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The theory of ordinals! may be considered from two points of view. As a significant generali-
sation of arithmetic, it is of deep philosophical meaning and presents by itself one of the most
beautiful and interesting topics in modern mathematics. On the other hand, its applications have
contributed in many ways to the advancement of different areas of our subject. Indeed, it was for
the benefit of these applications that Cantor originally developed his theory [Canl5, Can32].

In this work we treat this theory solely from the point of view of such applications. We
show that theorems of a certain general form can actually be proved without making use of these
numbers. This includes results from many well known and important disciplines where the proofs
have employed ordinals, even though the statements make no mention of them.

The goal of eliminating ordinals from arguments that belong solely to applications is not a new
one: it has been done by Lebesgue [Leb05], Lindeldf for the Cantor-Bendixson Theorem [Lin05],
Sierpinski [Sie20], the Youngs for the class of derivatives of any order of a given set of points
[YY06, appx| and Zermelo for the Well-Ordering Theorem [Zer04, Zer08a], but using different
methods in each particular case.

However, the ways in which ordinals are employed have actually been uniform, so that we may
give them according to a common scheme. After presenting this, we will transform any process
represented by it into another one that no longer employs ordinals.

Our method is closely linked to Dedekind’s notion of a chain (“Kette”) [Ded88] that was de-
veloped by Zermelo in his second proof of the Well-Ordering Theorem [Zer08a] and by Hessenberg
[Hes08].

Although the use of ordinals may sometimes give certain advantages in terms of brevity and
simplicity, the existence of a general procedure for removing them from proofs of theorems that
make no mention of them is important for the following reasons:

When reasoning with ordinals, one makes the implicit assumption that they exist, whereas
minimising the system of axioms used in a proof is desirable logically and mathematically. Besides,
such reduction frees the development from ideas that do not belong in it, which is desirable
aesthetically.

From the point of view of Zermelo’s axiomatisation of set theory [Zer08b], it seems that the
method presented here allows one to prove theorems of a certain general form directly from his
axioms. That is, with no need to introduce additional axioms for the existence of ordinals.

1Kuratowski uses “nombre transfini” throughout, but repeating this phrase seems cumbersome, so we have
replaced it with “ordinal”. He also refers to transfinite numbers “of the first or second kind”, which we have
rendered as “successor” and “limit ordinals”.



The general method

Before studying the general pattern of the use of ordinals, let us consider a particular application,
namely how one usually defines coherences of every order for a set of points:

Let S be Euclidean space of dimension n. For any set X of points, let X’ be the derived set
of X and G(X) = X N X’. Let A be a given set of points and define:

° AO = A,
° Aa+1 = G(Aa)7
o for any limit ordinal «, let A, = mE<a Ag.

Aq is called the coherence of order a of A. So the class A(A) of all of the A, is the class of
coherences of all orders for A.

Here is the general pattern of the procedure to which we have referred:
Schema I. Let E be a given set, whose elements may be of any kind whatever. The only
requirement on E is that for any subset X C E, G(X) denotes a subset of E that satisfies the

[“deflationary”] inclusion
G(X) Cc X. (1)

Let A C E be any given subset of E. Neither its definition nor those of the set E nor the function
G(X) make any reference to ordinals. Nevertheless, for all ordinals a, put

Ay = A, (2)
Aa+1 = G(Aa), (3)

and when « is a limit ordinal,

Ao = [ Ae. (4)

(<a

Schema I’ is the symmetrical one obtained by replacing (1) by [the “inflationary” inclusion]
X c G(X) (5)

and the equation (4) by

A, = | Ae. (6)

{<a

Given a G(X) function obeying Schema I, consider the families? Z such that

the elements of Z are subsets of E, (7)
A€ Z, (8)

X €Z implies G(X)€Z, (9)

0 #X CZ implies ﬂX eZ. (10)

Here we use A, B, X, etc. to denote [sub]sets. Families of [sub]sets are written A, B, ... (X
is the intersection® of the subsets in X and | J X their union. In particular, if the family X consists

2Kuratowski uses the word “class” for any collection of subsets of the base set E. We have translated this as
“family” when it is definable in Zermelo set theory with bounded Quantification and Selection and “class” otherwise.
This distinction is explained in the Translator’s Note at the end.

3Kuratowski says “produit” and writes x and H for what we now call intersection, N, n Similarly he uses
“somme”, + and Z for our union, U and U ‘We have also changed his “—” for subset subtraction to \.



of a sequence X1, Xo,...X,,... then we also write ﬂif:l X,, and Uzozl X,, for their intersection
and union.

Such families Z do exist; for example, the family of all subsets of E is one such. Among such
families there is a smallest one. Indeed, their intersection is also a family Z, since (as shown without
difficulty) it satisfies conditions (7-10). Let’s call this smallest family M(A). [It is “generated”
by A, G and ()]

Definition. Given a set E and a function G(X) such that, for any subset X C E, G(X) is a
subset of E and satisfies the inclusion (1) [i.e. G(X) C X C EJ, For any subset A C E, M(A)
denotes the smallest family Z satisfying conditions (7-10).

In exactly the same way, we define N(A) by replacing condition (1) with (5) and (10) with

) #X CZ implies UXEZ. (11)

The existence of the family N(A) is proved in the same way.

The method of eliminating ordinals consists of replacing the class A(A) in any process repre-
sented by the Schema I (or 1') with the family M(A) or N(A).

As it is easy to see, the definition of the family M(A) and the proof its existence make no
recourse to ordinals. When we consider the ways in which ordinals have been used to date, we
will show by using this method and without having to invoke ordinals how to recover the results
that are usually obtained with them.

In fact, in many particularly simple cases, it is possible to eliminate the ordinals directly,
without the help of the general method presented here. This is, for example, the case of the
following reasoning, cf. [Hauld, p.275].

Let K be an infinite well ordered descending sequence of closed sets [in Euclidean space], where
it is required to demonstrate that the family K is countable.

Suppose that the elements of this family are arranged in a transfinite sequence, writing K, for
the general term. Let {R,} be the sequence of spheres with rational centres and radii. For any
given K, let n(K,) be an index chosen such that the sphere R, x) has points in common with
K, but not with the members of the family K earlier than K, and n(K,) is the smallest number
that has this property.

We immediately see that any two different elements of K thus correspond to two different
natural numbers, so the family K is countable.

By examining this argument we recognise without difficulty that we can remove the ordinals
from it. For this it is enough to replace K, with the set K, making no use of the transfinite.

If we compare this reasoning to the one used to build the class of coherences, we see the
following essential difference: in the first the “chain” (in particular, the well-ordered family K) is
given by hypothesis, whilst that in the second it (i.e. the class A(A)) has to be constructed. It is
only necessary to use our general method of eliminating ordinals when the chain is not given in
advance but is constructed as part of the proof.

In particular, the role of ordinals in

e Bernstein’s results about sets without perfect parts (Leipz. Ber, 60),
e in Mahlo’s about the number of “homoies” (ibid. 63),
e in the article by Sierpiniski and myself on classes (L) [KS21] and

e in the one by Knaster and myself on connected sets [KK21]



is similar to their role in the reasoning on family K just discussed.

We will now show that M(A) = A(A). Of course, if the class A(A) has been defined using
ordinals, as in Schema I, this equality cannot be established without using them. However, in no
individual case where there is a need to eliminate ordinals will we make use of this equation: it
will never occur as a premise. The sole reason why we prove it here is that this identity allows us
to state that our method can eliminate ordinals from any process of the form in Schema I (or I').

Since the class A(A) is a well ordered descending class of sets, it satisfies conditions (7-10). So
A(A) is a class Z and, like M(A) is, by definition, contained in each Z, we have M(A) C A(A).
The reverse inclusion also holds. Indeed, according to (2) and (8), Ay € M(A), and if Ac € M(A)
for all £ < o then A, € M(A). From this we deduce that A, € M(A), using conditions (3) and
(9) or (4) and (10), according as « is a successor or limit ordinal. Therefore A(A) = M(A).

In a similar way we may show that the family N(A) is the same as A(A) in Schema I’

We will now establish some general theorems about the families M(A) and N(A) that we will
often use later. The proofs of these results make no use of the notion of ordinals and will be based
entirely on Zermelo’s axioms [Zer0O8b], in particular Axioms I-V.

The most important property of the class A(A) it that it enables transfinite induction. There-
fore it is essential that such induction remain valid using the method proposed here, albeit in a
modified form, for any argument using the families M[(A) or N(A).

Indeed, suppose that we need to prove a given property of elements of the family M(A), then
we must apply the following procedure. Consider the family P of all subsets of E that enjoy the
property in question. Then show that

1. AeP,
2. if X € P then G(X) € P and
3. if 0 #X CP then X € P.

Since the family P is a family Z that satisfies conditions (7-10), by the definition of M(A)
we have M(A) C P. This says precisely that all of the elements of M(A) enjoy the property in
question.

The process that we have just described, which we also call induction, will recur over and over
again in what follows. Its legitimacy follows from the same definition as M(A).

So we have established
Theorem 1. Suppose given a property P such that

1. the given set A obeys P;
2. if X satisfies it then so does G(X);
3. for any [non-empty] family X of sets that satisfy P, so does their intersection (] X.

Then every element of M(A) has the property P.
Symmetrically, we obtain Theorem I’ by replacing (X with |JX and M(A4) by N(A).

[An easy consequence of Theorem I that is used later in the paper but not stated clearly is that
A is the greatest member of M(A). This follows by letting P consist of those X with X C A.]



Here are some important properties of the set (| M(A).

From (10), this set still belongs to the family M(A) and is its smallest member. Writing P(A)
for it, we therefore have P(A) C M for any element M € M(A). In particular P(A) C A, by (8).
We also claim that

P(A) = G(P(A)). (12)

Indeed, since P(A) is an element of M(A), so is G(P(A)), by (9). Therefore P(4) C G(P(A))
and they are equal by inclusion (1).

Suppose now that the function G(X) obeys the condition
X CY implies P(X)cCG(Y). (13)

We will show that, under this hypothesis, P(A) is the greatest set that, when substituted for Z,
satisfies the formulae:
Z C A, (14)

Z = G(2), (15)
So let Z be any set that satisfies (14) and (15). We must show that

Z C P(A). (16)
Because of (15), the family M(Z) has just a single element Z and so

Z = P(Z). (17)

Let U be a set such that
Z C U (18)

According to (18), (13) and (17), we have
Z = P(Z) c G(U), (19)

so the inclusion (18) implies (19) for any U.
Using (14) and Theorem I (in which P denotes the property of containing Z), we deduce that
every member of the family M(A) also contains Z, since

(XeP) = (Zc X) implies (ZcCG(X)) = (G(X)€eP).

In particular the inclusion (16) holds. QED

Replacing the condition (13) by the more restrictive
X CY implies G(X)cCG(Y), (20)

we immediately deduce

Theorem II. If the function G(X) [is deflationary and monotone, i.e. it] satisfies conditions
(1) and (20), then the set P(A) (i.e. the smallest set in the family M(A)) is the largest subset
Z C A that is fixed by G, i.e. satisfies the equation (15).



Similarly, for a function G(X) obeying condition (5), S(X) = [JN(A) is a Z that satisfies (15).
If we suppose further that
X CY implies G(X)cCS(Y), (21)

then S(A) is the smallest Z that contains A and is a subset of E.

Since the condition (20) is more restrictive than (21), we deduce

Theorem IT'. If the function G(X) [is inflationary and monotone, i.e. it] satisfies conditions
(5) and (21) then the set S(A) (i.e. largest set in the family N(A)) is the smallest subset Z C F
that contains A and satisfies the equation (15).

Theorem III. M(A) is a family of decreasing sets. That is, for any X, Y € M(A4),
either X CY or Y CX.

Proof. This is a [double] application of the induction principle that we have just derived.
Consider the elements K € M(A) that satisfy the condition

forall X,Y € M(A) suchthat K C X, eithee X CY or Y CG(X). (22)

Let K be the family of all such K. We claim that this is a family Z that satisfies condition (8-10).

[Outer base case (8), that] A € K.
Consider the family Y consisting of those Y € M(A) such that

Y=A or Y CG(A).
[Since G(Y') C Y] this is a family Z, satisfying conditions (8-10), so by Theorem I,
Y = M(4) (23)

and A is a K that satisfies (22).

[Outer successor case (9), that K € K implies G(K) € K.]
For a given K consider the subfamily T C M(A) whose members are the T satisfying one of
the following two conditions:

T > G(K) (24)
or T c G(G(K)). (25)

[Inner base case:] From (23), A is a super-set of all of the members of M(A), so we may put it
for T in formula (24). Then
A e T. (26)

[Inner successor case:] Now let T' be any element of T. We claim that G(T') € T.
First note that if T = K or T = G(K) then G(T) € T using the formulae (1), (24) and (25).
So we may suppose that
T # K, (27)
and T # G(K). (28)
Two cases may occur, depending on whether T satisfies (24) or (25).
In the first case we have T' ¢ G(K) by (28). So, putting X = K and Y =T in (22), we deduce

that K C T. Putting X =T and Y = K in the same formula, we have K C G(T) by (27). Hence
G(K) C K C G(T) and G(T) € T, since we may substitute G(T') for T in (24).



In the second case we have G(T) C T C GG(K) and, substituting G(T') for T in (25), we
deduce that G(T) € T.
We have shown that
TeT implies G(T)eT. (29)

[Inner limit case:] On the other hand,
0#XCT implies [|Xe€T. (30)

Indeed, if all the elements Y € X satisfy (24), so does their intersection (| X. If not, at least one
of them is a subset of GG(K) by (25). A fortiori, X C GG(K).

[Inner conclusion:] By Theorem I, the formulae (26), (29) and (30) entail the equation
T = M(4) (31)

and therefore G(K) € K. Indeed, let X € M(A) and G(K) C X. If, in addition, K C X, by(22),
for any Y € M(A) we have
Xcy or Y Cc G(X).

Otherwise we would deduce from (22) that X C G(K) and so that X = G(K); then by the
formulae (31), (24) and (25), X CY or Y C G(X). Hence in either case we may substitute G(K)
for K in (22).

[Outer limit case (10), that ) # U C K implies (U € K]
We write R for the subfamily of M(A) consisting of the sets R with

either [JUCR or RCG([U).

[Inner base case:] By (23), A € R.

[Inner successor case:] On the other hand, let R € R. If R = (U or R C G((U) then
G(R) C G(NU), whence G(R) € R. Suppose therefore that R # (U and R ¢ G((\U); then
R D (U from the definition of R. We claim that there is some element K € U with K C R.
Indeed, if this were not the case, by putting K = X and Y = R in (22), we would have for each
K eU, RC G(K) C K, whence R C (U and R = (U, contrary to the hypothesis.

Now, K C Rand R ¢ (U imply, using R = X and Y = (U in (22), that U C G(R),
whence G(R) € R. Therefore R € R implies G(R) € R.

[Inner limit case:] Finally: ) # X C R implies (X € R. Indeed, if all of the elements of X
contain [ U, so does their intersection [ X. Otherwise, there would be some member of X that
is a subset of G((U), so, d fortiori, (X C G((\U). Thus in all cases [1X € R.

[Inner conclusion:] According to Theorem I,
R = M(A). (32)

The result of this is that (U € K. Indeed, let X € M(A) such that (YU C X. If there is also
an element of K € U such that K C X, one can of course put (U for K in (22). Otherwise all of
the elements K € U contain X by (22), so [\ U D X, whence (U = X and, by (32), substituting
U for K in (22), we obtain the formula (U € K.

[Outer conclusion:] Having established the conditions 8-10 for Theorem I, the result is that
any element of M(A) is a K that satisfies (22). However, putting X = K in (22), we immediately
deduce that M(A) is a decreasing family of subsets. Moreover,



if X is any element of M(A), there is no element of M(A) that is different from both
X and G(X) while being a subset of X and containing G(X). (33)

In other words:

G(X) iseither equal to X or is its immediate successor. (34)

Corollary I. M(A) is a well ordered decreasing family of sets.
In other words, any nonempty subfamily of M(A) has a largest member. This can be written
as follows:
0#XCM(A) implies | JXeX. (35)

Note that the phrase “well ordered descending family of sets” makes no appeal to the general
notion of order: this phrase is defined by the condition (35) [Kur21].

Proof. Indeed, if A € X C M(A) then by (23) A itself is the largest element of X. Otherwise, let
P be the family of all of the members of M(A) that contain those of X. If (P € X then (P is
the largest element of X; otherwise (1P ¢ X and so G((P) € X and, by (34), G((P) contains
all the other elements of X. Hence, in either case, [JX € X. QED

Symmetrically, we have
Corollary I'. N(A) is a well-ordered increasing family of sets and

0 #X CN(A) implies [|XeX. (36)

Now consider family D of all of the differences M \ G(M) for M € M(A). We claim that
A = P(4) + D, (37)

where P(A) is, as usual, the smallest member of the family M(A).
To prove this formula it is enough to show that, for any element p € A\ P(A), there some
element M (p) € M(A) such that

peM(p) and p¢ G(M(p)). (38)

Indeed, among those M that do not contain p, there is, by Corollary I, the largest, so write My
for it. By hypothesis, p € A, so My # A. Also, the set My cannot be the intersection of larger
sets than itself that belong to M(A), for, if they contained p, so would My itself. By definition
of M(A), there is therefore some M (p) such that My = G(M(p)), which proves that the formula
(38) is valid.

In addition, for any given p there is exactly one set M (p) that satisfies condition (38). Indeed,
by Theorem III, the sets M may be divided into two families: the super-sets of M(p) and the
subsets of G(M(p)). The set M(p) is the smallest of the first family and G (M (p)) is the largest
in the second.

In the particular case where the family M(A) consists of a sequence My, My, ..., M,,..., the
formula (37) gives decomposition of A into two separate parts

A = P(A) U - (M, \ G(M,,)). (39)

n=1

oo



FN1) The position that the elements of M(A) occupy in the sequence {M,} obviously does
not depend on their order of decreasing in M(A). (7777)
In addition, for each element p € A\ P(A) there is only one number n(p) such that

pE M,y and pé& G(Mygy)). (40)

Similarly, there are symmetrical formulae to (37-40) for N(A) instead of M(A).

Note: This is actually only a third of the paper: the remainder considers applications. I will
translate it at a later date.

Translator’s note

Kuratowski credits his Theorem III and its Corollaries to Gerhard Hessenberg [Hes08, p.127].
(I tried to translate this paper with the help of a German mathematician, looking for this proof,
but we found the notation impenetrable.) Hessenberg collaborated with Ernst Zermelo, who used
this Theorem as the engine of his second proof of the Well-Ordering Theorem [Zer08a]: see the last
paragraph of [vH67, p.184]. It became known (of course many decades later) as the Bourbaki-Witt
Theorem [Bou49, Wit51] and Walter Felscher [Fel62] compared the many published versions of it.

There are several strategies for the proof. Kuratowski’s makes heavy use of Excluded Middle,
but Todd Wilson has given a constructive version [Wil01]. Even so, the resulting notion of well-
ordering just says that every inhabited subset has a least element, as in Cantor’s condition, which
is not enough for intuitionistic induction. Nevertheless, it means that the Well-Ordering Theorem
invokes Choice at the beginning and Excluded Middle at the end, but the key argument uses
neither of them.

The principal message of Kuratowski’s paper is that it is not necessary to use ordinals to
prove theorems of the pattern that he describes. But we may go further than this to say that the
naive use of them is not even sufficient (valid). This is the reason why we have introduced the
distinction between “families” and “classes” in the translation.

Because of the Burali-Forti paradox [BF97], the ordinals do not form a set definable in Zermelo’s
axioms. The class A(A) is a sub-collection of P(A), but to define it as a set (family in our
usage) using the Axiom of Separation requires unbounded existential quantification over the class
of ordinals, or equivalently an Axiom of Collection, i.e. that the image of a class under a function
to a set is again a set. (One may argue instead that Zermelo’s notion of a “definite property” in
his Axiom of Separation is so vague that it allows A(A).)

In order to make A(A) into a legitimate set (a family Z) without such trickery, we must say
when to stop iterating over the ordinals. One way of doing that is Friedrich Hartogs’ construction
[Har15], but Theorem III provides a neater way. That is to say that it shows explicitly that the
family M(A) is a form of the class A(A) restricted to a particular ordinal.

Another issue with the purported proof using ordinals is that the recursion that is needed to
satisfy formulae (2-5) depends on a Theorem that was only proved later in the decade in which
Kuratowski had written the present paper, namely by John von Neumann [vN28, Section 3].
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