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Abstract
Any order-preserving endofunction of a chain- or directed-complete partial order with least

element has a least fixed point. There are also induction principles associated with this. These

facts are widely applicable across mathematics, but they are very often used without valid

proof or citation. Each time, the same words are recited about ordinals and their unions,

without saying how to obtain a suitable one (Hartogs) or to derive recursion from induction

(von Neumann). Besides, almost everything in this topic is historically mis-attributed.

We therefore present the whole of the actual proof to which such comments allude, in a

textbook fashion, based closely on the historical sources from 1897 to 1923.

Another proof emerged during this period, essentially in Zermelo’s second proof of the

well-ordering principle, but more clearly presented by Kuratowski. But it is mis-named as

the Bourbaki–Witt theorem and often mis-represented as the other proof.

However, our main purpose is to present an entirely new proof for comparison with the old

ones. In 1997, Pataraia found one using composition of functions instead of application, but

it still involved more set theory than is necessary. We replace this with a Galois connection

between sets of functions and of points, with a development that can be generalised to new

settings.

Everything in this paper is valid in Zermelo set theory and suitable for the undergraduate

curriculum.

A lot more work still needs to be done for this paper: The mathematics for the three proofs is more
or less in place, but I still need to check and write up my notes about the history, in particular
regarding the “Bourbaki–Witt” theorem. Until then, please do not print this paper or circulate it,
but get a fresh version from my website:

www.paultaylor.eu/ordinals/

Alongside writing this paper I have so far translated half of Kuratowski’s, also on my website. It
is not turning French into English that is difficult but tracking down and understanding all of the
papers that he cites and later work that cites his.

1 Introduction

In 1922, Kazimierz Kuratowski wrote a paper called Une Méthode d’élimination des Nombres
Transfinis des Raisonnements Mathématiques [Kur22]. He described lots of examples from set
theory, topology and measure theory that had been proved using ordinals and derived them more
simply using closure operators.

Here we need an example of the kind of argument that we are denouncing as “not a proof”.
To avoid personal argument and even libel, perhaps it would just be best to quote Kuratowski and
say without giving details that similar arguments continue to be published today.

Such arguments are not proofs because they fail to explain
� how recursion for functions or elements is obtained from induction for predicates or subsets

and

� at what ordinal the recursion is to be applied.

Section 4 gives the whole of the proof that lies behind these omissions, based directly on the
original papers. The most important part of this is arguably the derivation of recursion from
induction, due to John von Neumann. The choice of ordinal is often dismissed with the word
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“cardinality” — surely an example of “proof by intimidation” — but the key result in the theory
of cardinals is due to Friedrich Hartogs.

Pure mathematicians defend their use of this method by saying that they are using ZFC as their
foundations, but seek to excuse not knowing the proof by saying that they are not set theorists.
It is understandable when those at the top of the dependency graph such as number theorists
cite difficult “black box” lemmas lower down, say in algebraic geometry. However, even there it
remains their responsibility to verify the correctness of such results and cite them accurately.

There is no excuse in the present case. All of the material comes from early in the history of
set theory, before it was hived off as a specialist subject, and it is now to be found in textbooks
for undergraduates such as [?]. Moreover two of the principal contributions were made by authors
who specialised in analysis and never again wrote about set theory. These early 20th century
mathematicians had much wider interests: if this paper had set out to be a narrative history
instead of a “Whig” one, von Neumann would feature more prominently.

The relevant theorems are fairly simple because they pre-date Abraham Fraenkel’s introduction
of the axiom-scheme of replacement (“F”). Also, because of their historical role in the motivation
of the axiom of choice (“C”), that is not a basic assumption either. Therefore the foundational
setting is Ernst Zermelo’s original set theory (“Z”). Of course we must understand his “definite
properties” as many-sorted higher order predicate calculus. We also take as read the construction
of ordered pairs from unordered ones and then of Cartesian products and function types.

After denouncing the transfinite method, Kuratowski went to give a complete valid proof of the
fixed point theorem by a different strategy. The key argument had been the essence of Zermelo’s
second proof of the well-ordering principle from the axiom of choice. The historical discussion
of this other proof has largely been done under that heading or the maximality principle that
Kuratowski states but was later mis-attributed to Max Zorn. We discuss this in Section 5.

Whilst all of this history and textbook material badly needs to be corrected, the purpose of this
paper is fundamentally mathematical: to give a completely new proof of the fixed point theorem
in Section 3.

The historical observation to be made here is that the undergraduate set theory that we discuss
had already been in place before the defining revolutions of 20th century mathematics:

� Moderne or abstract algebra, led by Emmy Noether and Bartel van der Waerden; and

� modern logic and computation, led by Kurt Gödel, Gerhard Gentzen, Alonzo Church, Alan
Turing and Haskell Curry.

The old proofs were motivated by applying functions — infinitely often, and then some more
— whereas the new one is based on composing them. The emphasis on composition is of course
category theory, of which Saunders Mac Lane called Noether the grandmother, but we will not
make explicit use of category theory in this paper.

The second idea in the new proof will be immediately recognisable to Noether’s descendants,
namely the use of a Galois correspondence defined by when a function fixes a point.

We give the new proof before the old ones because the gap of three quarters of a century
surely shows that they have been a distraction. The old proofs are best understood in terms of
the new one and not vice versa, just as sub-determinants and discriminant polynomials became
much clearer in the light of Moderne Algebra. Unless you intend to evaluate specifically the
ω3 + ω2 · 97 + 3589th iteration, transfinite numbers contribute nothing to this recursive theorem.
(On the other hand, the arithmetic of ordinals does play an important role in measuring complexity
in proof theory.)

But with mathematics as with railways and sewers, the old infrastructure should be dug up
from time to time to make it fit for new uses. When we strip the rust from an old argument it
can be used in more subtle ways to achieve more powerful purposes.

Conclude with a template of how applications of the fixed point theorem etc. ought to be set
out, emphasising the successor case and the “special condition”.

2 The complete lattice case

To be written. We need some preliminaries, including the theorem mis-attributed to Alfred Tarski
about fixed points in a complete lattice. Maybe the discussion of the need for chains or directed
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sets should be in this section, along with any other ideas that are common to the three proofs.

Definition 2.1 A partially ordered set or poset is a set X together with a reflexive, transitive
antisymmetric relation ≤:

∀x. x ≤ x ∀xyz. x ≤ y ≤ z ⇒ x ≤ z ∀xy. x ≤ y ≤ x⇒ x = y

Definition 2.2 A function s : X → X from a poset to itself is
�monotone or order-preserving if ∀x, y :X. x ≤ y ⇒ sx ≤ sy; and

� inflationary if id ≤ s, that is ∀x:X. x ≤ sx.

Definition 2.3 join

Definition 2.4 complete (semi)lattice

Theorem 2.5 “Tarski” Every monotone endofunction s has a least fixed point.

Proof It is given by
∧
{x | sx ≤ x}. □

Usually cited: Alfred Tarski, A Lattice-Theoretic Fixed Point Theorem and its Applications,
Pacific Journal of Mathematics, 5 (1955 ) 285–309.

Sometimes this is called the Knaster–Tarski theorem because they had had some discussion
before the War.

Bronis law Knaster, Un Théorème sur les Functions d’Ensembles, Comptes Rendues of a meet-
ing of the Polish Mathematical Society in Warsaw in 1927, published in its Annals, 6 (1928)
133–4.

But all that appears in print is: “h(X) étant une fonction monotone d’ensembles et A un en-
semble tel que h(A) ⊂ A, il existe un sous-ensemble D de A tel que D = h(D)”

Remark 2.6 However, this fixed point theorem for complete lattices such as powersets was just
assumed in passing in Zermelo’s second proof of the well-ordering principle and other early 20th
century work.

So it was probably well known long before.

Remark 2.7 In Algebraic applications, typically joins are very complicated, for example consider
unions of chains versus pairs of linear subspaces or ideals.

Emmy Noether’s early work on chains of ideals is significant here; she also collaborated with
non Neumann.

The discussion of directed sets in place of chains would naturally follow on from that.

Remark 2.8 Discuss the essential impredicativity in this method.

3 The new proof

Directed joins

Definition 3.1 A subset I ⊂ X of a poset is directed if

∃x. x ∈ I ∀x, y ∈ I. ∃z ∈ I. x ≤ z ≥ y.

Directed subsets are the modern replacement for the traditional notion of chain (totally or
linearly ordered subset): any non-empty chain is directed. This innovation was made around 1970
in lattice-theoretic topology, homotopy theory, constructive topology and denotational semantics
of programming languages.

One important advantage of using directed subsets is that the product of two of them is again
directed. If you want to form the join of a system with two variables that each range over chains,
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but using a single chain, you will need to choose a “diagonal” in their product. Doing this is
essentially the same as introducing the notion of directedness.

Expressing a general directed join as a chain makes heavy use of the axiom of choice, which
merely adds to the complication of the problem. Conceptual innovations like directedness are
made to eliminate difficulties that are caused by ill-judged old ideas.

Definition 3.2 A dcpo is a directed-complete partial order . That is, one that has joins of
all directed subsets. These are written

∨
� I or

∨
�i xi, or with

⋃
6in the case of unions.

In many of the applications of dcpos, including ours, they have least elements, written ⊥ and
also called bottom. This situation is variously called a cpo, dcppo or, as we prefer, an ipo (inductive
partial order). In most applications, functions are not required to preserve ⊥.

Any dcpo carries the Scott topology and a function is Scott-continuous iff it preserves directed
joins. This is used in theoretical computer science to provide mathematical semantics of the
λ-calculus and programming languages. However, Scott continuity trivialises the issues in our
subject, so we consider functions that preserve order but not necessarily directed joins.

Definition 3.3 For any two posets X and Y , we write [X → Y ] or Y X for the set of monotone
functions X → Y , equipped with the pointwise order ,

f ≤[X→Y ] g ≡ ∀x:X. fx ≤Y gx.

Lemma 3.4 When Y has directed joins, so does [X → Y ].

Proof Let f(−) : I → [X → Y ] be a directed diagram. Then, for each x ∈ X, so is f(−)x : I → Y

and by hypothesis it has a join gx ≡
∨
�i fix ∈ Y .

For x′ ≤ x, ∀i. fix′ ≤ fix ≤ gx, so gx′ ≡
∨
�i fix

′ ≤ gx. Hence g defines a monotone function.

If ∀i. fi ≤ h then ∀ix. fix ≤ hx and ∀x. gx ≡
∨
�i fix ≤ hx. Therefore g is the required join in

[X → Y ]. □

Pataraia 1997

Many people worked on domain theory from the 1970s onwards and should have made the following
simple observation about the function-space. Somehow we failed to do so, until Dito Pataraia did
it around New Year 1997. His originally much more complicated proof was simplified in private
discussion with Alex Simpson, Mamuka Jibladze [JS97] and others, but he never published it
himself before he died in 2011 at the age of 48 [Jib11, Jib22].

Proposition 3.5 Any dcpo X has a greatest inflationary monotone function, m : X → X, which
is idempotent, id ≤ m = m ·m. This is called a closure operator .

Proof First, the identity is the least inflationary endofunction.
Any two inflationary monotone endofunctions r and s satisfy

∀x:X. x ≤ rx, sx ≤ r(sx), s(rx),

as illustrated by the diagram

r(sx) s(rx)

rx sx

x

Hence the whole set of such functions is directed.
Therefore it has a join m, which is the greatest such function.
Since m ·m is also an inflationary monotone endofunction,

id ≤ m = id ·m ≤ m ·m ≤ m

and therefore m = m ·m. □
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Cutting down to what we want

Applying this Proposition to a poset that already has a greatest or top element ⊤, the function m
is just constantly ⊤, which is not very useful! The argument doesn’t even mention the specific
function s whose least fixed point we set out to find.

Therefore we require some argument to cut down the dcpo before applying this idea.
For the analogous classical result in Section 5, this subset was obtained as the one generated

by ⊥, s and joins of chains. Pataraia used the same idea (but with directed joins), at least in all
of the extant private versions of his proof that are in circulation. He gave the following version to
Mart́ın Escardó:

Theorem 3.6 Any monotone endofunction s : X → X of an ipo has a least fixed point.

Proof Let Y ⊂ X be generated by ⊥, s and
∨
� and consider the subset

R ≡ {r : X → X | ∀x. (x ≤ rx) ∧ (x ∈ Y ⇒ rx ∈ Y )}.

Then id , s ∈ R and R is closed under composition and pointwise directed joins. Hence it has a
greatest element m ∈ R, which is a closure operator with m⊥ = s(m⊥) ∈ Y .

Now suppose that ⊥ ≤ x = sx ∈ X. Then y ∈ Y ⇒ Y ∋ sy ≤ sx = x and if (yi) ⊂ Y directed
then

∨
�i yi ≤ x.

Hence ∀y ∈ Y . y ≤ x by induction on the construction of Y and then Y ∋ m⊥ ≤ x. □

However, generating a subset requires second order logic, and so already uses a notion of
recursion as an hors d’oevre before we get to the main recursive dish. This is not necessary.

A Galois connection

Our novel alternative uses just the same idea as the relation between subgroups and subfields in
Galois theory. The fixed objects S⊥ and ⊥A are closed under the relevant algebraic structure,
which is composition and directed joins of endofunctions in our case. We characterise these fixed
subsets in terms of closure operators.

Lemma 3.7 For any inflationary monotone endofunction s : X → X and element a ∈ X, we write

s ⊥ a for sa = a

and extend this relation to sets S ⊂ [X → X] of functions and A ⊂ X of points by

S⊥ ≡ FixS ≡ {a ∈ X | ∀s ∈ S. s ⊥ a}
⊥A ≡ {s : X → X | ∀a ∈ A. s ⊥ a},

which form contravariant adjunction or Galois connection,

A ⊂ S⊥≡ FixS ⇐⇒ ∀s ∈ S. ∀a ∈ A. s ⊥ a ⇐⇒ S ⊂ ⊥A . □

Lemma 3.8 For any A ⊂ X, there is a closure operator m with ⊥A = ↓m ≡ {s | s ≤ m}.
Proof Any r, s ∈ ⊥A have (r · s)a ≡ r(sa) = sa = a, so r · s ∈ ⊥A, so we obtain m in the same
way as in Proposition 3.5 Then any s ≤ m and a ∈ A satisfy a ≤ sa ≤ ma = a, so s ∈ ⊥A. Hence
⊥A = ↓m. □

Lemma 3.9 For closure operators m and n,

m ≤ n ⇐⇒ ↓m ⊂ ↓n ⇐⇒ {n}⊥ ⊂ {m}⊥. □

Theorem 3.10 In any dcpo X, the common fixed points of any set S of inflationary monotone
endofunctions of X form exactly the fixed point set of a unique closure operator m : X → X.
That is, S⊥ = {m}⊥. □

Notice that the generalisation from one function s to a set S of them simply falls out of the proof
technique using a Galois connection,, so it would be unnatural not to do this. On the other hand,
encoding a set of them as a single function would be much more complicated.
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The least fixed point

The fixed point theorem as usually stated can easily be deduced from this:

Corollary 3.11 Any monotone endofunction s : X → X of an ipo has a least fixed point. More
generally, any set S of monotone endofunctions has a least common fixed point.

Proof We have dropped the word “inflationary” from this statement: We obtain the more
general result by first restricting the given ipo X to its subset

X ′ ≡ {x : X | ∀s ∈ S. x ≤ sx},

which contains ⊥ and is closed under s (or S) and directed joins, but its members are inflationary.
The subset X ′ still contains any fixed points that s or S had in X. By the Theorem, these are

the fixed points of m, the least of which is m⊥. □

The top element

A related problem is when we want to show that the ipo has a greatest element ⊤.

Definition 3.12 An inflationary monotone endofunction s : X → X on a ipo satisfies the special
condition if

∀xy. x = sx ≤ y =⇒ x = y.

The analogue for a set S of functions is

∀xy. (∀s ∈ S. x = sx ≤ y) =⇒ x = y.

Theorem 3.13 In this situation, X has ⊤ and this is the unique (common) fixed point.

Proof For any z ∈ X, put x ≡ m⊥ and y ≡ mz. Then ∀s ∈ S. x = sx ≤ y and z ≤ y = x, so
m⊥ is not only maximal but the greatest element ⊤. Similarly, any (common) fixed point is equal
to z ≡ m⊥ ≡ ⊤. □

The induction principle

Having found the least fixed point or top element, we want to prove properties of it.

Theorem 3.14 Let ϕ be a predicate on the ipo X such that
� ϕ(⊥)

� ∀x ∈ X. ∀s ∈ S. [ϕ(x)⇒ ϕ(sx)]

� for any directed subset I ⊂ X with join y ≡
∨
� I, if ∀x ∈ I. ϕ(x) then ϕ(y).

Then ϕ(z), where z is the least (common) fixed point.

Proof The subset U ≡ {x : X | ϕ(x)} ⊂ X has all of the required properties of X itself in the
discussion above. The endofunction(s) therefore have a least (common) fixed point within this
subset. By the minimality or uniqueness results, this fixed point must be the same as the one
in X, namely z. Hence z ∈ U or equivalently ϕ(z). □

This induction principle is present in the work of Ernst Zermelo, Kazimierz Kuratowski and
other early set theorists. It was first exploited using Pataraia’s method by Mart́ın Escardó [Esc03,
Thm 2.2].

Putting the induction principle together with the special condition, we have

Corollary 3.15 If ⊤ is the only fixed point and the predicate ϕ satisfies the hypotheses of the
induction principle then we may conclude ϕ(⊤). □
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Well founded induction on a set

In order to show how these ideas work in a familiar setting, we now specialise to the case where
the ipo (X,≤) is the powerset P(A) of some set A. Of course, an element U ∈ P(A) is a subset
U ⊂ A and corresponds to a predicate ϕ(a) by a ∈ U ⇐⇒ ϕ(a) and U = {a : A | ϕ(a)}.

Notation 3.16 Given any binary relation (≺) on A, the formula

sU ≡ {a : A | ∀b:A. b ≺ a⇒ b ∈ U}

defines a monotone endofunction s : X → X. In fact any endofunction arises in this way iff it
preserves intersections, and then

b ≺ a ⇐⇒ ∀U ∈ P(A). (a ∈ sU ⇒ b ∈ U).

Then s is inflationary when restricted to those U ∈ X satisfying

U ⊂ sU ≡ ∀ab:A. (b ≺ a ∈ U =⇒ b ∈ U),

which are called initial segments.

Definition 3.17 A binary relation (≺) on a set A is well founded if any predicate ϕ on A
satisfies

∀a:A. (∀b:A. b ≺ a⇒ ϕb) =⇒ ϕa

∀a:A. ϕa

where the horizontal line is another implication. This called the induction scheme , which we
will compare with the traditional notions in Definition 4.1ff.

Proposition 3.18 The relation (≺) on A is well founded iff the successor operation s obeys the
special condition (Definition 3.12).

Proof Under the correspondence ϕ↔ U , the upper line of the induction scheme is sU ⊂ U and
so well-foundedness becomes

∀U ∈ P(A). (sU ⊂ U) =⇒ U = A.

Since (sU = U) ⇒ (sU ⊂ U) and conversely for initial segments, this says that the top element
⊤ ≡ A ∈ P(A) is the unique fixed point of s. □

Remark 3.19 The notion of a well founded relation is therefore captured by very simple order-
theoretic properties of an endofunction of the powerset of its carrier. In proof theory the induction
scheme is analysed more intimately in terms of the quantifier complexity of the predicate ϕ. That
is, of the elements of the powerset, so the same could be achieved by using another ipo instead of
the full powerset in our treatment.

Corollary 3.20 Any well founded relation admits Pataraia induction on its ipo of initial segments.
□

Beware that the induction comes from Theorem 3.14, not from well-foundedness of the relation,
which corresponds to our special condition.

Well founded recursion

We prove a predicate by induction, but construct a function by recursion.

Theorem 3.21 Let (≺) be a well founded relation on a set A and R : P(Θ)→ Θ be any function
on a set Θ. Then there is a unique function f : A→ Θ that satisfies the recursion equation

f(a) = R{fb | b ≺ a}.

Proof An attempt is a partial function g : A ⇀ Θ whose support (domain of definition) is an
initial segment U ⊂ A and which obeys the recursion equation there.
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There is a least attempt, with U ≡ ∅, and any (directed) union of attempts is another.
The successor is defined by the recursion relation:

sg(a) ≡ R{gb | b ≺ a} for a ∈ sU

and satisfies g ≤ sg ≡ ∀a ∈ U. ga = (sg)a,

which re-states the recursion equation for g on its support U .
Therefore the ipos Seg and Att of initial segments and supports are related by the support

function
supp : Att −→ Seg ,

which commutes with ⊥ ≡ ∅, the two successor operations and directed unions (
⋃
6).

Now we show that each initial segment has a unique attempt with that support. We do this
by Pataraia induction on the ipo of initial segments. Clearly there is exactly one attempt with
empty support.

For the successor step it suffices to observe that the successor operation on attempts and
restriction are inverse (a bijection), so they preserve uniqueness.

The directed union by definition has the universal property that a compatible family of partial
functions gi : Ui → Θ defines a unique function g : U ≡

⋃
6i Ui → Θ that restricts to each

gi : Ui ⊂ U → Θ.
Therefore the greatest initial segment, A ⊂ A, is the support of a unique attempt g : A→ Θ,

which is what was required for the Theorem. □

Extensional well founded relations

Definition 3.22 A binary relation (≺) on a set A is extensional if it satisfies

∀ab:A. (∀c:A. c ≺ a⇔ c ≺ b) =⇒ a = b.

Theorem 3.23 Any two extensional well founded relations (A,≺) and (B,<) have a greatest
common initial segment.

Proof By a common initial segment we mean a pair of 1–1 functions A←↩ C ↪→ B that preserve
and reflect the relation. They form an ipo under inclusion.

There is a successor operation like that in Notation 3.16.
It satisfies the special property because of well-foundedness, as in Proposition 3.18.
Therefore the ipo has a greatest element, by Theorem 3.13. □

Generalisations

In this account, the traditional notion of a well founded relation on a set only arose in the final
stages and then only only as an example: We specialised from a family of monotone endofunctions
of a general ipo to a single one preserving

⋂
on a full powerset lattice. However, we have been

developed all of the headline results entirely naturally in a more general framework.
We haven’t generalised the Recursion Theorem, but that would belong in the development of

some “application” such as universal algebra, type theory or proof theory. Those subjects use
multiple constructors, whereas well founded relations arise from a single one, but we have already
made that generalisation, at least for unary operations.

The obvious categorical analogue of an inflationary monotone endofunction is a pointed endo-
functor S : X → X , one with a natural transformation σ : id → S. In fact these behave very
similarly to the order-theoretic case, so long as we require Sσ = σS, which is called well pointed.
Under this assumption, an object A ∈ X carries an algebra structure (α : SA→ A with σA ;α = id )
iff it is a fixed point in the sense that σA : A ∼= SA.

The Galois connection can be defined in the same way as Lemma 3.7 [?], completely avoiding
the transfinite methods of [?]. However, since we want to apply this to large categories, other
techniques need to be introduced to ensure that the directed colimit exists.
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4 Transfinite recursion

We now give the whole of the historical proof of the order-theoretic fixed point theorem using
transfinite recursion. This needs to derive recursion from induction for ordinals, but since they
“go on forever” it must also identify some particular ordinal at which to stop and finally show
that this is actually the least fixed point.

The original papers are readily available online; they are mainly in German but there are
English translations. So our purpose is not to make a textual analysis as if these were ancient
manuscripts, but to give a mathematically honest comparison of the new proof that we have just
given with the one that is claimed to be standard.

Therefore we will closely follow the strategy of the historical originals but present the proof
as it might appear nowadays in a textbook. We use modern notation and take advantage of the
fluency that we nowadays have with isomorphisms and embeddings of structures. We also make
some local simplifications.

Cantor 1897

The preliminary material about well-orderings is due to Georg Cantor, but it is ubiquitous and
not readily assigned to a particular place in his writings. Even though this pre-dates Zermelo’s
work, it may be understood within his axioms for set theory.

Definition 4.1 A well-ordering F is a carrier set together with a binary relation ≺ such that
(a) for each x, y ∈ F , exactly one of these holds:

x ≺ y or x = y or y ≺ x;

(b) every non-empty subset T ⊂ F has a least element, min(T ) ∈ T , i.e. such that

∀x ∈ T . min(T ) = x ∨ min(T ) ≺ x.

In what follows, F and G are well-orderings, for which the binary relations are implicit.

Lemma 4.2 Condition (b) is equivalent to the induction scheme (Definition 3.17)[
∀y.

(
∀z ≺ y. ϕ(z)

)
⇒ ϕ(y)

]
=⇒ [∀x. ϕ(x)].

Proof The induction scheme is equivalent to[
∃y.

(
∀z ≺ y. ϕ(z)

)
∧ ¬ϕ(y)

]
⇐= [∃x. ¬ϕ(x)],

which, with x ∈ T ≡ ¬ϕ(x), is[
∃y. (∀z ≺ y. z /∈ T ) ∧ y ∈ T

]
⇐= [∃x. x ∈ T ],

of which the innermost part is ∀z ∈ T . z = y ∨ y ≺ z. So the whole thing says that if T is not
empty then it has a least element y. □

Notice that the subset T that is used in this traditional definition of well-foundedness is the
complement of the U in the induction scheme as we stated it in Notation 3.16ff.

Lemma 4.3 The relation ≺ has no infinite descending sequence and it is transitive.

Proof If T ≡ {· · · ≺ x3 ≺ x2 ≺ x1 ≺ x0} ⊂ F is such a sequence then by part (b) of the definition
it has a least element, say xn. But then both xn+1 ≺ xn and xn ≺ xn+1 hold, contrary to
“exactly one” in part (a). In particular, x ≺ y ≺ z ≺ x and x ≺ y ≺ z = x are forbidden, so
x ≺ y ≺ z =⇒ x ≺ z. □

For the converse of this we need to be able to choose infinite descending sequences, but we
have opted not to assume even this weaker form of the Axiom of Choice in this paper. In any case,
we will not need to use this form of the definition, even though it is the oldest one: Euclid had
stated the fact that the natural numbers have no infinite descending sequence in Elements VII 31
[Fow94, p 262].
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Successors and limits

The classification of ordinals as successors or limits plays a very prominent role in their use. In
the theory, however, they are hardly mentioned (as you may see from this section) — the notion
of initial segment is much more important.

Lemma 4.4 The empty set ∅ (with its unique relation) is a well-ordering. □

Lemma 4.5 If F is a well-ordering then so is its successor , F +{⋆}, where x ≺ ⋆ for all x ∈ F . □

Lemma 4.6 If, for each element g of an ordered set F , the segment ↓ g < F is well ordered, then
so is F itself.

Proof Let g ∈ T ⊂ F and suppose that g is not already the least element of T . Then the set
U ′ ≡ T ∩ ↓ g is a non-empty subset of the segment ↓ g < F . This segment is well ordered, so U ′

has a least element, which is also the least element of T . □

Theorem 4.7 Every well-ordering is either empty, a successor or a limit , i.e. the union of its
proper segments, which form a total order.

Proof If it has a greatest element then it is the successor of the proper segment corresponding to
that. Otherwise it is the the union of its proper segments, which are bijective with its elements. □

Initial segments

We are now prepared for the substance of Cantor’s development in [Can97, §13]: the letters below
are the labels of the theorems there.

Definition 4.8 An (initial) segment (Abschnitt) is a subset A ⊂ F that is downwards-closed
with respect to ≺: for all x, y ∈ F ,

y ≺ x ∈ A =⇒ y ∈ A.

We write A < F when A is a proper segment of F , so F \A is non-empty.

Lemma 4.9 Any segment A < F of a well-ordering is again a well-ordering.

Proof Conditions (a) and (b) easily restrict from F to A. □

Lemma 4.10 There is a bijection between elements f ∈ F and proper segments A < F given by

A ≡ ↓ f ≡ {x ∈ F | x ≺ f} and f ≡ min(F \A).

Moreover, if A′ < F similarly corresponds to f ′ ∈ F then A′ < A ⇐⇒ f ′ ≺ f . Therefore exactly
one of A′ < A, A′ = A or A < A′ holds. □

Corollaries 4.11 (pp 146–7)
G: Let A < F and B < G with A ∼= B. Then for every smaller segment A′ < A < F there is an

isomorphic segment A′ ∼= B′ < B < G and conversely.

H: If A,A′ < F and B,B′ < G with A ∼= B and A′ ∼= B′ then A′ < A ⇐⇒ B′ < B.

I: If a segment B < G is not isomorphic to F or any segment of it then nor is any B < B′ ⊂ G.

K: If for any proper segment A < F there is a similar segment B < G, and also conversely, then
F ∼= G. □

Lemma 4.12 (B, p144) F cannot be isomorphic to any of its proper segments A < F .

Proof Suppose that ϕ : F ∼= A = ↓ f and that f is least for which there exists such an
isomorphism. Then g ≡ ϕ(f) ∈ A, so g ≺ f and x ≺ f ⇐⇒ ϕ(x) ≺ ϕ(f) ≡ g. Therefore
F ∼= ↓ f ∼= ↓ g with g ≺ f , contrary to the supposition that f was least. □

Lemma 4.13 (D, F, p146) Two different proper segments A,A′ < F cannot be isomorphic to
one another. Therefore a segment B < G can be isomorphic to at most one segment A < F .
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Proof By Lemmas 4.10 and 4.12. □

Lemma 4.14 (E, p146) F and G can be isomorphic in at most one way.

Proof Suppose that ϕ, ψ : F ∼= G and let f ∈ F be least such that ϕ(f) ̸= ψ(f). Then the
segment A ≡ ↓ f < F is isomorphic to both B ≡ ↓ϕ(f) < G and B′ ≡ ↓ψ(f) < G, contrary to
the previous lemma. □

Lemma 4.15 (L) Suppose that for every segment A < F there is some isomorphic segment
B < G, but, on the other hand, there is some segment B < G with no isomorphic segment of F .
Then there is some segment F ∼= B′ < G.

Proof Let V ⊂ G be the subset of elements g ∈ G for which ↓ g < G has no isomorphic A < F .
Then V has a least element g′ and we put B′ ≡ ↓ g′.

By Corollary 4.11(I), no segment B′ < B′′ ⊂ G has an isomorphic segment in F
Thus the segments B < G that correspond to similar segments of F must all be less than B′,

and to every segment B < B′ belongs a similar segment A < F , because B′ is the least segment
of G among those to which no similar segments in F correspond.

Thus, for every segment A < F there is a similar segment B < B′, and for every segment
B < B′ there is a similar segment A < F . □

Lemma 4.16 (M) F and G cannot both have segments that are not isomorphic to any segment
of the other.

Proof Let A < F and B < G be the least segments that are not isomorphic to any segment of
the other. This means that each proper sub-segment A′ < A and B′ < B is isomorphic to some
segment A′ ∼= B′′ ⊂ G and B′ ∼= A′′ ⊂ F . Then A ∼= B by Corollary 4.11(K), but this contradicts
the defining assumption about them. □

Theorem 4.17 (N, p150) Any two well-orderings F and G satisfy exactly one of

F ∼= B < G or F ∼= G or G ∼= A < F,

where the segments and isomorphisms are unique.

Proof The relation of F to G can be any one of the following four disjoint cases:
(a) Each proper segment A < F is isomorphic to some segment B < G and conversely. Then

F ∼= G by Corollary 4.11(K).

(b) Each segment A < F is isomorphic to some segment B < G but there is some proper segment
B < G that is not isomorphic to any A < F . Then there is some segment B′ < B with
B′ ∼= F , by Lemma 4.15.

(c) Each proper segment B < G is isomorphic to some segment A < F but there is some proper
segment A < F that is not isomorphic to any B < G; or Then there is some segment A′ < A
with A′ ∼= G, by Lemma 4.15.

(d) There is some proper segment A < F that is not isomorphic to any B < G and also some
proper segment A < F that is not isomorphic to any B < G. However, this situation is
impossible by Lemma 4.16.

That these cases exclude one another follows from Lemma 4.12. It says directly that we cannot
have F ∼= G together with either F ∼= B < G or G ∼= A < F . Nor can we have both F ∼= B < G
and G ∼= A < F , because then there would be B′ < B with G ∼= A ∼= B′ < G.

Lemmas 4.13 and 4.14 proved uniqueness. □

Using von Neumann’s representation of well-orderings as sets, discussed below, this Theorem
says that the intersection must actually be the whole of one or other of them. In the setting of
the previous section, this intersection was constructed in Theorem 3.23.
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Burali-Forti 1897

Hartogs 1917

Friedrich Moritz Hartogs was a German Jew, born on 20 May 1874 in Brussels but brought up
in Frankfurt-am-Main. He was a student in Berlin and became a Privatdozent and then a full
Professor in Munich. He only wrote one paper on set theory and is best known for his results on
the representation of analytic functions of several variables by means of power series. He was fired
by the Nazis in 1935 and took his own life on 18 August 1943.

The headline purpose of [Har15] was to give a different proof of the well-ordering principle
from those of Zermelo [Zer04, Zer08]. However, instead deriving this from the Axiom of Choice,
he assumed that cardinals are totally ordered (cf. 4.1(a)), i.e. that any two sets are either bijective
or one is bijective with a subset of the other.

Given any set M , we construct a well-ordering L that has no 1–1 function L ↪→ M . This is a
fundamental theorem in the theory of cardinals: L is the successor of M , i.e. any subset of L is
either bijective with L or with a subset of M .

Since this work was one of the earliest applications of Zermelo’s axioms for set theory, Hartogs
was careful to explain how these axioms are used in each step in his construction and he cited
exactly the results of Cantor above.

A particularly remarkable aspect of this proof (by a non-specialist when this method was new)
is that Lemma 4.21 is an isomorphism of structures with different set-theoretic rank. Hartogs
spells this out in a little more detail than our treatment does.

Notation 4.18 Let n be the set of all well-orderings of subsets F ⊂M .
It doesn’t matter for the purpose of this proof how we choose to encode the binary relation ≺

on a set F as a set and therefore what the elements of n are. However, we note two ways of doing
this:

� as the subset {⟨x, y⟩ | x ≺ y} ⊂ F × F ; or

� as the subset of P(F ) consisting of the segments; whose inclusion order is isomorphic to ≺.
In an appendix to his paper, Hartogs discusses the second, which had been proposed to him by
Gerhard Hessenberg [Hes08]. Ordered pairs ⟨x, y⟩ were an afterthought in Zermelo set theory and
had to be encoded using some device like {x, {x, y}}.

Notation 4.19 Isomorphism (∼=) of well-orderings defines an equivalence relation on the set n.
We write f ⊂ n for the equivalence class to which F ∈ n belongs and L for the quotient n/∼=,
i.e. the set of equivalence classes.

Lemma 4.20 Isomorphism respects the trichotomy in Cantor’s Theorem 4.17: for any two such
classes f and g, either

� every pair F ∈ f, G ∈ g satisfies F ∼= F ′ < G;

� every pair F ∈ f, G ∈ g satisfies F ∼= G; or

� every pair F ∈ f, G ∈ g satisfies G ∼= G′ < F ,
where the segments and isomorphisms are unique. We write f ≺ g, f = g and g ≺ f for these three
cases. □

Lemma 4.21 For each F ∈ f ∈ L, the segment ↓ f ⊂ L is isomorphic to the well-ordering F itself.
Hence ↓ f < L is a well-ordering, whilst each of the well-orderings F ∈ n is isomorphic to a proper
segment ↓ f ⊂ L.

Proof If G ∈ g ≺ f then G ∼= G′ = ↓ g < F ∈ f for g ∈ F by Lemma 4.10. □

Theorem 4.22 L is a well-ordering with no 1–1 function L ↪→M .

Proof It is well ordered by Lemma 4.6.
Any bijection L ∼= F ⊂M would make F into a well-ordering. On the one hand, F would then

belong to n and therefore be isomorphic to a proper segment ↓ f < L. On the other hand, F was
supposed isomorphic to L, but this is forbidden by Lemma 4.12. □
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Mirimanoff 1917

He deserves a historical mention at the point, although his results are not actually need for our
specific goal of the fixed point theorem.

Von Neumann 1923

The notions of well-ordering and well-foundedness (Definitions 4.1(b)) say that induction for predi-
cates (or subsets) is allowed. That functions can be defined using recursion over them is something
that requires proof.

Richard Dedekind had given an argument similar to the one below, but just for the natural
numbers, in [Ded88, §IX]. His §125 gives the values on the finite segments Zn and then §126 puts
them together, cf. Lemma 4.26. As we shall see in the next section, other authors prior to von
Neumann had used ordinal recursion to obtain fixed points, but without justification.

Johann von Neumann gave this as part of his re-formulation of well-orderings to use the ∈-
relation to serve as ≺ [vN23] and so made the isomorphism in Lemma 4.10 into an equality. The
recursion theorem was actually fundamental to that account, although it was actually included as
a footnote to the paper and subsequently developed in [vN28].

The things that are defined by the recursion theorem as von Neumann gave it are general sets,
i.e. objects or types to a categorist or type-theorist. For the fixed point theorem that we are
discussing in this work, we only need to define elements of a particular set (object, type) that has
been given in advance.

Moreover, von Neumann’s reformulation essentially depends on the axiom-scheme of replace-
ment that had recently been introduced by Abraham (formerly Adolf) Fraenkel. Andrzej Mostowski
[Mos49] used the same method, including Replacement, to show more generally that any exten-
sional well founded relation is equivalent to a unique set (in the sense of set theory).

Therefore, the generality of his original result is more than we need, whilst Replacement takes
us outside the foundational framework that is actually necessary for our goal. We therefore revert
to Cantor’s original formulation, in which ≺ is additional structure.

Definition 4.23 A well-ordering F admits recursion (von Neumann just says “normal”) if, for
any set M and function R : P(M)→M , there is a unique function ψ : F →M such that, for all
g ∈ F .

ψ(g) = R
(
{ψ(h) | h ≺ g}

)
.

In this case, we write ψF for ψ.

Lemma 4.24 Isomorphism respects this equation and recursion. □

Lemma 4.25 If both F and G ≡ ↓ g < F for some g ∈ F admit recursion then ψG(h) = ψF (h)
for all h ≺ g.

Proof Both functions satisfy the equation on G but ψG was assumed to be unique with this
property. □

Lemma 4.26 If G ≡ ↓ g admits recursion for all g ∈ F then F itself also admits recursion.

Proof For each g ∈ F and G ≡ ↓ g, define

ϕ(g) ≡ R
(
{ψG(h) | h ≺ g}

)
,

being careful to note that ψG(g) hasn’t been defined. Then ϕ satisfies the equation for ψF because,
for each h ≺ g,

ψG(h) = R
(
{ψG(k) | k ≺ h}

)
= ϕ(h).

Moreover, ϕ(g) is the only value that ψF (g) can take to satisfy the recursion equation. Therefore
F admits recursion, with ψF ≡ ϕ. □

Theorem 4.27 Every well-ordering admits recursion.

Proof This is the point where well-ordering enters into the proof, although it is more natural
to invoke the induction scheme (Lemma 4.2). We apply this to the predicate

ϕ(g) ≡ (↓ g admits recursion),
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which can be formulated in Zermelo set theory, although it is quite a complex thing to construct.
It says that there is exactly one element of the set of partial functions F ⇀ M that satisfies the
equation.

The previous result says that, for all g ∈ F ,(
∀h ∈ F . h ≺ g ⇒ ϕ(h)

)
=⇒ ϕ(g),

from which we deduce ∀g ∈ F . ϕ(g) by the induction scheme.
The one remaining issue is that F may have a greatest element g, where G ≡ ↓ g < F already

admits recursion. Then ψF must agree with ψG, which is only missing the value for ψF (g), but
this is given by the recursion equation. □

Remark 4.28 Von Neumann’s recursion theorem does not require a total order (Definition 4.1(a)):
it is immediately applicable to a transitive well founded relation (even using the intuitionistic
definition). By working with initial segments instead of elements, the need for transitivity may
also be eliminated.

The least fixed point

Definition 4.29 A chain C ⊂M is a subset of a poset (M,≤) whose restricted order relation is
total,

∀x, y ∈ C. x ≤ y ∨ y ≤ x,

cf. Definition 4.1(a). Any non-empty chain is directed (Definition 3.1).

Theorem 4.30 Let s : M →M be an inflationary monotone endofunction of a poset with a least
element ⊥ and joins of chains. Then s has a least fixed point.

Proof Theorem 4.22 provides a well-ordering L, and Theorem 4.27 defines a function ϕ : L→M
such that h ≺ g ∈ L ⇒ ϕ(h) ≤ ϕ(g), but which cannot be 1–1, by Theorem 4.22. Hence there
must be some h ≺ g ∈ L with

f(h) ≤ f(h+) = s
(
f(h)

)
≤ f(g) = f(h),

so that f(h) is a fixed point.
It is least because if ⊥ ≤ s(m) = m then by induction f(x) ≤ m for all x ∈ L, so f(h) ≤ m. □

5 The earliest complete proof

For the purpose of finding a suitable ordinal to use for recursion on a particular set, Hartogs’
construction in Notation 4.18ff is massive over-kill, requiring multiple uses of the powerset. How
about using the set itself? That was the Well-Ordering Principle, which was considered an im-
portant issue at the turn of the 20th century and Zermelo deduced it from the Axiom of Choice.
Indeed, most of the historical literature on this topic carries titles referring to choice, well-ordering
or the maximality principle.

The key argument in Zermelo’s proof did not itself use Choice, but gives another insight into
how iterating a function gets to the fixed point. Moreover, it provided a solution to the recursion
equation directly, before von Neumann had proved Theorem 4.27. It therefore gave the first
complete published proof of our headline fixed point theorem.

However, not only is this result mis-attributed as the “Bourbaki–Witt” theorem (even though
Bourbaki credited Zermelo in the second paragraph of his paper) but it is frequently mis-represented
more seriously as having been proved by transfinite recursion. Sometimes this mis-representation
is deliberate, such as in the original anonymous version of the Wikipedia page that is supposed to
be about it.

Lemma 5.1 Let X ′ be the subset generated by ⊥, s and joins of chains. Then

∀x, y ∈ X ′. x ≤ y ∨ sy ≤ x. □
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We defer the proof of this key result because, whilst it is simpler in the sense of using smaller
sets, it requires a double induction and a lot of case analysis. Moreover, there are many ways of do-
ing this. We don’t follow the custom of the previous section in quoting the original proof, because
Zermelo’s version is unfortunately only applicable to his own case, where the function s removes
a single point from a subset. He nevertheless deserves priority for identifying the importance of
the statement of the Lemma.

My translations of the proofs by Kuratowski, Bourbaki and Felscher are on my website, I have
written up Zermelo’s and my own in LATEX and seen several others, but I don’t know which one I
should quote in this paper.

We therefore first consider the consequences and history of the Lemma.

Well-foundedness

Lemma 5.2 The subset X ′ is a chain (totally ordered) with a greatest element that is the unique
fixed point of s.

Proof Since s is inflationary, the Lemma gives

∀x, y ∈ X ′. x ≤ y ∨ y ≤ sy ≤ x.

Since X is chain-complete, X ′ has a join in X that must be in X ′ and is its top element ⊤.
If y = sy ∈ X ′ then U ≡ {x ∈ X ′ | x ≤ y} is closed under ⊥, s and joins, so U = X ′ since

X ′ ⊂ X was the smallest such subset. Therefore ⊤ is the unique fixed point, cf. our special
condition in Definition 3.12. □

Zermelo’s proof of the main result is also complicated by his specific application, so the following
is based on Kuratowski’s version [Kur22, Cor. I]. Strictly speaking, well-orderings don’t have fixed
points, so we ought to omit ⊤ from X ′ in this:

Theorem 5.3 The subset X ′ is well ordered.

Proof Given any ∅ ≠ T ⊂ X ′, consider

U ≡ {x ∈ X ′ | ∀z ∈ T . x ≤ z}.

Then U is a chain containing ⊥, so by hypothesis it has a join y ∈ X and by construction y ∈ X ′.
If y ∈ T then it is the least element.

Otherwise, we apply Lemma 5.1 to this y and all z ∈ T , none of which can have z ≤ y.
Therefore ∀z ∈ T . sy ≤ z, so sy ∈ U . But y was the join of U and y ≤ sy, so y = sy and y = ⊤
since the fixed point is unique. Then T must be the singleton {⊤} and ⊤ is its least element. □

Corollary 5.4 Let ϕ be a predicate on X that preserves ⊥, s and joins of chains then ϕ(⊤) holds
too. □

The Well-Ordering Principle

The Maximality Principle

The maximality principle is also mis-attributed: Max Zorn denied responsibility for it, in his
interview with Paul Campbell, for the latter’s historical account of the subject.

The “Bourbaki–Witt” theorem and “Zorn’s Lemma” are both in Kuratowski’s paper about
eliminating ordinals, so Polish mathematicians are upset that the maximality principle wasn’t
named after him. However. Campbell says that the earliest occurrence is in Hausdorff’s work.

Proofs in algebra textbooks

Versions of the “Bourbaki–Witt” theorem later appeared as appendices in various algebra text-
books, but it never got incorporated into the main development of algebra.
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