
Sur le Théorème de Zorn

par Nicolas Bourbaki à Nancago, translated by Paul Taylor

It is well known that it is more convenient to use Zorn’s Lemma than Zermelo’s [well-
ordering] theorem [Zer08] in most arguments that use “transfinite induction”. In fact the two
results are equivalent, and both are equivalent to the Axiom of Choice.

At the request of many readers of my Elements of Mathematics [Bou57], I will show briefly
how these two theorems can be derived from the Axiom of Choice and from a general result
about ordered sets that itself does not require that Axiom and whose proof essentially copies
the one that Zermelo gave for his own theorem.

Theorem 0.1 Let E be an ordered set, a an element of E, f a function from E to E such
that, for all x ∈ E, we have f(x) ≥ x. Let F be the set of subsets X of E with the following
properties:
• a ∈ X;

• if x ∈ X then f(x) ∈ X;

• if a non-empty subset Y ⊂ X has a least upper bound in E, this least upper bound
belongs to X.

Then the set F is not empty, the intersection A of the sets X ∈ F belongs to F and for every
pair of elements x, y ∈ A, we have

y ≤ x ∨ y ≥ f(x),

from which it follows that A is totally ordered.

Proof It is immediate that F is not empty, because the set of elements of E that are are
≥ a belongs to F ; we also see immediately that A ∈ F .

Write B for the subset of A formed by those elements x ∈ A which have the following
property:

(P): if y ∈ A and y ≤ x then y = x or f(y) ≤ x.
The subset B is not empty, because clearly a ∈ B.

We will show first that if x ∈ B and y ∈ A then the following holds:
(Q): y ≤ x or y ≥ f(x).

Indeed, for any element x ∈ B, let C be the subset of A formed of elements y for which the
property (Q) is true; we will show that C ∈ F ; since C ⊂ A, it will follow from the definition
of A that C = A.

Indeed:
• Since a ≤ x, we have a ∈ C;

• If y ∈ C and y ≥ f(x), we have f(y) ≥ y ≥ f(x) and so f(y) ∈ C by definition. In the
other case, y ≤ x, so from (P) we deduce y = x (and so f(y) = f(x)), or that f(y) ≤ x.
In either case we have f(x) ∈ C.

•Let Y be a subset of C having a least upper bound b in E; then b ∈ A since A ∈ F . If,
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for all y ∈ Y , we have y ≤ x, then b ≤ x. If, otherwise, there is at least one y ∈ Y such
that y ≥ f(x) then b ≥ f(x). So b ∈ C in both cases.
Hence we have shown that C ∈ F and so C = A, and it follows that the property (Q)

holds for all x ∈ B and y ∈ A. We will now show that B = A, from which the theorem
follows: since B ⊂ A it will be enough to show that B ∈ F .

Indeed,
•We have already seen that a ∈ B.

• If x ∈ B and if y ∈ A is such that y < f(x) then y ≤ x by the property (Q). Then by (P)
we have y = x or f(y) ≤ x. In both cases we have f(y) ≤ f(x), since x ≤ f(x). We see
that in both cases f(x) ∈ B.

•Let Y be a subset of B with a least upper bound b in E, which must belong to A. Let
y ∈ A be such that y < b; we can’t have y ≥ x, let alone y ≥ f(x) ≥ x for all x ∈ Y ,
because then we would have y ≥ b, contrary to the hypothesis. hence by (Q) there is at
least one x ∈ Y such that y < x, and it follows from (P) that f(y) ≤ x ≤ b, so we have
b ∈ B. This is enough to prove that B ∈ F , so the theorem has been proved. Observe
that this actually shows that a is the least element of A. �

Corollary 0.2 If A has a least upper bound b in E then b ∈ A and f(b) = b. Conversely, of
there is an element b ∈ A such that f(b) = b, then b is the largest element of A.

Proof If b is a least upper bound of A in E then b ∈ A by the definition of F . Then b is
the largest element of A. Since f(b) ∈ A and f(b) ∈ b, necessarily f(b) = b.

Conversely, if b ∈ A is such that f(b) = b, let X be the subset of A consisting of those
elements x ≤ b. We will see that X ∈ F , from which it will follow that X = A and then that
b is the largest element of A.

Indeed:
•Clearly, a ∈ X.

• If x ∈ X then x ≤ b. If x = b then f(x) = f(b) = b belongs to A. If otherwise x < b then
f(x) ≤ b by Theorem 0.1. So in both cases f(x) ∈ X.

• If Y is a subset of A having a least upper bound c in E, we have c ∈ A, whilst c ≤ b by
definition of X, which completes the proof. �

We see that that if x ∈ A is not the greatest element of A then x < f(x). Moreover, there
is no element y ∈ A such that x < y < f(x).

Corollary 0.3 The subset A is well ordered.

Proof Let B be a non-empty subset of A and C the set of lower bounds of B in A. To see
that B has a smallest element, it is enough to show that C has a least upper bound c in E.
Indeed, c then belongs to A and so to C by definition; it comes down to showing that c ∈ B.
Otherwise, since B is not empty, c would not be the greatest element of A, so one would have
c < f(c), and x ≥ f(x) for all x ∈ B, which would contradict the definition of c.

So we show that C has a least upper bound. We will see that otherwise one would have
C = A, contrary to the hypothesis that B is non-empty. It is enough, as always, to show
that, under these assumptions, C ∈ F .

Indeed,
•We have a ∈ C by definition.

• If x ∈ C, by hypothesis x ∈ B is impossible; then for all y ∈ B we have x < y, which
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implies f(x) ≤ y by the Theorem 0.1, and so f(x) ∈ C.

• If Y is a subset of C with a least upper bound in E, that must belong to A, so since all
elements of B lie above it, it must be an element of C.
The hypothesis would therefore imply C = A, which is impossible, and so the result has

been proved. �
It is then easy to prove Zorn’s Lemma:

Theorem 0.4 Let E be an inductively ordered set, that is, such that every totally ordered
subset of E has a least upper bound in E. Then E has a maximal element.

Proof By the Axiom of Choice, there is a function f : E → E such that f(x) = x if x
is maximal and f(x) > x otherwise. Let A be the subset defined from an element a ∈ E
and the function f according to the method of Theorem 0.1. Since A is totally ordered (by
Theorem 0.1), it has a least upper bound b in E by hypothesis. It then follows by Corollary
that b ∈ A and f(b) = b, which is to say that b is maximal. �

Recall that if E is a well ordered set then an [initial] segment S of E is a subset of R such
that if x ∈ S and y ≤ x then y ∈ S. It is easily shown that the segments of E are E itself
and, for each a ∈ E, the set of x ∈ E such that x < a.

In fact we can weaken the hypothesis of Theorem 0.4 and show

Theorem 0.5 If E is an ordered set such that every well ordered subset of E is bounded in
E, then E has a maximal element.

Proof Write B for the set of subsets B of E that are well ordered, and consider the relation
on B that “X is a segment of Y ”. It is immediate that this is an order relation, that we write
X ≤ Y . Moreover, equipped with this relation, B is inductive: this amounts to showing that,
if (Bα) is a totally ordered set of elements of B then the union B of Bα belongs to B, in other
words it is well ordered: indeed, if Z is a non-empty subset of B, Z ∩ Bα is non-empty for
at least one α, so has a smallest element in Bα, and we see immediately that it’s also the
smallest element of Z in B.

Since the set B is inductive, it has a maximal element X0. By the hypothesis, X0 has a
bound b in E. Then b ∈ X0; otherwise, the set X1 = X0 ∪ {b} would be well ordered and X0

would be a segment of X1 distinct from it, contrary to the definition of X0. The element b is
therefor the greatest element of X0 and by a similar argument b is maxima in E. �

We are not saying that Zorn’s Lemma must be deduced directly from Theorem 0.1, since
it is in fact very argument of Zermelo that we are repeating. We recall simple that one can
apply Theorem 0.1 to the set P(E) of subsets of any set E, ordered by inclusion. By the
Axiom of Choice, for every subset X ⊂ E such that X 6= E, one defines an element g(X)
of E such that g(x) /∈ X. Then for all X ⊂ E, we put f(X) = X ∪ {g(X)} if X 6= E and
f(E) = E. It is then enough to apply Theorem 0.1 to the function f and the element a
equal to the empty subset of E. Then the set A to one obtains in this way has, it is easy
to see, E as its greatest element, and the set of elements of A distinct from E is in bijective
correspondence with E, from which we have Zermelo’s theorem.

It seems to me that it is more instructive to deduce Zermelo’s theorem directly from
Zorn’s Lemma. Consider the set S of order structures on the subsets of E (a set that is in
bijective correspondence with a certain subset of P(E × E)), and let B be the set of those
order structures that are well orderings. For every structure s ∈ B, let A be the subset of E
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where s is defined. We define an order relation s ≤ s′ on B that is equivalent to As ⊂ As′ .
The structure induced by s′ on As is identical to s, and As is a segment As′ for the structure
s′. We easily see, by the same argument as in Theorem 0.1, that B is not just ordered but
inductive, so let s0 be a maximal element of B. It remains to show that the set As0 is equal
to E; indeed, otherwise on the set composed of As0 and an element that doesn’t belong to
As0 we may define a well ordered set s1 such that s1 > s0. This proves the result.
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