Sur le Théorème de Zorn

par Nicolas Bourbaki à Nancago, translated by Paul Taylor

It is well known that it is more convenient to use Zorn's Lemma than Zermelo's [wellordering] theorem [Zer08] in most arguments that use "transfinite induction". In fact the two results are equivalent, and both are equivalent to the Axiom of Choice.

At the request of many readers of my *Elements of Mathematics* [Bou57], I will show briefly how these two theorems can be derived from the Axiom of Choice and from a general result about ordered sets that itself does not require that Axiom and whose proof essentially copies the one that Zermelo gave for his own theorem.

Theorem 0.1 Let *E* be an ordered set, *a* an element of *E*, *f* a function from *E* to *E* such that, for all $x \in E$, we have $f(x) \ge x$. Let \mathcal{F} be the set of subsets *X* of *E* with the following properties:

- $\bullet \ a \in X;$
- if $x \in X$ then $f(x) \in X$;
- if a non-empty subset $Y \subset X$ has a least upper bound in E, this least upper bound belongs to X.

Then the set \mathcal{F} is not empty, the intersection A of the sets $X \in \mathcal{F}$ belongs to \mathcal{F} and for every pair of elements $x, y \in A$, we have

$$y \le x \quad \lor \quad y \ge f(x),$$

from which it follows that A is totally ordered.

Proof It is immediate that \mathcal{F} is not empty, because the set of elements of E that are are $\geq a$ belongs to \mathcal{F} ; we also see immediately that $A \in \mathcal{F}$.

Write B for the subset of A formed by those elements $x \in A$ which have the following property:

(P): if $y \in A$ and $y \le x$ then y = x or $f(y) \le x$.

The subset B is not empty, because clearly $a \in B$.

We will show first that if $x \in B$ and $y \in A$ then the following holds:

(Q):
$$y \le x \text{ or } y \ge f(x)$$

Indeed, for any element $x \in B$, let C be the subset of A formed of elements y for which the property (Q) is true; we will show that $C \in \mathcal{F}$; since $C \subset A$, it will follow from the definition of A that C = A.

Indeed:

- Since $a \leq x$, we have $a \in C$;
- If $y \in C$ and $y \geq f(x)$, we have $f(y) \geq y \geq f(x)$ and so $f(y) \in C$ by definition. In the other case, $y \leq x$, so from (P) we deduce y = x (and so f(y) = f(x)), or that $f(y) \leq x$. In either case we have $f(x) \in C$.
- Let Y be a subset of C having a least upper bound b in E; then $b \in A$ since $A \in \mathcal{F}$. If,

for all $y \in Y$, we have $y \leq x$, then $b \leq x$. If, otherwise, there is at least one $y \in Y$ such that $y \geq f(x)$ then $b \geq f(x)$. So $b \in C$ in both cases.

Hence we have shown that $C \in \mathcal{F}$ and so C = A, and it follows that the property (Q) holds for all $x \in B$ and $y \in A$. We will now show that B = A, from which the theorem follows: since $B \subset A$ it will be enough to show that $B \in \mathcal{F}$.

- Indeed, • We have already seen that $a \in B$.
- If $x \in B$ and if $y \in A$ is such that y < f(x) then $y \le x$ by the property (Q). Then by (P) we have y = x or $f(y) \le x$. In both cases we have $f(y) \le f(x)$, since $x \le f(x)$. We see that in both cases $f(x) \in B$.
- Let Y be a subset of B with a least upper bound b in E, which must belong to A. Let $y \in A$ be such that y < b; we can't have $y \ge x$, let alone $y \ge f(x) \ge x$ for all $x \in Y$, because then we would have $y \ge b$, contrary to the hypothesis. hence by (Q) there is at least one $x \in Y$ such that y < x, and it follows from (P) that $f(y) \le x \le b$, so we have $b \in B$. This is enough to prove that $B \in \mathcal{F}$, so the theorem has been proved. Observe that this actually shows that a is the *least* element of A.

Corollary 0.2 If A has a least upper bound b in E then $b \in A$ and f(b) = b. Conversely, of there is an element $b \in A$ such that f(b) = b, then b is the *largest* element of A.

Proof If b is a least upper bound of A in E then $b \in A$ by the definition of \mathcal{F} . Then b is the largest element of A. Since $f(b) \in A$ and $f(b) \in b$, necessarily f(b) = b.

Conversely, if $b \in A$ is such that f(b) = b, let X be the subset of A consisting of those elements $x \leq b$. We will see that $X \in \mathcal{F}$, from which it will follow that X = A and then that b is the largest element of A.

- Indeed:
- Clearly, $a \in X$.
- If $x \in X$ then $x \leq b$. If x = b then f(x) = f(b) = b belongs to A. If otherwise x < b then $f(x) \leq b$ by Theorem 0.1. So in both cases $f(x) \in X$.
- If Y is a subset of A having a least upper bound c in E, we have $c \in A$, whilst $c \leq b$ by definition of X, which completes the proof.

We see that that if $x \in A$ is not the greatest element of A then x < f(x). Moreover, there is no element $y \in A$ such that x < y < f(x).

Corollary 0.3 The subset A is well ordered.

Proof Let *B* be a non-empty subset of *A* and *C* the set of lower bounds of *B* in *A*. To see that *B* has a smallest element, it is enough to show that *C* has a least upper bound *c* in *E*. Indeed, *c* then belongs to *A* and so to *C* by definition; it comes down to showing that $c \in B$. Otherwise, since *B* is not empty, *c* would not be the greatest element of *A*, so one would have c < f(c), and $x \ge f(x)$ for all $x \in B$, which would contradict the definition of *c*.

So we show that C has a least upper bound. We will see that otherwise one would have C = A, contrary to the hypothesis that B is non-empty. It is enough, as always, to show that, under these assumptions, $C \in \mathcal{F}$.

Indeed,

- We have $a \in C$ by definition.
- If $x \in C$, by hypothesis $x \in B$ is impossible; then for all $y \in B$ we have x < y, which

implies $f(x) \leq y$ by the Theorem 0.1, and so $f(x) \in C$.

• If Y is a subset of C with a least upper bound in E, that must belong to A, so since all elements of B lie above it, it must be an element of C.

The hypothesis would therefore imply C = A, which is impossible, and so the result has been proved.

It is then easy to prove Zorn's Lemma:

Theorem 0.4 Let E be an inductively ordered set, that is, such that every totally ordered subset of E has a least upper bound in E. Then E has a maximal element.

Proof By the Axiom of Choice, there is a function $f : E \to E$ such that f(x) = x if x is maximal and f(x) > x otherwise. Let A be the subset defined from an element $a \in E$ and the function f according to the method of Theorem 0.1. Since A is totally ordered (by Theorem 0.1), it has a least upper bound b in E by hypothesis. It then follows by Corollary that $b \in A$ and f(b) = b, which is to say that b is maximal.

Recall that if E is a well ordered set then an [initial] segment S of E is a subset of R such that if $x \in S$ and $y \leq x$ then $y \in S$. It is easily shown that the segments of E are E itself and, for each $a \in E$, the set of $x \in E$ such that x < a.

In fact we can weaken the hypothesis of Theorem 0.4 and show

Theorem 0.5 If E is an ordered set such that every well ordered subset of E is bounded in E, then E has a maximal element.

Proof Write \mathcal{B} for the set of subsets B of E that are *well ordered*, and consider the relation on \mathcal{B} that "X is a segment of Y". It is immediate that this is an order relation, that we write $X \leq Y$. Moreover, equipped with this relation, \mathcal{B} is *inductive*: this amounts to showing that, if (B_{α}) is a totally ordered set of elements of \mathcal{B} then the union B of B_{α} belongs to \mathcal{B} , in other words it is well ordered: indeed, if Z is a non-empty subset of B, $Z \cap B_{\alpha}$ is non-empty for at least one α , so has a smallest element in B_{α} , and we see immediately that it's also the smallest element of Z in B.

Since the set \mathcal{B} is inductive, it has a *maximal* element X_0 . By the hypothesis, X_0 has a bound b in E. Then $b \in X_0$; otherwise, the set $X_1 = X_0 \cup \{b\}$ would be well ordered and X_0 would be a segment of X_1 distinct from it, contrary to the definition of X_0 . The element b is therefor the greatest element of X_0 and by a similar argument b is *maxima* in E.

We are not saying that Zorn's Lemma *must* be deduced directly from Theorem 0.1, since it is in fact very argument of Zermelo that we are repeating. We recall simple that one can apply Theorem 0.1 to the set $\mathcal{P}(E)$ of subsets of any set E, ordered by inclusion. By the Axiom of Choice, for every subset $X \subset E$ such that $X \neq E$, one defines an element g(X)of E such that $g(x) \notin X$. Then for all $X \subset E$, we put $f(X) = X \cup \{g(X)\}$ if $X \neq E$ and f(E) = E. It is then enough to apply Theorem 0.1 to the function f and the element aequal to the empty subset of E. Then the set A to one obtains in this way has, it is easy to see, E as its greatest element, and the set of elements of A distinct from E is in bijective correspondence with E, from which we have Zermelo's theorem.

It seems to me that it is more instructive to deduce Zermelo's theorem directly from Zorn's Lemma. Consider the set S of order structures on the subsets of E (a set that is in bijective correspondence with a certain subset of $\mathcal{P}(E \times E)$), and let \mathcal{B} be the set of those order structures that are *well orderings*. For every structure $s \in \mathcal{B}$, let A be the subset of E

where s is defined. We define an order relation $s \leq s'$ on \mathcal{B} that is equivalent to $A_s \subset A_{s'}$. The structure induced by s' on A_s is identical to s, and A_s is a segment $A_{s'}$ for the structure s'. We easily see, by the same argument as in Theorem 0.1, that \mathcal{B} is not just ordered but *inductive*, so let s_0 be a maximal element of \mathcal{B} . It remains to show that the set A_{s_0} is equal to E; indeed, otherwise on the set composed of A_{s_0} and an element that doesn't belong to A_{s_0} we may define a well ordered set s_1 such that $s_1 > s_0$. This proves the result.

Archiv der Mathematik 2 (1949) 434–7 doi 10.1007/bf0203694. Received on 15 November 1949. Nancago is a name for Nancy invented by the Bourbaki group: Nancy+Chicago.

References

- [Bou49] Nicolas Bourbaki. Sur le théorème de Zorn. Archiv der Mathematik, 2:434–7, 1949.
- [Bou57] Nicolas Bourbaki. Eléments de Mathématique XXII: Théories des Ensembles, Livre I, Structures. Number 1258 in Actualités scientifiques et industrielles. Hermann, 1957. English translation, "Theory of Sets" 1968.
- [Cam78] Paul Campbell. The origin of Zorn's lemma. Historia Mathematica, 5:77–89, 1978.
- [Fel62] Walter Felscher. Doppelte Hülleninduktion und ein Satz von Hessenberg und Bourbaki. Archiv der Mathematik, 13:160–5, 1962.
- [Lan65] Serge Lang. Algebra. Addison-Wesley, 1965. Third edition published by Springer-Verlag in 2002.
- [Tay23] Paul Taylor. Well founded coalgebras and recursion. www.paultaylor.eu/ordinals, 2023.
- [vH67] Jan van Heijenoort. From Frege to Gödel: a Source Book in Mathematical Logic, 1879–1931. Harvard University Press, 1967.
- [Wil01] Todd Wilson. An intuitionistic version of Zermelo's proof that every choice set can be well-ordered. Journal of Symbolic Logic, 66:1121–6, 2001.
- [Wit51] Ernst Witt. Beweisstudien zum Satz von M. Zorn. Mathematische Nachrichten, 4:434–8, 1951.
- [Zer08] Ernst Zermelo. Neuer Beweis für die Möglichkeit einer Wohlordnung. Mathematisches Annalen, 65:107–128, 1908. English translation in [vH67], pages 183–198.
- [Zor35] Max Zorn. A remark on transfinite algebra. Bull. Amer. Math. Soc., 41(10), 1935.

Note that this list consists of apparently relevant works mainly from later than Bourbaki's paper; very few were actually cited there.