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This is a translation of the paper Doppelte Hülleninduktion und ein Satz von
Hessenberg und Bourbaki by Walter Felscher that was published in Archiv der
Mathematik 13 (1962) 160–5.

The paper gives the history of the so-called Bourbaki–Witt theorem, tracing
it back to Gerhard Hessenberg (1908) and Kazimierz Kuratowski (1922). How-
ever, all of the versions of this proof seem to be terribly laboured, so the value
of this paper lies in the history rather than the proof itself.

The translation was made with the help of ImageMagick, Tesseract OCR,
the DeepL translator and a lot of hand-editting.

Felscher posted the following to the Historia Mathematica email forum on 17
April 2000, but sadly died later that year:

archives.math.utk.edu/hypermail/historia/apr00/0105.html

“Returning to Hessenberg, his paper
Kettentheorie und Wohlordnung. Crelle 135 (1909) 81-133

can hardly be underestimated in its importance. Not that it was understood
by his contemporaries. But Hessenberg, analyzing Zermelo’s second proof of
the well-ordering theorem, studied the general ways to construct well ordered
subsets of ordered sets — with the one restriction that order always was inclusion
and ordered sets were subfamilies of power sets. In the course of this, Hessenberg
stated and proved the fixpoint theorem which thirty years later was rediscovered
— for ordered sets now — by Nicolas Bourbaki. The amazing thing is that
Hessenberg’s proof is precisely the same as that given by Bourbaki! (only that
at one small point a simpler argument can be used due to the circumstance
that Hessenberg’s order is inclusion). For details, I refer to my article in Archiv
d.Math. 13 (1962) 160-165 and to my book Naive Mengen und Abstrakte Zahlen
from 1979, p.200 ff.”
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Theorem 0.1 Let (E,≤) be a poset (partially ordered set) and f : E → E be
an order-preserving function such that
•E has a least element e;

•E has suprema of al chains; and

• ∀x ∈ E. x ≤ fx.
(Recall that a chain C ⊂ E is a subposet in which ∀xy ∈ C. x ≤ y ∨ y ≤ x.)

Let D ⊂ E be the smallest subset such that
• e ∈ D;

• ∀x ∈ E. x ∈ D ⇒ fx ∈ D; and

•D is closed under suprema of chains.
Then D has the key property that

∀x, y ∈ D. x ≤ y ∨ fy ≤ x,

whence it is itself a chain. Hence D has a supremum, which is the least fixed
point of f .

Moreover D is well founded, in the sense that any non-empty subset U ⊂ D
has a ≤-least element.
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Let (E,≤) be a partially ordered set, f a mapping of E into itself with
x ≤ fx for all x ∈ E and d ∈ E. Then let D be the smallest subset of E
that contains d, is closed under f and is closed under any suprema that exist of
nonempty subsets of E.

Then (D,≤) is totally and indeed well-ordered.
In the following note we give a proof of this well known theorem that is not

really new: a proof only, which the known methods of Dedekind’s chain theory
using the evidence of a general principle of to a general principle of double
closure induction.

JDedekind: Was sind und was sollen die Zahlen?K
A first special case of this theorem can already be found in the idea of

Zermelo’s second proof of the well-ordering theorem. The ordered set (E,≤)
has the form (PM,⊂), suprema are unions of sets and for f it follows from
x 6= fx that fx is the upper neighbour of x. The set fx contains exactly one
element more than the set x (Zermelo [14]; there, however, a dual formulation
is used, with ⊃ instead of ⊂).

In the same year 1908 that Zermelo’s proof appeared, the theorem was also
proved by Hessenberg (Hessenberg [4], pp. 127 to 129), again for an ordered
set (PM,⊂), but now for any mapping f from PM to itself with X ⊂ fX
for all X ∈ PM . Hessenberg proof was reproduced, somewhat modified, by
Kuratowski (Kuratowski [7], Th. 3).
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Formulated and proved in the form stated at the beginning, for arbitrary
ordered sets, the theorem is then found in the almost simultaneously published
works of by Bourbaki (Bourbaki [2]), Witt (Witt [12]) and Inagaki (Inagaki
[5)). Not only do their proofs agree with his (apart from an additional but
dispensable condition in Inagaki’s), but they also resemble Hessenberg’s, step
by step, except that now we speak of ≤ instead of ⊂ and of suprema instead
of unions of sets. The abstraction from sets of the form (PM,⊂) to general
ordered sets does not require any new proof ideas.

And this theorem of Bourbaki, Witt and Inagaki then became widely known,
namely as an auxiliary result in the derivation of Zorn’s Lemma from the Axiom
of Choice.

Even before Bourbaki, however, Milgram had already proved a theorem in
1939 (Milgram [8]) from which the validity of the one here follows even under
still more general conditions: it is sufficient if D, instead of being closed under
suprema, is closed against a function g that assigns upper bounds to certain
subsets of E in such a way that subsets which generate equal beginnings also
have equal image and further the g-image of a set with maximum is equal to
this maximum or equal to the f -image of the maximum.

Milgram refines Hessenberg’s approach in his proof; it would be shown that
Milgram’s methods cannot be easily captured by the induction methods consid-
ered here.

Later Vaughan (Vaughan [11]) and Banaschewski (Banaschewski [1]), linked
to H. Kneser (Kneser [6]) and Szele (Szele [10]), it was shown that results of
this kind can also be derived according to the ideas of Zermelo’s first proof of
the well-ordering theorem (Zermelo [13]).

A comprehensive analysis of how well-ordered sets can be constructed from
given mappings will be published elsewhere (Felscher [13]).

In this paper, we first establish a principle of double closure induction. from
which a somewhat simplified form of the Hessenberg–Bourbaki proof of that
theorem can be immediately obtained as a special case. That something like
this was to be expected follows from a remark by J. Schmidt (Schmidt [9], p.
144), who recognised from a certain principle of double closure induction that
it played a role in parts of the Zermelo–Bourbaki proofs. The double closure
induction considered here is nothing else than an elaboration of the double
closure induction of J. Schmidt.

In a first supplementary remark it is then shown, that also the double closure
induction is not, as it will be done first, proved ad hoc, but by similar systematic
considerations as the double closure induction. In two further remarks, the
special cases and generalizations of the theorem.

1

Let E be a set.
Suppose we have a partial mapping g : PE ⇀ E, where we write def g for

the domain of definition of g. We say that a subset M ⊂ E is g-closed if
whenever B ⊂M with B ∈ def g we have gB ∈M .

JWe think of g as supremum, but he’s trying to avoiding that specificity. He
should nevertheless use a more suggestive symbol than a letter.K
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Let R be a subset of the pair-set E × E, although instead of (x, y) ∈ R we
write xRy. For x ∈ E let Rx be the set of all y ∈ E with xRy and R−1x the
set of all y ∈ E with yRx.

JIt would be more logical to write xR ≡ {y | xRy} instead of Rx and Ry ≡
{x | xRy} instead of R−1y.K

Let A be a subset of E such that Ra is g-complete for all a ∈ A.
Then the set V of all x ∈ E with A ⊂ R−1x is also g-complete.
For from B ⊂ V , so A ⊂ R−1b for all b ∈ B, it follows that aRb for all b ∈ B

and a ∈ A, therefore b ∈ Ra for all a ∈ A and all b ∈ B.
From B ∈ def g and the g-completeness of each Ra it follows that gB ∈ Ra

for all a ∈ A, hence a ∈ R−1gB for all a ∈ A, hence A ⊂ R−1gB, so gB ∈ V .
JcorrectK

Now let f : E → E. We say that a subset M ⊂ E is f-closed if ∀x. x ∈
M ⇒ fx ∈M .

We write Hg and Hf for the systems of all g-closed and f -closed subsets of
E, respectively.

These systems of subsets are closed under intersection and in particular they
contain E. Moreover, Hg∩Hf is another such a system, consisting of the subsets
of E that are both g- and f -closed.

Suppose that ∅ is not in def g Jwhy?K, let d ∈ E, and let D be the (g, f)-hull
of {d}, that is, the intersection of all sets from Hg ∩ Hf that contain d. Again
let R be a subset of D ×D.

The definition of D leads immediately to the following simple principle of
induction:

R is equal to D ×D if the set V of all x ∈ D with R−1x = D contains the
element d, is g-closed and f -closed.

We claim that following double induction principle is valid:
R is equal to D ×D so long as

(i)R−1d = D J∀x ∈ D. xRdK,
(ii) for all x, y ∈ D, if xRy and yRx, then xRfy,

(iii) for all x ∈ D, Rx ∈ Hg Jif B ∈ def g and ∀y ∈ B. xRy then xR(gB)K.

First, for all x ∈ D: if R−1x = D, then Rx = D Jif ∀y ∈ D. yRx then
∀y ∈ D. xRyK, because
(i) gives d ∈ Rx JxRdK;
(ii) if y ∈ Rx, that is, xRy, then since R−1x = D J∀y ∈ D. yRxK also yRx,

whence xRfy Jby hypothesis (ii)K i.e. fy ∈ Rx, giving f -closure.

(iii) gives g-closure Jif B ∈ def g and ∀y ∈ B. xRy then xR(gB)K.

And now we show that the set V of all x ∈ D with R−1x = D JV ≡
{x ∈ D | ∀y ∈ D. yRx}, my SK is equal to D:
(i) gives d ∈ V J∀y ∈ D. yRdK;
(ii) from R−1x = D follows Rx = D Jif x ∈ V , i.e. ∀y ∈ D. yRx then ∀y ∈ D. xRyK,

thus for all y ∈ D and xRy; if one exchanges x and y in (ii), then yRfx
for all y ∈ D, R−1x = D J∀y ∈ D. ∀y ∈ D. yRx eh??K, giving f -closure
J∀y ∈ D. yR(fx) i.e. fx ∈ V K.

(iii) gives g-closure Jif B ∈ def g and ∀y ∈ B. ∀x ∈ D. xRy then ∀x ∈ D. xR(gB),
i.e. gB ∈ V K. �

4



JI cannot fault this proof, but the notation and choice of lettering are con-
fused and I remain suspicious of the case (gB)R(fx).K

In the case g = ∅ one obtains from this the principle of double complete
induction of J. Schmidt [1] and the proof of it is found there, p. 145.

Let (E,≤) be an ordered set and f a mapping from E into itself with x ≤ fx
for all x ∈ E. Let g be a mapping from PE into E such that if B ∈ def g and
B is not is empty, then it has a supremum that is just gB. Further let d ∈ E
and D be the (g, f)-hull of {d}.

Then (D,≤) is totally ordered.
Consider the relation R defined by

xRy exactly if x, y ∈ D and (y ≤ x) ∨ (fx ≤ y).
Since x ≤ fx, it follows from fx ≤ y that also x ≤ y. It therefore suffices to
prove R = D ×D.
(i) holds, because d ≤ x by construction of D for all x ∈ D;

(ii) holds: suppose xRy, so y ≤ x or fx ≤ y Jwe also assume yRx ≡ x ≤
y ∨ fy ≤ xK;

• if y ≤ x but y 6= x then x � y, so from yRx we have fy ≤ x and xRfy;

• if y = x then fy = fx, so fx ≤ fy and xRfy;

• if fx ≤ y, since y ≤ fy we have fx ≤ fy and xRfy.

JIf f preserves order then xRy ⇒ yR(fx) very simply.K
(iii) from x ∈ D, B ∈ def g, B ⊂ Rx it follows that xRb, so (b ≤ x) ∨ (fx ≤ b)

for all b ∈ B;

• if b ≤ x for all b ∈ B, then also gB = supB ≤ x;

• if fx ≤ b for some b ∈ B, then also fx ≤ b ≤ supB = gB.

Hence we always have xRgB and gB ∈ Rx.

For g = ∅ Ji.e. without the infinitary operation g whose only meaningful
example is join

∨
K this proof is found again in J. Schmidt [1], p. 146.

That (D,≤) is in fact well ordered, one now concludes from R = D ×D in
the usual way (cf. Hessenberg [1], Bourbaki [1]).

2

The scheme of the double closure induction formulated in section 1 can also be
justified in the following way, where E, f , g, d, D, R and V are as explained
there.

V = D is proved if
(1)R−1d = D,

(2) for all x ∈ D, if R−1x = D, then R−1fx = D;

(3) for all x ∈ D, Rx ∈ Hg.
(2) is proved if

(2a1) for all x ∈ D, if R−1x = D then dRfx,

(2a2) for all x ∈ D, if R−1x = D and yRfx then fyRfx,

(2a3) for all x ∈ D, if R−1x = D then R−1fx ∈ Hg,
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and for this it is sufficient if
(2b1)Rd = D,

(2b2) for all x, y ∈ D, if fyRx and yRfx then fxRfy, (2a3).
Since R = D×D is equivalent to R∩R−1 = D×D, because of (R∩R−1)x =

Rx ∩ R−1x the induction can also be carried out over Rx ∩ R−1x = D instead
of over R−1x = D.

(For g = ∅ this can be found completely corresponding to the following J.
Schmidt [1]), but then instead of (3) one would have the only slightly handy
condition Rx ∩R−1x ∈ Hg, for all x ∈ D.

But since from Rfx ∩R−1fx = D it also follows that R−1fx = D, one can
pass in (2) from R to R ∩R−1 and thus have the induction scheme
(1) ?

(3) ?

(4) for all x ∈ D, if R−1x = D then Rx ∩R−1x = D,

(5) for all x ∈ D, if Rx ∩R−1x = D then Rfx ∩R−1fx = D.
According to what was said for (2), it is now sufficient for (5) if
(5b1)Rd ∩R−1d = D,

(5b2) for all x, y ∈ D, if fyRx, xRfy, yRfx and fxRy then fxRfy and fyRfx,

(5b3) for all x ∈ D, if Rx ∩R−1x = D then Rfx ∩R−1fx ∈ Hg. —
Since the preconditions of (5b2) merge when x and y are interchanged, one

can omit the second condition; if one continues to use only those conditions in
which fx occurs, and one demands the validity of the condition thus arising
with x in place of fx, then from (5b2) one finally obtains
(6) for all x, y ∈ D, if yRx and xRx then xRfy,
so just (ii) from section 1.

Thus (5b1) proves to be dispensable, because due to (1) d ∈ Rd, and Rd ∈ Hg

because of (3), and Rd ∈ Hg because of (1) and (6).
Further (5b3) becomes dispensable: because of (3) it suffices there to show

R−1fx ∈ Hg, but with (6) Rx ∩ R−1x = D then R−1fx = D even entails
R−1fx = D.

Finally, in (4) one needs only Rx = D, so that (4) is proved if
(41) for all x ∈ D, if R−1x = D then xRd,

(42) for all x ∈ D, if R−1x = D and xRy then xRfy,

(43) for all x ∈ D, if R−1x = D then Rx ∈ Hg;
and here follows: (41) from (1), (42) from (6), (43) from (3): (4) is also super-
fluous. The henceforth consisting of (1), (3), (6) is just the induction scheme
that we considered in section 1.

3

Let (E,≤) be an ordered set, f , g, D and R be as in section 1. The scheme
given there by induction over the two places of R agrees nearly with the proofs
of Hessenberg, Bourbaki and Witt.

The only difference is that besides R still Q with
xQy exactly if x, y ∈ D and (x ≤ y) ∧ (x 6= y)⇒ (fx ≤ y)

is considered, where from R−1x = D it follows at once that Q−1x = D, then
first from Q−1x = D to Rx = D, and thus Q−1x = D is proved for all x ∈ D.

6



Inagak considers C with
xCy exactly if x, y ∈ D and (x ≤ y) ∨ (x ≤ y),

where R ⊂ C, concludes from Q−1x∩C−1x = D that Rx = D and thus proves
Q−1x ∩ C−1x = D for all x ∈ D.

Kuratowski’s version of Hessenberg’s proof uses P with
xPy exactly if x, y ∈ D and (y ≤ x)⇒ (Ry = D),

and he proves by induction that Px = D for all x ∈ D: where Pfx = D from
Px = D is deduced by induction from Px = D to Rfx = D. If one has fxRy
then in the case ffx ≤ y certainly fxRfy, in the case y ≤ fx and y 6= fx
because of Px = D, Rx = D, xRy also y ≤ x, again because of Px = D,
Ry = D also yRfx, therefore according to (ii) fxRfy.

Zermelo, on the other hand, can operate with the stronger presupposition
that fx is the upper neighbour of x; but then C−1x = D has so Q−1x = D,
so that from C−1x = D one can conclude that Rx = D, and thus thus prove
C−1x = D for all x ∈ D.

4

From a theorem of Milgram (Milgram [1], Th. 1) it is easy to derive the following
statement:

Let (E,≤) be an ordered set, f a mapping from E into itself with x ≤ fx
for all x ∈ E, g a mapping from PE into E such that for B ∈ def g then gB is
an upper bound of B, further from B1, B1 ∈ def g and B1 is co-initial with B2

also follows gB1 = gB2.
(Here B1 and B2 are called co-initial if every element of Bi lies under some

element from Bj for i, j = 1, 2).
Finally B ∈ def g, maxB 6= ∅ always implies gB ∈ maxB ∪ f(maxB).
Further, let ∅ ∈ def g, d = g∅, and D be the (g, f)-hull of ∅. Then (D,≤) is

well-ordered.
First of all, we see that the proof given in Section 1 cannot be easily applied

to this general case: that Rx is g-closed can in any case no longer be justified
in the way described there.

But if one defines
xSy exactly if x, y ∈ D and for all B, if B ∈ def g, x = gB, so

(x ≤ y) ∨ (∃b ∈ B. y ≤ b),
then an induction proof can be given in the following steps:
(a)R−1d = D,

(b) S−1d = D,

(c) for all x ∈ D, if S−1x = D then Rx ∈ Hg,

(d) for all x ∈ D, if R−1x = D then Rx ∈ Hf ,

(e) for all x ∈ D, if Rx = D and S−1x = D then (S−1 ∩R−1)fx = D,

(f) for all M ∈ def g, if for all m ∈M we have

(S−1 ∩R−1)m = D then SgM = D,

for all M ∈ def g, if SgM = D, then (S−1 ∩R−1)gM = D.
Again, one uses more conveniently in the premises the statement following

from R−1x = D statement Q−1x = D and the statement S−1x = D following
from T−1x = D with
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xTy exactly if x, y ∈ D and for all B, if B ∈ def g, x = gB and for all
b ∈ B, b ≤ y, b 6= y then x ≤ y.

The difficulty of the proof lies in step (f): one first proves by induction that
special case of SgM = D which arises when specializing B to M in S; the
results of the earlier induction steps are used. For details and classification in
more comprehensive methods, we refer to the forthcoming work forthcoming
work of Felscher [3].
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