribute over directed joins in each slice
of the function-space. But meets and joins are calculated pointwise, so the result follows from
distributivity in each slice of B. Stability of evaluation is the same as saying that directed joins
and connected meets of functions are calculated pointwise. �

Lemma 4.14 ev : [A s→ X]×A→ X is stable.
Proof To show that it preserves filtered colimits we first observe that it is continuous in each
argument separately. Then recall that separate and joint continuity are equivalent, because when
we take the colimit twice over the same filtered diagram, we may replace it by the “diagonal”.
The same argument applies to codirected meets.

The pullback diagram
〈f1, a1〉 - 〈f2, a2〉

〈f3, a3〉
?

- 〈f4, a4〉
?
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splits into pullbacks in [A→s X] and in A. Then each square of

f1(a1) - f1(a3) - f3(a3)

f1 stable f1 v f3

f1(a2)
?

- f1(a4)
?

- f3(a4)
?

f1 v f2 eva4 stable

f2(a2)
?

- f2(a4)
?

- f4(a4)
?

(which is part of a 4D cube) is a pullback. �

Theorem 4.15 SDom is cartesian closed.
Proof The adjunctive correspondence (Currying) between f : A×B → C and g : A→ [B s→ C]
is completely standard. The counit is ev, which we have already shown to be stable, whilst the
unit is a 7→ (b 7→ 〈a, b〉). For fixed a, b 7→ 〈a, b〉 preserves directed joins and connected meets (but
not > or ⊥), and (since they are constructed pointwise for functions) so does a 7→ (b 7→ 〈a, b〉).
Naturality and the triangular identities are standard and trivial. �
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[80] Catégories Multialgébriques, Archiv der Mathematik 34 (1980) 193–209

[80] Quelques constructions de catégories localement multiprésentables, Ann. Sc. Math. Québec
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